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Abstract. Continuing an earlier work in space dimension one, the aim of this

article is to present, in space dimension two, a novel method to approximate

stiff problems using a combination of (relatively easy) analytical methods and

finite volume discretization. The stiffness is caused by a small parameter in

the equation which introduces ordinary and corner boundary layers along the

boundaries of a two-dimensional rectangle domain. Incorporating in the fi-

nite volume space the boundary layer correctors, which are explicitly found by

analysis, the boundary layer singularities are absorbed and thus uniform meshes

can be preferably used. Using the central difference scheme at the volume in-

terfaces, the proposed scheme finally appears to be an efficient second-order

accurate one.
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1. Introduction

We consider convection-dominated problems in a two-dimensional domain:
{

div(−ε∇uε − buε) = f in Ω,
uε = 0 on ∂Ω,

(1.1)

where Ω = (0, 1) × (0, 1) ⊂ R
2, div(b) = 0, b = (b1, b2)

T with b1, b2 ≥ δ > 0 and
ε > 0, and b1 = b1(x, y), b2 = b2(x, y) and f = f(x, y) are sufficiently smooth.
When ε is small, e.g. 0 < ε << δ, the solutions uε of Problem (1.1) possess
boundary layers at the outflow boundaries, that is, x = 0, y = 0. For the analysis
of boundary layers problems the reader is referred to e.g. [4], [5], [8], [9], [11], [21],
[23], [25] and [27], and for the numerical approach to e.g. [24], [7], [12], [13], [15]
- [19], [22] and [26]. Notice that the boundary ∂Ω of Ω is nowhere characteristic.
Since div(b) = 0, we also note that div(−ε∇u−bu) = −ε∆u−b ·∇u and the well-
posedness of Problem (1.1) in the Sobolev space H1

0 (Ω) is standard, thanks to the
Lax-Milgram theorem. Furthermore, we can verify the following norm estimates
for the solutions uε.

Lemma 1.1. Let f = f1+ f2+ f3. There exists a positive constant κ, independent
of ε, such that







|uε|L2(Ω) ≤ κNε(f),

|uε|H1(Ω) ≤ κε−
1
2Nε(f),

|uε|H2(Ω) ≤ κε−
3
2Nε(f),

(1.2)
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where Nε(f) = |f1|L2(Ω) + ε−
1
2 |x(L1 − x)f2|L2(Ω) + ε−

1
2 |y(L2 − y)f3|L2(Ω).

Proof. To estimate uε = u, we write u = e−xv and then we have
{

−ε∆v − div(bv) + (b1 − ε)v + 2εvx = exf in Ω,
v = 0 on ∂Ω.

(1.3)

We first observe that

−

∫

Ω

div(bv)v = −

∫

Ω

(b · ∇v)v =

∫

Ω

div(b)
v2

2
= 0.(1.4)

Multiplying then (1.3)1 by v and integrating over Ω, we find

ε|v|2H1 + (δ − ε)|v|2L2 ≤ κ|x(L1 − x)f2|L2 |(
1

x
+

1

L1 − x
)v|L2

+ κ|y(L2 − y)f3|L2 |(
1

y
+

1

L2 − y
)v|L2 + κ|f1|L2 |v|L2

≤ κ(|f1|L2 |v|L2 + |x(L1 − x)f2|L2 |v|H1 + |y(L2 − y)f3|L2 |v|H1 ).

(1.5)

In (1.5) we have used the Hardy inequality (see e.g. [19], [10]) in the form:
∣

∣

∣

u

x

∣

∣

∣

L2(Ω)
≤ κ|u|H1(Ω), for u = 0 at x = 0.(1.6)

The first two inequalities (1.2) follow promptly from (1.5). Then the H2 regularity
and the H2 estimate immediately follow from (1.1). �

Convection-dominated problems appear in many applications where convection
plays an important role, as for instance weather-forecasting, oceanography, trans-
port of contaminant, etc. (see e.g. [3]). In this article we build a novel method
to approximate, numerically, two-dimensional convection-dominated problems and
via numerical examples the new numerical scheme is proved efficient and accurate.

Before we proceed we analyze below the stiffness of the solutions due to the small
parameter ε.

2. Singular perturbation analysis

In general, functions like uε can be decomposed into a relatively slow (smooth)
part us and a fast part uf , i.e. uε = us + uf . Using standard classical numer-
ical methods the slow part us can be easily approximated, but the fast part uf

produces large approximation errors due to the stiff gradients. Introducing the
so-called correctors which appear below we will resolve such issues for the problem
under consideration. The singular perturbation analysis provides the two impor-
tant settings. One is to locate the stiff parts, namely the boundary layers; we will
modify them and construct appropriate forms of uf which absorb the boundary
layer singularities. The other is to impose the boundary conditions for the slow
parts us which are close to the limit solutions.

