
INTERNATIONAL JOURNAL OF c© 2010 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 7, Number 3, Pages 416–427

POINTWISE APPROXIMATION OF CORNER SINGULARITIES

FOR SINGULARLY PERTURBED ELLIPTIC PROBLEMS

WITH CHARACTERISTIC LAYERS

VLADIMIR B. ANDREEV

This paper is dedicated to 70th anniversary of Grigorii I. Shishkin

Abstract. A Dirichlet problem for a singularly perturbed steady-state con-

vection-diffusion equation with constant coefficients on the unit square is con-

sidered. In the equation under consideration the convection term is represented

by only a single derivative with respect to one coordinate axis. This problem is

discretized by the classical five-point upwind difference scheme on a rectangular

piecewise uniform mesh that is refined in the neighborhood of the regular and

the characteristic boundary layers. It is proved that, for sufficiently smooth

right-hand side of the equation and the restrictions of the continuous boundary

function to the sides of the square, without additional compatibility conditions

at the corners, the error of the discrete solution is O(N−1 ln2 N) uniformly

with respect to the small parameter, in the discrete maximum norm, where N

is the number of mesh points in each coordinate direction.

Key Words. parabolic boundary layers, elliptic equation, piecewise uniform

mesh, corner singularities.

1. Introduction

In the unit square Ω = (0, 1)2 with the boundary ∂Ω the following problem is
considered

(1) Lu := −ε∆u+ a
∂u

∂x
+ qu = f(x, y), (x, y) ∈ Ω, u

∣

∣

∂Ω
= g,

where

(2) a = const > 0, q = const > 0,

and ε ∈ (0, 1] is a small parameter.
Let Γk be the sides of the square Ω enumerated counter-clockwise, beginning

with Γ1 =
{

(x, y) ∈ ∂Ω
∣

∣ x = 0
}

and let ak = (xk, yk) be its vertices, enumerated

in the same way with a1 = (0, 0). Let also gk := g
∣

∣

Γk
denote a restriction of the

boundary function g to the side Γk of the square Ω.
Numerous investigations (see [11] and the references) show that the solution to

problem (1)-(2) has a complicated structure, involving a regular boundary layer in
the neighborhood of the right boundary Γ3, two characteristic layers in the neigh-
borhood of the bottom and the top boundaries Γ2 and Γ4, corner layers with corner
singularities in the neighborhood of the vertices a2 and a3, and corner singularities
in the neighborhood of the inflow vertices a1 and a4; see Figure 1.
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Figure 1. Solution of model problem (1), (30); ε = 2−9.

In the recent work [5], which was improved in [6], a detailed analysis is given
of the solution to problem (1)-(2) with ε-explicit estimates of all its derivatives in
general case g 6∈ C(∂Ω). A few years earlier, the solution of this problem, under
assumptions that the compatibility conditions of the first order are satisfied, was
analyzed in [10]. In [9] equation (1) with variable convection coefficient a was
investigated, but under very severe compatibility conditions at the corner points
excluding appearance of corner singularities both in the solution itself and in its
derivatives up to desired order for equation (1) and for the reduced equation as
well. Under the same assumptions, in [9] the convergence of classical five-point
upwind difference scheme is analyzed for which, on a Shishkin mesh, the convergence
estimate of O(N−1 ln2 N) is obtained, where N is the number of mesh points in
each coordinate direction. Earlier in [10], a comment was made that one might
get the error estimate of O(N−1 lnN) for this scheme (using the obtained solution
decomposition). In spite of heaviness of compatibility conditions, in most works
dealing with analysis of numerical methods for singularly perturbed equations in a
rectangle, such assumptions are made in order to provide smoothness to the solution
being approximated. The book of Shishkin [12] is an exception. In this book for
some problems certain compatibility conditions are posed, while those are not posed
for other problems. But for the cases when the compatibility conditions are not
posed, estimates, obtained in [12] (for a much more general problem than (1), (2)),
give low orders of convergence. For example, for the finite-difference scheme (9)

applied to problem (1), (2), only the error bound O((N−1 ln2 N)1/14) is given in
[12].