Writing (1.1) in a non-divergence form we first construct the limit solution of uε

in (1.1), i.e. when ε = 0. That is, we find

b · ∇u0 = f in Ω,(2.1)

and then impose the zero boundary conditions at the inflows, i.e. x = 1 or y = 1.
This choice of the boundary condition for (2.1) will be justified a posteriori by
our convergence result. The existence and uniqueness of a solution u0 ∈ L2(Ω) of
(2.1) satisfying the zero boundary conditions at the inflows is well-known. In what
follows we will assume that u0 is as regular as needed. Such regularity results may
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impose some regularity and compatibility conditions for b and f , in particular if
b · n vanishes on ∂Ω, where n is the unit outward normal on ∂Ω.

To resolve the mismatch of the boundary values between uε and u0 at the out-
flows, i.e. x = 0 or y = 0, we now introduce the so-called ordinary boundary layers
θ1, θ2 (OBL) in space dimension 1, operating in the direction orthogonal to the
boundary. We find these OBL by stretching the space variables respectively near
x = 0, and y = 0, and balancing the dominating differential operators (see e.g. [4]
[25], [24], [15]):







−εθ1xx − b1(0, y)θ
1
x = 0 in Ω,

θ1 = −u0 at x = 0,
θ1 = 0 at x = 1,

(2.2)

and






−εθ2yy − b2(x, 0)θ
2
y = 0 in Ω,

θ2 = −u0 at y = 0,
θ2 = 0 at y = 1.

(2.3)

We then see that the asymptotic difference uε − (u0 + θ1 + θ2) satisfies the zero
boundary condition at x = 1, y = 1. However, this difference may not be zero
at x = 0, y = 0 due to the correctors θ1, θ2 themselves. To resolve this new
discrepancy, we introduce the so-called corner boundary layer ξ (CBL) at (0, 0), see
e.g. [25]; ξ is the solution of:







−ε∆ξ − b1(0, 0)ξx − b2(0, 0)ξy = 0 in Ω,
ξ = −θ2 at x = 0, ξ = −θ1 at y = 0,
ξ = 0 at x = 1, or y = 1.

(2.4)

Finally, the asymptotic difference w := uε − (u0 + θ1 + θ2 + ξ) satisfies the zero
boundary condition on ∂Ω and we will now estimate this difference, which measures
the asymptotic error. Subtracting (2.2)1, (2.3)1, (2.4)1 from (1.1)1 we obtain

{

−ε∆w − b · ∇w = ε∆u0 +R1 +R2 +R3 in Ω,
w = 0 on ∂Ω,

(2.5)

where






R1 = εθ1yy + b2(x, y)θ
1
y + (b1(x, y)− b1(0, y))θ

1
x,

R2 = εθ2xx + b1(x, y)θ
2
x + (b2(x, y)− b2(x, 0))θ

2
y,

R3 = (b1(x, y)− b1(0, 0))ξx + (b2(x, y)− b2(0, 0))ξy.
(2.6)

For the purposes of the following analysis we need explicit expressions of the correc-
tors. Since these explicit expressions are generally not available, we introduce the
following approximate forms θ̄1, θ̄2, ξ̄ of the boundary layers θ1, θ2, ξ respectively:



































θ̄1 = −u0(0, y) exp(−b1(0, y)
x

ε
),

θ̄2 = −u0(x, 0) exp(−b2(x, 0)
y

ε
),

ξ̄ = u0(0, 0) exp(−
b1(0, 0)x+ b2(0, 0)y

ε
).

(2.7)

These approximate forms respectively satisfy the same differential equations with
the outflow boundary conditions (2.2)1,2, (2.3)1,2 and (2.4)1,2. But they are ex-
ponentially small terms (est) at the inflow boundaries x = 1, y = 1. Hence the
differences between the boundary layer functions and their approximate forms sat-
isfy the respective differential equations and are est at the boundaries. By standard
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a priori estimates, it is thus found that the differences are est too. Denoting by
R̄1, R̄2, R̄3 the expressions R1, R2, R3 after replacing θ1, θ2, ξ by θ̄1, θ̄2, ξ̄, we find:

|R1|L2 ≤ κε|θ̄1yy|L2 + κ|θ̄1y|L2 + κ|xθ̄1x|L2 + est

≤ κ(|
(x

ε

)2

θ̄1|L2 + |
x

ε
θ̄1|L2) ≤ κ| exp(−c

x

ε
)|L2 + est

≤ κε
1
2 .

(2.8)

We can also estimate xnR1, for n ≥ 1:

|xnR1|L2 ≤ κ|xn exp(−c
x

ε
)|L2 + est ≤ κεn+

1
2 .(2.9)

Similarly, we find, for n ≥ 0,

|ynR2|L2 ≤ κεn+
1
2 .(2.10)

For R3, we obtain that

|R3|L2 ≤ |(b1(x, y)− b1(0, 0))ξ̄x|L2 + |(b2(x, y)− b2(0, 0))ξ̄y|L2 + est

≤ κε−1|(x+ y)ξ̄|L2 + est

≤ κε−1|(x+ y) exp(−b1(0, y)
x

ε
) exp(−b2(x, 0)

y

ε
)|L2 + est

≤ κε.

(2.11)

We can also prove that for n ≥ 1,

|xnR3|L2 ≤ κεn+1, |ynR3|L2 ≤ κεn+1.(2.12)

Applying Lemma 1.1 to the equation (2.5) with f1 = ε∆u0, f2 = R1 and f3 =
R2 +R3 we can answer at the following result:

Lemma 2.1. There exists a constant κ > 0, independent of ε but depending on the
other data, such that







|uε − u0 − θ1 − θ2 − ξ|L2 ≤ κε,

|uε − u0 − θ1 − θ2 − ξ|H1 ≤ κε
1
2 ,

|uε − u0 − θ1 − θ2 − ξ|H2 ≤ κε−
1
2 .

(2.13)

Remark 2.1. From Lemma 2.1 we see that we can decompose uε into two parts
us, uf in H1- space. Indeed if we write

us = w + u0, uf = θ1 + θ2 + ξ,(2.14)

with w = wε = uε − u0 − θ1 − θ2 − ξ, (2.13) implies |w|L2 ≤ κε, |w|H1 ≤ κε
1
2 , so

that us is indeed smooth (although depending on ε in a ”controllable” way). �

In Section 3 the main task will be to approximate the smooth part us since uf

is approximated at exponential order by θ̄1 + θ̄2 + ζ̄ which is explicitly known.

3. The Finite volume schemes

In view of approximating us, we now consider a finite volume discretization of
the space H1

0 (Ω). We introduce the mesh or control volumes (cells), nodes (xi, yj)
and some notations. We first introduce the step functions χi,j over the control
volumes Ki,j where

χi,j = χKi,j
(x, y), Ki,j = (xi− 1

2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
),(3.1)

for i, j = 1, · · · , N . For the sake of simplicity, we restrict ourselves to a uniform
mesh, so that xi+ 1

2
− xi− 1

2
= yj+ 1

2
− yj− 1

2
= h. To handle the boundary values

on ∂Ω, we consider the fictitious nodes (x0, yj), (xi, y0), (xN+1, yj) and (xi, yN+1)
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Figure 1. Control volumes over 2-dimensional meshes.

for which the nodal values are defined by linear interpolations as we show below.
Note then that we can write xi− 1

2
= (i − 1)h, xi = (i − 1

2 )h, yj− 1
2
= (j − 1)h and

yj = (j − 1
2 )h.

We observe and emphasize the fact that in the proposed method, we do not need
to refine the mesh near the boundary. In a classic manner (see e.g. [6], [7], [19]), the
nodal values uij ∼ us(xi, yj) are defined at the center of the cells (control volumes)
Kij = (xi− 1

2
, xi+ 1

2
) × (yj− 1

2
, yj+ 1

2
) (see Figure 1) and the numerical derivatives

∇huh between the cells are given by

∇1
huh =

ui+1,j − uij

h
on (xi, xi+1)× (yj− 1

2
, yj+ 1

2
),

for i = 1, · · · , N − 1, j = 1, · · · , N,
(3.2a)

∇2
huh =

ui,j+1 − uij

h
on (xi− 1

2
, xi+ 1

2
)× (yj , yj+1),

for i = 1, · · · , N, j = 1, · · · , N − 1,
(3.2b)

where ∇1
huh and ∇2

huh are respectively the first and second components of ∇huh

and they correspond to approximations of the derivatives of us in the x and y
directions, respectively. However, since the boundaries are positioned at volume
faces (not at nodes), to define ∇huh on the cells adjacent to the boundaries and to
impose the Dirichlet boundary conditions, some specific treatments are necessary,
which are the object of Section 3.1.