In recent years for some singularly perturbed problems the author of this pa-
per has succeeded in carrying a more thorough analysis of the convergence rate
of difference schemes, when the problem data at the corner points have minimal
compatibility (only the continuity is required). Thus, in [1], [2] for a singularly
perturbed reaction-diffusion equation on a unit square, with the Dirichlet and the
Dirichlet-Neumann boundary conditions, the error of the classical difference scheme
on a Shishkin mesh is proved to be O(N−2 ln2 N). However, in the case of Dirichlet-
Neumann boundary conditions, it was necessary to use an additional power refine-
ment in the neighborhood of those corner points where boundary conditions of
different types were imposed at the adjacent sides. A similar situation occurs in [4]
too, where the reaction-diffusion equation in an L-shaped domain is investigated.
In [3] the convection-diffusion equation in a rectangle with a regular boundary layer
is considered. For this problem, singularities at different corner points are of very
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different nature (see, for example, [7]). But now it does not suffice to use only
continuity of the boundary data at the corner points for tensor-product meshes.
In [3], provided that the stringent compatibility conditions at the inflow corner (as
in [9]) and continuity at the others are satisfied, the uniform convergence with the

rate of O(N−1 ln2 N) is proved.
In this work, it is assumed that the boundary function g from (1) is continuous

(3) g ∈ C(∂Ω),

and is sufficiently smooth on Γk = Γk, k = 1, . . . , 4. Any other compatibility
conditions at the corner points ak, k = 1, . . . , 4, are not assumed.

The aim of the present paper is to show that our weak compatibility conditions,
complemented by sufficient smoothness of the right-hand side f(x, y) of equation
(1), are sufficient for the error estimate from [9], where additional compatibility
conditions were assumed; see theorem 2 below. Note that to prove this theorem,
we essentially use results from [9] and [5], [6].

The present paper is organized as follows. In § 2, we present a solution decom-
position and give a sharper version of well-known estimates for the derivatives of
the decomposition components. In § 3, we discretize problem (1) and then prove
the error estimate of theorem 2, which is our main result. In § 4, some numerical
results are presented that support this theorem.

In the course of the paper c, c1 and so on, denote different positive constants
that do not depend on ε and N .

2. Decomposition of the solution and a priori estimates

As we have already mentioned, to prove the main theorem of this work, we
essentially use results from [5], [6], where a decomposition of the solution to (1) was
constructed and a priori estimates of its components were obtained. We formulate
a version of some results from [5], [6]. Note that certain assumptions on smoothness
of f and gk made in [5], [6] do not seem necessary. Instead, we simply assume that f
and gk are sufficiently smooth. Moreover, the results from [5, 6] are rather general.
Those include both the case of a discontinuity of a boundary function at the corner
points of the domain, and all possible cases when the compatibility conditions of
any order are satisfied. Our interest is only in one case of the boundary function
being continuous at the corner points without additional compatibility conditions;
this corresponds to ν = 0 in [5, 6].

Unfortunately, the estimates of the solution derivatives in [5] are too rough for
our purposes in the neighborhood of the corners for m + n = 2 (the case γ = 0)
from [5, theorem 5.1] because of a logarithmic factor. This factor is necessary to
estimate mixed derivatives. As for us, we need only pure derivatives with respect
to x and to y. As it will be proved below, the logarithmic factor can be omitted
for these derivatives. With this correction, an abridged variant of [5, theorem 5.1],
which was improved in [6], will be formulated.

Introduce some notations before the theorem to be formulated.
Set

Dm := Dm
x := ∂m/∂xm, Dn := Dn

y := ∂n/∂yn, Dm,n := DmDn.

By rk =
√

(x − xk)2 + (y − yk)2 denote the distance from the point (x, y) to the
vertex ak and by ρk = ρ((x, y),Γk) denote the distance from the same point to the
straight line on which the segment Γk lies.

Theorem 1. Let u(x, y) be a solution to problem (1)-(3). Let f(x, y) for (x, y) ∈
Ω = Ω ∪ ∂Ω and gk(s), k = 1, . . . , 4 for s ∈ Γk = Γk be sufficiently smooth. Then
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the following decomposition takes place

(4) u(x, y) = v(x, y) + w(x, y) +

4
∑

k=1

zk(x, y),

where

Lv = f(x, y), Lw = Lzk = 0, k = 1, . . . , 4, (x, y) ∈ Ω,

and also for m+ n 6 3

|Dm,nv(x, y)| 6 c,(5)

|Dm,nw(x, y)| 6 c ε−me−a(1−x)/ε,(6)

(7)

|Dm,nzk(x, y)| 6

6 c



















(ε−n/2 + ε1−m−n) for m+ n 6 1 and rk < ε,

ε−1 for m+ n = 2,mn = 0 and rk < ε,

(ε−n/2 + ε−1r−1
k ) for m+ n = 3 and rk < ε,

ε−n/2[1 + r
1−m−n/2
k ]e−

√
q ρ2(k+2)/3/(2

√
ε) for rk > ε,

k = 1, 4

and

(8)
|Dm,nzk(x, y)| 6

6 c



















(ε−m−n/2 + ε1−m−n) for m+ n 6 1 and rk < ε,

ε−m−n/2 for m+ n = 2, mn = 0 and rk < ε,

(ε−m−n/2 + ε−1r−1
k ) for m+ n = 3 and rk < ε,

ε−m−n/2[1 + r
1−n/2
k ]e−

√
q ρ2(k−1)/(2

√
ε)−a(1−x)/ε for rk > ε,

k = 2, 3.

All propositions of theorem 1, except those for m + n = 2, are contained in
theorem 1 from [6] and are proved in [5, 6]. Proposition (7) on the estimate of the
second non-mixed derivatives follows from [5] as well. To be precise, the proof of
theorem 5.1 from [5] for this case involves a number of other results from the same
paper. In particular, this proof uses theorem 4.2 which, in its own turn, refers to
theorem 4.1, and the latter refers to lemma 4.6, where the bound of the even order
derivatives with respect to y is proved. This estimate implies (7) for m = 0, n = 2.
As by virtue of (7), Dxzk = O(1), then it follows from the equation Lzk = 0 that
D2

xzk = O(ε−1). Thus we have established the desired estimate from (7).
Estimates (8) for the second pure derivatives of the functions Z2 and Z3 are

proved using a similar argument.

Remark 1. In [8], a mixed problem for the equation (1), subject to Neumann
boundary condition on the outflow boundary Γ3, is considered, and it is proved
that for the solution to this problem, there is no logarithmic factor in the estimates
of the pure derivatives with respect to y near a2 and a3.

3. The discrete problem and the error analysis

We present error bounds for the approximation of (1) by the standard five-point
upwind difference scheme

(9) LNU = −ε(δ2x + δ2y)U + aD−
x U + qU = f, (xi, yj) ∈ ΩN , U

∣

∣

∂ΩN= g

on a mesh ΩN = ωx × ωy, which is a tensor product of two piecewise uniform
one-dimensional Shishkin meshes ωx, ωy. The finite difference operators D−

x and
δ2x are the standard first order backward difference and the second order centered
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difference on a non-uniform mesh. To be exact, if hi = xi − xi−1 is the local mesh
size of the mesh ωx and ~i = (hi + hi+1)/2, then, for example,

D−
x vij :=

vij − vi−1,j

hi
, δ2xvij =

(

D−
x vi+1,j −D−

x vij
)

/~i.

Here the mesh ωx places N/2 mesh intervals into both [0, 1 − σx] and [1 − σx, 1]
and the mesh ωy places N/4 mesh intervals into intervals [0, σy] and [1− σy , 1] and
N/2 intervals into the region [σy, 1 − σy ]. The transition parameters are taken to
be

σx = min

{

1

2
,
ε

a
lnN

}

and σy = min

{

1

4
,
2√
q

√
ε lnN

}

.

Let

h = 2σx/N and h = 4σy/N

be the ”fine” mesh widths of ωx and ωy, respectively, and let

H = 2(1− σx)/N and H = 2(1− 2σy)/N

be their ”coarse” mesh widths.
One can easily prove that the matrix, generated by the operator LN , is an M -

matrix. Therefore the discrete operatorLN satisfies the discrete maximum/comparison
principle.