3.1. Linear interpolation of nodal values at the boundaries. To impose
the Dirichlet boundary condition on ∂Ω, we use a linear interpolation between
the boundary values of us and the nodal values uij on the cells adjacent to the
boundaries ∂Ω. Based on the above singular perturbation analysis and Remark
2.1, since us behaves like u0, we impose the zero boundary conditions for us at
the inflows x = 1, or y = 1. At the outflow boundaries x = 0, or y = 0, we will
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cell ∇huh

[x 1
2
, x1)× (yj , yj+ 1

2
)

(

2(u1j − r0j)

h
,
u1,j+1 − u1j

h

)

(xi, xi+ 1
2
)× [y 1

2
, y1)

(

ui+1,1 − ui1

h
,
2(ui1 − ri0)

h

)

(xN , xN+ 1
2
]× (yj , yj+ 1

2
)

(

−
2uNj

h
,
uN,j+1 − uNj

h

)

(xi, xi+ 1
2
)× (yN , yN+ 1

2
]

(

ui+1,N − uiN

h
,−

2uiN

h

)

Table 1. Numerical derivatives on the cells adjacent to the
boundaries; for i, j = 1, 2, · · · , N .

consider the boundary nodal values r0,j at x = 0 and ri,0 at y = 0, for i, j =
1, · · · , N (see Figure 1). Near the outflows x = 0, y = 0, to define the numerical
derivatives, we approximate the function us on the half cells [x 1

2
, x1)×(yj− 1

2
, yj+ 1

2
),

(xi− 1
2
, xi+ 1

2
)× [y 1

2
, y1), (xN , xN+ 1

2
]× (yj− 1

2
, yj+ 1

2
), and (xi− 1

2
, xi+ 1

2
)× (yN , yN+ 1

2
],

i, j = 0, 1, 2, · · · , N , respectively, by linear functions zi = zi(x, y), i = 1, 2, 3, 4,

z1 =
2(u1j − r0j)x

h
+ r0j , z2 =

2(ui1 − ri0)y

h
+ ri0,(3.3a)

z3 =
2uNj(1− x)

h
, z4 =

2uiN (1− y)

h
.(3.3b)

Differentiating zi(x, y) the numerical derivatives for ux and uy on these half cells
are thus obtained. Here we use the interpolations: on the cell [x 1

2
, x1)× (yj , yj+ 1

2
),

e.g.

∇1
huh =

u1,j − u0j

h
=

u1,j − z1(−
h
2 , yj)

h
=

2(u1j − r0j)

h
.(3.4)

The numerical derivatives on such cells can then be evaluated in a similar manner
as in Table 1.

The cell K11 near the corner (0, 0) is divided into two triangular cells which are
separated by the line y = x. Let us call the upper triangular cell U11 and the
lower one L11. We then approximate us on each triangular cell by linear functions
z5 = z5(x, y) and z6 = z6(x, y) which resp. pass through r00, r10 and u11 and
r00, r01 and u11 where r00 is the nodal value at (0, 0):

z5 = u11 +
2

h

[

(u11 − r01)(x−
h

2
) + (r01 − r00)(y −

h

2
)
]

,

z6 = u11 +
2

h

[

(r10 − r00)(x−
h

2
) + (u11 − r10)(y −

h

2
)
]

.

(3.5)

Differentiating z5, z6 we obtain the numerical derivatives on the triangular cells U11,
L11 as in Table 2.

3.2. Classical finite volume schemes. Multiplying (1.1)1 by a step function
χi,j , integrating over Ω and applying the divergence theorem we find:

−ε

∫

∂Kij

∂u

∂ν
−

∫

∂Kij

ub · ν =

∫

Kij

f.(3.6)

We write Fi,j = fijvol(Kij) = fijh
2 and use the central differencing (CD) for the

convective term ub, that is, e.g. at the volume faces (xi+ 1
2
, yj), we take the average
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cell ∇huh

U11

(

2(u11 − r01)

h
,
2(r01 − r00)

h

)

L11

(

2(r10 − r00)

h
,
2(u11 − r10)

h

)

Table 2. Numerical derivatives on the triangular cells adjacent
to the corner (0, 0).
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Figure 2. Numerical solutions for −ε∆uε − uε
x − uε

y = sin(2πy)

with ε = 10−3, N = 40, and the Dirichlet boundary conditions
uε = 0 on ∂Ω: (a) solution using the New finite volume methods
(3.19) with the correctors θw, θs, θo (nFVM); (b) solution using the
Classical finite volume methods (3.7) without the correctors
(cFVMCD).

of two nodal values respectively at (xi, yj), (xi+1, yj)), namely (bu)(xi+ 1
2
, yj) =

1
2 ((bu)(xi, yj) + (bu)(xi+1, yj)). Replacing u by uh =

∑

i,j≥1 ui,jχi,j and ∂u/∂ν
by ν · ∇huh as above we obtain the discrete system corresponding to the equation
(3.6): for i, j = 1, · · · , N ,