The discrete solution U is decomposed similarly to the continuous solution (4)

(10) U = V +W +

4
∑

k=1

Zk,

where

LNV = f, LNW = LNZk = 0, k = 1, . . . , 4, (xi, yj) ∈ ΩN ,

and

V = v, W = w, Zk = zk, k = 1, . . . , 4, (xi, yj) ∈ ∂ΩN .

The functions V and W from (10) are similar to the corresponding functions V
and WR from [9]. (Compared to [9], we use a slightly different method of extension
to construct v(x, y) and w(x, y) in (4).) Therefore, by virtue of the estimates (5),
(6), from theorem 1 and results from [9], it follows that

(11) |v − V |+ |w −W | = O(N−1 ln2 N).

The case of the functions Zk is more complicated. Thus, the function Z1 is
the analogue to the function WB from [9] (That is missed in the decomposition
of U on p. 1770 there.) This function is an approximation to the boundary layer
function of the lower characteristic layer. But, in contrast to WB , the function
Z1 includes description of the corner singularity too, arising from the lack of the
appropriate compatibility condition at the vertex a1. The functions Z4 and WT are
associated in a similar manner. The functions WBR and WTR from [9] characterize
approximations of the corner layers near the vertices a2 and a3, respectively. Our
functions Z2 and Z3, aside from these, include corresponding corner singularities.
In spite of the pointed out difference in the functions Zk and W from [9], the
behavior of these functions outside of the neighborhoods to the corresponding sides
and vertices of Ω, is similar. Therefore, in virtue of bounds (7) and (8), from
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theorem 1 and results from [9], the following estimates are valid

(12)

|z1 − Z1| 6 cN−1, 0 6 xi 6 1, σy 6 yj 6 1,

|z4 − Z4| 6 cN−1, 0 6 xi 6 1, 0 6 yj 6 1− σy,

|z2 − Z2| 6 cN−1, 0 6 xi 6 1− σx, or σy 6 yj 6 1,

|z3 − Z3| 6 cN−1, 0 6 xi 6 1− σx, or 0 6 yj 6 1− σy .

Thus, it remains to estimate zk−Zk on their ”own” fine meshes. Since the behavior
of Z1 and Z4 are identical, as well as of Z2 and Z3, it is sufficient to analyze (z1−Z1)
for 0 6 xi 6 1, 0 6 yj 6 σy and (z2 − Z2) for 1− σx 6 xi 6 1, 0 6 yj 6 σy . Let us
begin with (z1 − Z1). Using Taylor series expansions, we get

(13) |LN(z1−Z1)| 6 cN−1

[

ε

∣

∣

∣

∣

∂3z1
∂x3

(ξi, yj)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2z1
∂x2

(ξ∗i , yj)

∣

∣

∣

∣

+ εσy

∣

∣

∣

∣

∂3z1
∂y3

(xi, ηj)

∣

∣

∣

∣

]

,

where ξi, ξ∗i and ηj are some points in (xi−1, xi+1), (xi−1, xi) and (yj−1, yj+1),
respectively, that are different in different situations. Now it is necessary to use
(7) to obtain estimate (13) in terms of r1. But first, it should be clarified when we
have

√

ξ2i + y2j > c
√

x2
i + y2j ,

√

x2
i + η2j > c

√

x2
i + y2j

with some constant c not depending on N and ε. By virtue of the definition of ξi,
the inequality ξ2i + y2j > x2

i−1 + y2j is always correct and it is sufficient to estimate
the constant c from the inequality

(xi −H)2 + y2j > c2 (x2
i + y2j ),

which holds true only for c < 1. This inequality is equivalent to the inequality

(14)

(

xi −
H

1− c2

)2

+ y2j >
c2H2

(1− c2)2
,

which is true for the nodes of ΩN disposed outside of a disk of the radius cH/(1−c2)
with the center at the point (H/(1− c2), 0). If i = 1, then inequality (14) is correct

only for the nodes whose coordinates yj > cH/(
√
1− c2). In order that inequality

(14), for h 6 H , to be valid for all nodes of ΩN with i > 2, it is necessary that the
constant c to be not greater than 1/2.

So,

(15)
√

ξ2i + y2j > r1/2 for xi > 2H or yj > H/
√
3.

Since H > N−1 and h 6 N−1, then the inequality

(16)
√

x2
i + η2j > r1/2

holds true at all points of ΩN .
Let us estimate (13) using (7) and then take into account (15), (16). Since

estimates (7) for rk 6 ε are the same as for rk > ε if rk = O(ε), we have
(17)

|LN(z1 − Z1)ij | 6

6 cN−1



















ε

(

1 +
1

εr1

)

+

(

1 +
1

ε

)

+ ε3/2 lnN

(

1

ε3/2
+

1

εr1

)

, r1 < ε

ε

(

1 +
1

r21

)

+

(

1 +
1

r1

)

+ ε3/2 lnN

(

1 +
1

r
1/2
1

)

ε−3/2, r1 > ε
6

6 c r−1
1 N−1 lnN, xi > 2H or yj > H/

√
3.
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For other nodes of ΩN , that is for nodes (x1, yj) when yj 6 H/
√
3, estimate (17)

does not follow from (13). So one must operate in another way.
At first, note that LN(z1 − Z1) = LNz1. Using Lagrange mean value theorem,

we get

D−
x g(x1, yj) =

∂g

∂x
(ξ∗1 , yj).

A similar formula takes place for the second difference quotient. Namely, we have

δ2xg(x1, yj) =
∂2g

∂x2
(ξ1, yj).

On the uniform mesh with the mesh width H this formula, for example, follows
from the representation

δ2xg(x1, yj) = H−2

∫ 2H

0

(H − |x−H |)∂
2g

∂x2
(x, yj)d x

and the general mean value formula. It follows, from what has been said, that

(18) LNz1(x1, yj) = −ε

[

∂2z1
∂x2

(ξ1, yj) +
∂2z1
∂y2

(x1, ηj)

]

+a
∂z1
∂x

(ξ∗1 , yj)+qz1(x1, yj).

Taking into account (7) and bearing in mind that yj 6 cH , we obtain

(19) |LN (z1 − Z1)(x1, yj)| 6 c 6 cN−1(H2 + y2j )
−1/2, yj 6 cH.

This estimate is not worse than (17) for the other nodes. So it is possible, when
it is necessary, to assume that (17) combines the estimate (17) for i > 1 and (19).
That is, (17) is valid for all nodes (xi, yj) for 0 < yj < σy , we are interested in.

Now we turn to the function (z2 −Z2). As for (13), we find, for 1−σx < xi < 1,
0 < yj < σy , that

|LN (z2 − Z2)(xi, yj)| 6

6 cN−1

{

εσx

∣

∣

∣

∣

∂3z2
∂x3

(ξi, yj)

∣

∣

∣

∣

+ σx

∣

∣

∣

∣

∂2z2
∂x2

(ξ∗i , yj)

∣

∣

∣

∣

+ εσy

∣

∣

∣

∣

∂3z2
∂y3

(xi, ηj)

∣

∣

∣

∣

}

.

Now
√

(1− ξi)2 + y2j > r2/2 for all mesh points of ΩN and
√

(1− xi)2 + η2j > r2/2

for yj > 2h or xi 6 1− h/
√
3. Therefore, with regard to (8), we get

(20)
|LN(z2 − Z2)(xi, yj)| 6 cN−1 lnN

(

ε−1 +

{√
ε/r2, r2 < ε,

1/
√
r2, r2 > ε

)

,

yj > 2h or xi 6 1− h/
√
3.

In just the same way as for z1 from (18), we find that

(21)
LNz2(xi, y1) =− ε

[

∂2z2
∂x2

(ξi, y1) +
∂2z2
∂y2

(xi, η1)

]

+ a
∂z2
∂x

(ξ∗i , y1)+

+ qz2(xi, y1), 1− xi < h/
√
3.