(−ε+ b1,i−1,j
h

2
)ui−1,j + (−ε+ b2,i,j−1

h

2
)ui,j−1 + 4εui,j

+ (−ε− b2,i,j+1
h

2
)ui,j+1 + (−ε− b1,i+1,j

h

2
)ui+1,j = Fi,j ,

(3.7)

where (b1,i,j , b2,i,j) = (b1(xi, yj), b2(xi, yj)). Note that our method allows us to use
here the central differencing, which is second-order accurate whereas the upwind
differencing, usually used, which takes upstream nodes at the volume faces, is only
first-order accurate (see [19], [28]).
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As usual, we simply impose the zero boundary conditions (1.1)2 by setting r0j =
ri0 = 0 at the outflow beside the zero inflow boundary conditions. For this, from
the linear interpolations (3.3) we consider the fictitious points outside the domains
which will be incorporated in the scheme (3.7), i.e. with r0j = ri0 = 0,

u0j = z1(−
h

2
, yj) = −u1j, ui0 = z2(xi,−

h

2
) = −ui1,(3.8a)

uN+1,j = z3(1 +
h

2
, yj) = −uN,j, ui,N+1 = z4(xi, 1 +

h

2
) = −ui,N .(3.8b)

The scheme (3.7) then corresponds to the following variational problem:
To find uh ∈ Vh such that

ah(uh, vh) = < f, vh >, ∀ vh =

N+1
∑

k=0

N+1
∑

l=0

uk,lχk,l ∈ Vh,(3.9)

where ah(uh, vh) =
∑

k,l vk,l
∫

∂Kkl
(−ε∂uh/∂ν − uhb · ν) and

Vh =
{

span{χk,l}k,l=0,1,··· ,N,N+1 with the conditions (3.8)
}

.(3.10)

However, when ε is small, the classical schemes (3.7) with (3.8) cannot capture
the boundary layer singularities and then the large approximation errors due to
them propagate along the characteristics. This makes the scheme highly unstable
(see [19] and Figure 2 below).

To resolve such issues, we show in the following sections how to capture the
boundary singularities by enriching the spaces Vh with the correctors.

3.3. Corrector basis. We now consider the new schemes which incorporate the
correctors’ basis to absorb the stiffness of the solutions. Based on the above singular
perturbation theory and Remark 2.1, we infer that the stiffness is attributed to the
boundary layers at the outflows, i.e. θ1, θ2, ξ. We approximate the fast part uf

using the functions e−
b1(0,0)x+b2(0,0)y

ε , −e−
b1(0,yj )x

ε and −e−
b2(xi,0)y

ε and the slow
part us by usual classical elements

∑

i,j≥1 ui,jχi,j . We write the corrector basis,
θw, θs and θo,



































θw = θw(x) = − exp(−b1(0, yj)
x

ε
), for j = 1, · · · , N,

θs = θs(y) = − exp(−b2(xi, 0)
y

ε
), for i = 1, · · · , N,

θo = θo(x, y) = exp(−
b1(0, 0)x+ b2(0, 0)y

ε
), for i = j = 1,

(3.11)

and assuming that the thickness of the boundary layers is concentrated within
one mesh (that is ε << h) we may consider the corrector basis supported in one
mesh, i.e. e.g. θw = θw(x)χ[0,h](x). We introduce a usual finite volume space
Vh, i.e. step functions as above, and add to it the functions, θwχ(0,h)×(y

j− 1
2
,y

j+1
2
),

θsχ(x
i− 1

2
,x

i+1
2
)×(0,h) and θoχ(0,h)×(0,h) corresponding to θ̄1, θ̄2, ξ̄, and we obtain the

enriched finite volume spaces. In the enriched FV space we then approximate the
solution uε of (1.1) by ũh

ũh = r00θoχ0,0 +
N
∑

j=1

r0,jθwχ0,j +
N
∑

i=1

ri,0θsχi,0 +
∑

i,j≥0

ui,jχi,j ,(3.12)
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where, χ0,0 = χ(0,h)×(0,h), χ0,j = χ(0,h)×(y
j− 1

2
,y

j+1
2
), χi,0 = χ(x

i− 1
2
,x

i+1
2
)×(0,h), and

the χi,j , for i, j ≥ 1, are as in (3.1).
The derivative ∇uε is then approximated by a numerical derivative ∇hũh (see

e.g. [19])

∇hũh = r00∇θoχ0,0 +
N
∑

j=1

r0,j∇θwχ0,j +
N
∑

i=1

ri,0∇θsχi,0 +∇huh,(3.13)

where ∇huh is defined in (3.2) and in the Tables 1, 2.
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Figure 3. Numerical solutions for −ε∆uε − uε
x − 1.5uε

y = 1 with

ε = 10−3, N = 30, and the Dirichlet boundary conditions uε = 0 on
∂Ω using the New finite volume methods (3.19) with the correctors
θw, θs, θo (nFVM).

3.4. The new finite volume schemes. In the new schemes, we assume that the
r0j , and ri0 (see Figure 1) are free at the outflow and set the nodal values equal
to zero at the inflow boundaries. From the linear interpolations (3.3) we can, as in
(3.8), define the values of us at the fictitious nodes:

u0j = 2r0j − u1j , ui0 = 2ri0 − ui1,(3.14a)

uN+1,j = −uN,j, ui,N+1 = −ui,N .(3.14b)

Hence we can setup the scheme (3.7) with the nodal values as in (3.14). However,
due to the nodes r0,j , ri,0, the system for this scheme is not closed. But it can be
closed using the correctors θwχ0,j , θsχi,0, θo as test elements as we will show below.

We start with the generic test elements χi,j . For 1 ≤ i, j ≤ N , multiplying
(1.1)1 by χi,j , integrating over Ω and replacing uε by ũh as in (3.12) we find that
the equations are equivalent to those of the classical FV scheme (3.7). Note that
the correctors θw, θs, θo (and similarly below) do not contribute to these equations
because the correctors are the solutions of (1.1) with f = 0.
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Multiplying (1.1)1 by θw(x)χ1,j , j = 1, 2, · · · , N and integrating over Ω we first
find that

−

∫

∂K1,j

ε
∂u

∂ν
θw +

∫

K1,j

(εuxθwx − (b · ∇u)θw) =

∫

K1,j

fθw.(3.15)

Since θwx = −b1, 12 ,1ε
−1θw, we can rewrite (3.15) as

−

∫

∂K1,j

ε
∂u

∂ν
θw −

∫

K1,j

((b1, 12 ,1 + b1,1,1, b2,1, 12 ) · ∇u)θw =

∫

K1,j

fθw.(3.16)

Note that
∫

Kk,l
f = O(h2) for i, j ≥ 1, but

∫

K1,j
fθw = O(hε), for j ≥ 1. To balance

this equation with the other equations in (3.19) below, we will multiply (3.16) by
h/ε.

We can similarly derive an equation associated to the test function θs(y)χi,1. We
just switch the roles of x and y, and of b1 and b2.

For i = j = 1, multiplying (1.1)1 by θo(x, y)χ1,1 and integrating over Ω we find
that

−

∫

∂K1,1

ε
∂u

∂ν
θo +

∫

K1,1

(ε∇u · ∇θo − (b · ∇u)θo) =

∫

K1,1

fθo.(3.17)

Since ∇θo = (−b1, 12 ,1,−b2,1,12 )ε
−1θ0, we can rewrite this as

−

∫

∂K1,1

ε
∂u

∂ν
θo −

∫

K1,1

((b1, 12 ,1 + b1,1,1, b2,1, 12 + b2,1,1) · ∇u)θo =

∫

K1,1

fθo.(3.18)

We note that
∫

K1,1
fθo = O(ε2). To balance this equation with the other equations,

we will multiply it by h2/ε2.
Replacing the derivatives ∂u/∂ν and ∇u as in (3.16) and (3.18) by the numerical

derivatives ν · ∇hũh and ∇hũh as in (3.13) and combining the classical equations
(3.7) with (3.14) we obtain the following new scheme: for i, j = 0, 1, · · · , N ,



























































for i = j = 0,

(4b2,1, 12C + 4b1, 12 ,1D)hr0,0 + (−2
1−A2

b2,1, 12
+ (4b1, 12 ,1 − 4b2,1, 12 )C)hr0,1

+(−2
1−B2

b1, 12 ,1
− (4b1, 12 ,1 − 4b2,1, 12 )D)hr1,0

+(
(2 +B2)(1 −A2)

b2,1, 12
+

(2 +A2)(1−B2)

b1, 12 ,1
− 4b1, 12 ,1C − 4b2,1, 12D)hu1,1

−
A2(1−B2)

b1, 12 , 1
hu1,2 −

B2(1−A2)

b2,1, 12
hu2,1 = F0,0,

(3.19a)
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









































































for i = 0, j ≥ 1,

(2− 4B1)hr0,j + (−2h+ 6hB1 − hB2 + 2ε
1−B2

b1, 12 ,1
)u1,j + (−2B1 +B2)hu2,j

−
2ε+ b2,1, 12 h

2b1, 12 ,1
(1 −B2)u1,j+1 −

2ε− b2,1, 12h

2b1, 12 ,1
(1−B2)u1,j−1 = F0,j ,

for i ≥ 1, j = 0,

(2− 4A1)hri,0 + (−2h+ 6hA1 − hA2 + 2ε
1−A2

b2,1, 12
)ui,1 + (−2A1 +A2)hui,2

−
2ε+ b1, 12 ,1h

2b2,1, 12
(1 −A2)ui+1,1 −

2ε− b1, 12 ,1h

2b2,1, 12
(1−A2)ui−1,1 = Fi,0,

(3.19b)



















for i, j ≥ 1,

(−ε+ b1,i−1,j
h

2
)ui−1,j + (−ε+ b2,i,j−1

h

2
)ui,j−1 + 4εui,j

+(−ε− b2,i,j+1
h

2
)ui,j+1 + (−ε− b1,i+1,j

h

2
)ui+1,j = Fi,j .