But now from (8) it follows immediately only the bound

(22) |LNz2(xi, yj)| 6 c/ε,

which is much worse than (20) and is too rough for using in further estimates. To
sharpen (22), we write the equation for z2 at the mesh point (ξi, y1) and subtract
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this, equaled zero, expression from (21). Using Lagrange mean value theorem, we
have

LNz2(xi, y1) = LNz2(xi, y1)− Lz2(ξi, y1) =

=− ε

[

∂2z2
∂y2

(xi, η1)−
∂2z2
∂y2

(ξi, y1)

]

+ a

[

∂z2
∂x

(ξ∗i , y1)−
∂z2
∂x

(ξi, y1)

]

+

+ q[z2(xi, y1)− z2(ξi, y1)] =

=− ε

[

∂2z2
∂y2

(xi, η1)−
∂2z2
∂y2

(ξi, y1)

]

+ a(ξ∗i − ξi)
∂2z2
∂x2

(ξ∗∗i , y1)+

+ q[z2(xi, y1)− z2(ξi, y1)],

where ξ∗∗i ∈ (ξ∗i , ξi). Now, using (8), we obtain

(23) |LN (z2 − Z2)(xi, y1)| 6 c

(

1 +
lnN

εN

)

, xi > 1− h/
√
3,

which is not worse than (20). So it is possible to assume that the estimate (20) is
correct for all nodes satisfying 1 − σx < xi < 1, 0 < yj < σy. Thus, the following
lemma is proved.

Lemma 1. Under the conditions of theorem 1, the following estimates are valid

|LN (z1 − Z1)ij | 6 c r−1
1 N−1 lnN, (xi, yj) ∈ (0, 1)× (0, σy),

|LN (z2 − Z2)ij | 6 cN−1 lnN

(

ε−1 +

{√
ε/r2, r2 < ε,

1/
√
r2, r2 > ε

)

,

(xi, yj) ∈ (1− σx, 1)× (0, σy).

It remains to estimate the functions (z1 − Z1) and (z2 − Z2) themselves on a
proper subset of the nodes of ΩN . These estimates are crucial in our analysis.

As it was noted above, the operator LN of problem (9) satisfies the comparison
principle. So it is sufficient to construct appropriate barriers to estimate (zk −Zk).

Lemma 2. If a positive constant b is sufficiently large, then the function

B(x, y) = ln

√

(x+ bH)2 + y2

H
+

+

(

π

2
− arctan

y

x+ bH

)(

1 +
π

2
+ arctan

y

x+ bH

)

+ 1 > 1, (x, y) ∈ Ω,

is such that there exists sufficiently small positive number C, for which

LNBij > C (x2
i + y2j )

−1/2, (xi, yj) ∈ ΩN .

Proof. Assume x′ = x + bH , y′ = y. Let now r′, ϕ′ be the polar coordinates in
new axes. It is obvious that for (x, y) ∈ Ω the variables r′ and ϕ′ are subjected to
constraints 0 6 ϕ′ < π/2 and r′ > bH . In variables r′ and ϕ′, the function B(x, y)
takes the form

(24) B(x, y) = ln(r′/H) + (π/2− ϕ′)(π/2 + 1 + ϕ′) + 1 > 1, (x, y) ∈ Ω.

Since

Lv ≡ L′v := −ε∆′v + a ∂v/∂x′ + qv,
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then, going over to polar coordinates, we get
(25)

LB(x, y) ≡ −ε

[

1

r′
∂

∂r′

(

r′
∂B
∂r′

)

+
1

r′2
∂2B
∂ϕ′2

]

+ a

[

cosϕ′ ∂B
∂r′

− sinϕ′

r′
∂B
∂ϕ′

]

+ qB >

>
2ε

r′2
+

a

r′
, (x, y) ∈ Ω.

Applying the operator LN to B, we obtain
(26)

LNBij = (LB)ij −
ε

6

[

H
∂3B
∂x′3 (xi + θ1H, yj)−H

∂3B
∂x′3 (xi − θ2H, yj)+

+ h
∂3B
∂y3

(xi, yj + θ3h)− h
∂3B
∂y3

(xi, yj − θ4h)

]

+
a

2
H

∂2B
∂x′2 (ξ

∗
i , yj), θl ∈ [0, 1).

It follows from (24) that
∣

∣

∣

∣

∂lB
∂x′l

∣

∣

∣

∣

+

∣

∣

∣

∣

∂lB
∂yl

∣

∣

∣

∣

6
c

r′l
, l = 2, 3.

Bearing this in mind, with regard to (25), we obtain from (26) that

LNBij >
2ε

r′2
+

a

r′
−

− c ε

[

H

[(x′
i −H)2 + y2j ]

3/2
+

h

[x′
i
2 + (yj − h)2]3/2

]

− cH

(x′
i −H)2 + y2j

.