(3.19c)

In (3.19) we have set, for k = 1, 2:














































Ak = exp(−b2,1, 12
kh

2ε
), Bk = exp(−b1, 12 ,1

kh

2ε
),

C =
A2B2 − 1

b1, 12 ,1(b1,
1
2 ,1

+ b2,1, 12 )
−

A2 − 1

b1, 12 ,1b2,1,
1
2

,

D =
A2B2 − 1

b2,1, 12 (b1,
1
2 ,1

+ b2,1, 12 )
−

B2 − 1

b1, 12 ,1b2,1,
1
2

,

(3.20)

F11 =
h2

ε2

∫

K1,1

fθo, F0j =
h

ε

∫

K1,j

fθw, Fi0 =
h

ε

∫

Ki,1

fθs, Fij =

∫

Ki,j

f,(3.21)

and the fictitious nodes u0j , ui0, uN+1,j, ui,N+1 are as in the relations (3.14).

Remark 3.1. In (3.15) (similarly in (3.17)) rather than a divergence form we use
a non-divergence form of Eq. (1.1). The reason is due to discretization errors.
More precisely, if we use a divergence form, the term

∫

K1,j
(b · ∇u)θw in (3.15) can

be written as
∫

K1,j
ub1θwx and we then find the discretization error

∫

K1,j
(ub1(x)−

uhb1,1,1)θwx = O(hǫ−
1
2 ), which is getting large as ǫ is getting small. This error can

lead to a instability of numerical schemes. However, the discretization error due to
the term

∫

K1,j
(b · ∇u)θw is only O(h).

4. Numerical examples

To test the numerical accuracy of the classical and new finite volume schemes,
an analytic explicit solution with a given boundary condition is usually suggested.
But it is difficult to have an explicit solution uε of Eq. (1.1) (with sharp boundary
layers) if f does not have singular terms of the type e−x/ε. Hence, for comparison
purpose, we take f = −2x+ 2, b1 = b2 = 1 and the boundary conditions uε = 0 at
x = 0, 1 and assume periodicity with period 1 in the y direction. Since we expect
boundary layers at x = 0 only, for the new schemes (3.19), we set ri,0 = 0 for i ≥ 0
and we thus remove the first and the third equations of (3.19) and thanks to the
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Figure 4. Numerical solutions for −ε∆uε−uε
x−1.5uε

y = sin(2πy)

with ε = 10−3, N = 30, and the boundary conditions uε = 0 at
x = 0, 1 and 1- periodic in y using the New finite volume methods
(3.19) with the corrector θw only (nFVM).

periodicity in y replace the second and the last relation of the fictitious nodes in
(3.14) by ui,0 = ui,N , ui,N+1 = ui,1 respectively. Similarly, for the classical schemes
(3.7), we use these two relations to replace the second and the last ones in (3.8).
The exact solution is easily found:

uε = (1− e−
1
ε )−1(e−

1
ε + 2ε− (1 + 2ε)e−

x
ε ) + x2 − 2(1 + ε)x+ 1.(4.1)

As it appears in Table 3, the new finite volume methods (nFVM) (3.19) attain
much better numerical accuracy for ε ≤ 10−1 whereas the classical finite volume
methods with center differencing (cFVMCD) (3.7) do so for ε = 1 (ε not small)
but, as ε → 0, the cFVMCD becomes highly unstable and with upwind differencing
(cFVMUD) the classical scheme is stable but less accurate than the nFVM. In
Figure 4 imposing the same boundary conditions with f = sin(2πy) we can also
obtain stable and accurate numerical solutions. In this case, we expect the boundary
layers to occur at x = 0 and incorporate the corrector θw.

In Figure 2 we compare the simulations for the new and the classical schemes.
Firstly, we easily see that the numerical errors from the classical schemes cFVMCD
propagate along the characteristics, y = x+c, c constants. More precisely, the large
approximation errors due to the stiffness of the boundary layers at x = 0, or y = 0
propagate in the convective directions. To capture the stiffness, highly fine meshes
are needed when using the classical finite volume schemes. On the contrary, the
numerical solutions obtained with the new schemes nFVM are stable and capture
the boundary layers at x = 0, and y = 0 with economical mesh sizes.

In Figure 3 we clearly observe the boundary layers at x = 0, y = 0 and the
characteristics are y = 1.5x + c, c constants, and the new schemes capture all the
boundary layers.
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ε N nFVM cFVMCD cFVMUD

1 10 8.3570E-01 3.2196E-03 3.9710E-03
1 20 8.5300E-01 8.3143E-04 2.4769E-03
1 40 8.6200E-01 2.1119E-04 1.3687E-03
10−1 10 2.5535E-03 1.2533E-01 8.2272E-02
10−1 20 6.7887E-04 3.3935E-02 5.7310E-02
10−1 40 2.1021E-04 8.8401E-03 3.4563E-02
10−3 10 2.6856E-03 1.5094E+02 8.2286E-02
10−3 20 7.1281E-04 3.0378E+01 4.4832E-02
10−3 40 1.9543E-04 1.1543E+01 5.1539E-02
10−8 10 2.5000E-03 1.2499E+12 9.2500E-02
10−8 20 6.2500E-04 1.5625E+11 4.8125E-02
10−8 40 1.5625E-04 1.9532E+10 2.4530E-02

Table 3. The numerical accuracies, measured by the max norm,
max1≤i,j≤N{|u(xi, yj) − uij |} where u(xi, yj) are exact solutions
from (4.1) and uj are numerical solutions from the classical fi-
nite volume methods (3.7) with central differencing (cFVMCD),
upwind differencing (cFVMUD), and new finite volume methods
(nFVM) (3.19) where −ε∆uε−uε

x−uε
y = −2x+2 with the bound-

ary conditions uε = 0 at x = 0, 1 and 1- periodic in y.

5. Conclusion

We have extended to 2D problems our approach developed in ([19]) for one-
dimensional problems, where we verified the stability and convergence analysis. In
the 1D problem we have only one ordinary boundary layer at the outflow whereas in
the 2D problem under consideration we observe, beside the boundary layers along
the outflow boundaries, the corner boundary layers located at the corner where
the two boundary layers intersect. Incorporating into the FV space the correctors
θw, θs, θo, which absorb the singularities of the ordinary and corner boundary lay-
ers, and using the central differencing (CD) we are able to achieve the second-order
numerical accuracy in the Taylor series truncation error (see Table 3 and see the
truncation error analysis in [19]). Furthermore, since the boundary layer singular-
ities are absorbed by the correctors, we are able to use a uniform mesh. The new
finite volume scheme (3.19) is thus efficient (compared to the use of meshes refined
near the boundary layers), stable and second-order accurate. Here we note that the
upwind differencing (UP) which is standard in classical schemes is only first-order
accurate in the truncation error.

It is noteworthy to estimate the mesh size h that is needed if the boundary layer
singularities are not appropriately absorbed as we do. For simplicity, let us consider
the one-dimensional version of the problem under consideration. The interpolation
errors for uε near x = 0 (say over a mesh [xi, xi+1]) in e.g. the H1- space are
bounded from above by κh|uε|H2(xi,xi+1) (see [19]). By asymptotic analysis, it is

not difficult to estimate uε as uε ∼ e−cxi/ε and |uε|H2(xi,xi+1) ∼ ε−3/2e−cxi/ε, c > 0,
near the boundary. Hence, to guarantee that |uε|H2(xi,xi+1) ≤ κ, we must require

the mesh points xi to be xi ∼ − 3
2ε ln ε which indicates extremely small meshes as

ε → 0. Our scheme, which absorbs the boundary singularities in the corrector, only



FV APPROXIMATION OF STIFF PROBLEMS 475

requires uniform meshes and is definitely much more efficient. We plan, in a future
more experimental work, to compare e.g. the CPU times required by the different
modes, but we see already that our method avoids refining the mesh (too often) as
ε → 0.

We have used the central differencing at the volume interfaces. Absorbing the
singularities due to boundary layers the numerical stability is already achieved (very
robust with respect to changes of ε) and thus usual higher-order techniques can be
implemented such as the stability preserving higher-order methods, e.g. central
upwind, MUSCL, which appear in classical finite volume or discontinuous Galerkin
methods. Note however that the numerical solutions of the stability preserving
higher-order methods are known to be smearing (or to have relatively low numerical
accuracies) near the boundary layers.

We may extend our method to more complex problems. Without any changes
taking the tensor product of 1D finite volume spaces we can easily apply to 3D
version of (1.1) on a cubic domain as we did the 2D version (1.1) from the 1D
problem in [19]. On curvilinear domains when b · ν does not change sign on ∂Ω,
since the boundary layer correctors are 1-dimensional (see [9], [8]), we can also
obtain explicit forms of the correctors and incorporate them in the FV spaces. We
may also consider more general elliptic operators of second or higher order, or time
dependant problems (see [14], [3], [20], [1], [2]). In the case where the convective
coefficients b · ν change sign, the difficulties are considerable due to the turning
point layers (see e.g [18] for 1D problems). In general the curves where the turning
points occur are complex and the turning point layer correctors should be modified
and simplified to be used in the discretizations. We will extend our method to
resolve such issue as well as problems on 3D domains, curvilinear domains, and
turning point layers in the future.
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