It follows from reasoning, leading to (15), that
√

(x′
i −H)2 + y2j > r′/2 for (xi, yj) ∈ ΩN , if b > 1.

This inequality together with (16) makes it possible to conclude that

LNBij >
2ε

r′2
+

a

r′
− c ε

r′3
(H + h)− cH

r′2
for b > 1.

If, moreover,

(27) r′ > max {cH, c h, 2cH/a},
then

LNBij >
a

2r′
.

In order that all nodes of ΩN lie outside of the disk from(27), it is sufficient that
its radius is not greater than (b + 1)H . As H > h, then this condition is satisfied
for

cH max(1, 2/a) ≡ c1 H 6 (b + 1)H.

It remains to obtain an estimate of the constant c from the inequality

r > c r′, (xi, yj) ∈ ΩN .

Taking into account (14), we conclude that this inequality is equivalent to the
inequality

(

x′
i −

bH

1− c2

)2

+ y2j >

(

cbH

1− c2

)2

, (xi, yj) ∈ ΩN ,

or, that is the same,
(

xi −
c2bH

1− c2

)2

+ y2j >

(

cbH

1− c2

)2

, (xi, yj) ∈ ΩN .
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This inequality will be correct, if we require that the node (H, h) will not be inside
of the disk. For this, it is sufficient that

c 6 1/(1 + b).

The lemma is proved with C = ac/2, where c 6 (1 + b)−1 6 c−1
1 . �

Lemma 3. There exists positive constants b and C such that

B2(x, y) = ln

√

(1 − x)2 + (y + bh)2

h
+ arctan

y + bh

1− x
−

− arctan2
y + bh

1− x
+

π2

4
+ 1 > 1, (x, y) ∈ Ω,

and

LNB2(xi, yj) > C
(

(1− xi)
2 + y2j

)−1/2
= Cr−1

2 , (xi, yj) ∈ ΩN .

Proof. Make a change of variables x∗ = 1−x, y∗ = y. In new variables the operator
L takes the form

L∗u∗ = −ε∆∗u∗ − a
∂u∗

∂x∗ + qu∗.

Further reasoning repeats arguments used in the proof of lemma 2, with a difference
that now we have y instead of x and vice versa. Thus, there will be h instead of H
and h instead of h. �

Now we have everything to obtain missing estimates of (z1 −Z1) and (z2 −Z2).
Denote e = z1−Z1. By virtue of (17), (19), with regard to (12), and taking account
the construction of z1, we get

|LNe| 6 c (N−1 lnN)r−1
1 for 0 < xi < 1, 0 < yj < σy,

e = O(N−1) for yj = σy, and e = 0 for (xi, yj) ∈ ∂ΩN .

On ΩN , because of lemma 2, r−1
1 6 C−1LNB, and, by virtue of (24), B > 1.

Therefore, for appropriate c, the function c (N−1 lnN)B(xi, yj) is a barrier for e.
Since B 6 c lnN on ΩN , then

(28) |e| = |z1 − Z1| 6 cN−1 ln2 N, 0 < xi < 1, 0 < yj < σy .

Now denote e = z2 − Z2. By virtue of (20), (23) and (12),

|LNe| 6 c (N−1 lnN)(ε−1 + r−1
2 ) for 1− σx < xi < 1, 0 < yj < σy,

e = O(N−1) for xi = 1− σx, yj = σy, and e = 0 on ∂ΩN .

Assume that e =
◦
e+ ē, where

|LN ◦
e| 6 c (N−1 lnN)ε−1, and |LN ē| 6 c (N−1 lnN)r−1

2 .

The estimate for
◦
e is obtained in [9] and it has the form

|◦e| = O((N−1 ln2 N)).

For ē from lemma 3, using the function B2, we find, as for the case of e = z1 − Z1,
that

|ē| 6 c (N−1 lnN)B2 for 1− σx < xi < 1, 0 < yj < σy .

Since

max
1−σx<x<1
0<y<σy

B2(x, y) 6 c ln

√

σ2
x + σ2

y

h
,
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and σx 6 2σy (at least, for ε < 4a2), then

ln

√

σ2
x + σ2

y

h
6 ln

√
2σy

h
6 c lnN.

Therefore,

|ē| 6 cN−1 ln2 N for 1− σx < xi < 1, 0 < yj < σy,

and consequently,

(29) |z2 − Z2| 6 cN−1 ln2 N for 1− σx < xi < 1, 0 < yj < σy .

Collecting together estimates (11), (12), (28), (29), we conclude that the following
theorem is valid.

Theorem 2. Let u be the solution to problem (1) - (3), which satisfies the condi-

tions of theorem 1, and U be the solution to problem (9) on the piece-wise Shishkin

mesh ΩN . Then

|Uij − u(xi, yj)| 6 cN−1 ln2 N.

Remark 2. The arguments used to prove theorem 2, remain valid for the case of
variable coefficients a and q of equation (1). Therefore, the following conditional
proposition holds: if theorem 1 is valid for the case of variable coefficients a and q
in equation (1), then theorem 2 holds true as well.

4. Numerical results

Our test problem is (1) with

(30) q = 0, a = 1, f = 1 + (1− x)2 + (1 − y)2, g = 0;

see Figure 1. It is easy to see that for such definition of coefficients and right-hand
sides, compatibility conditions even of the first order are not satisfied at vertices.

Table 1. Maximum nodal values of errors eN and its products
with N , N/ lnN and N/ ln2 N .

N ε = 1 ε = 2−3 ε = 2−6 ε = 2−9 ε = 2−12 ε = 2−15

5.35e-4 1.98e-2 5.28e-2 6.01e-2 6.06e-2 6.11e-2
1.71e-2 6.34e-1 1.69e 0 1.92e 0 1.94e 0 1.95e 0

32 4.94e-3 1.83e-1 4.87e-1 5.55e-1 5.59e-1 5.64e-1
1.43e-3 5.28e-2 1.41e-1 1.60e-1 1.61e-1 1.63e-1
2.48e-4 1.13e-2 2.93e-2 3.47e-2 3.48e-2 3.51e-2
1.58e-2 7.24e-1 1.88e 0 2.22e 0 2.23e 0 2.25e 0

64 3.81e-3 1.74e-1 4.51e-1 5.34e-1 5.36e-1 5.40e-1
9.16e-4 4.19e-2 1.08e-1 1.29e-1 1.29e-1 1.30e-1
1.19e-4 5.84e-3 1.59e-2 1.97e-2 1.95e-2 1.96e-2
1.52e-2 7.47e-1 2.04e 0 2.52e 0 2.50e 0 2.51e 0

128 3.13e-3 1.54e-1 4.20e-1 5.19e-1 5.16e-1 5.17e-1
6.45e-4 3.17e-2 8.65e-2 1.07e-1 1.06e-1 1.07e-1
5.81e-5 2.97e-3 8.60e-3 1.09e-2 1.09e-2 1.09e-2
1.49e-2 7.59e-1 2.20e 0 2.79e 0 2.79e 0 2.78e 0

256 2.68e-3 1.37e-1 3.97e-1 5.04e-1 5.04e-1 5.01e-1
4.84e-4 2.47e-2 7.16e-2 9.08e-2 9.08e-2 9.04e-2
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Table 1 presents numerical results for problem (9). Since the exact solution is
unknown, to investigate the rates of convergence, for each N and ε, we compute
the double mesh errors eN := max

ij
|UN

ij − Ū2N
2i,2j |. Here UN := U is the computed

solution on the mesh described in § 3 with N − 1 interior mesh nodes in each
direction, while Ū2N is the computed solution on a similar mesh that uses the
same transition parameters σx and σy, but the (almost) doubled number 2N − 1 of
interior mesh nodes in each direction.

In each block of four numbers in Table 1 values of eN , NeN , NeN/ lnN and

NeN/ ln2 N are sequentially placed.
An analysis of table data in rows shows that the double mesh errors eN stabilize

as ε → 0. An analysis of the same data in columns shows that eN = O(N−1) on
uniform meshes (ε = 1, ε = 2−3) and that eN = O(N−1 lnN) for ε ≪ 1. These
results do not contradict theorem 2 proved above, but suggest that estimates in
theorem 2 and in [9] are somewhat rough.
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