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EFFICIENT PARALLEL HYBRID COMPUTATIONS FOR

THREE-DIMENSIONAL WAVE EQUATION PRESTACK DEPTH

IMAGING

WENSHENG ZHANG AND YAU-SHU WONG

Abstract. Three-dimensional wave equation prestack depth imaging is an im-

portant tool in reconstructing images of complex subsurface structures, and it

has become a technique gaining wide popularity in oil and gas industry. This

is a large-scale scientific computing problem and can be considered a process

of data continuation downward with the surface data or the boundary data,

such as the shot-gather data. In this paper, we first discuss the decomposi-

tion of a two-way wave equation and investigate four different approaches to

approximate the square-root operator. Using the known shot-gather data as

input, an unconditional stable hybrid method for the wavefield extrapolation

is presented. The most attractive feature of the proposed method is that it

has a natural parallel characteristic and can be effectively implemented using a

cluster of PCs, in which each processor performs its own shot-gather imaging in-

dependently. To demonstrate the computational efficiency and the power of the

parallel hybrid algorithm, we present two case studies: one is the well-known

SEG/EAEG subsalt model which has been commonly used for validation of

the prestack depth imaging algorithms, and the other is the application to a

3D wavefield extrapolation problem with real data provided by the China Na-

tional Petroleum Corporation. The results clearly show the capability of the

proposed method, and it demonstrates that the algorithm can be effectively

implemented as a practical engineering tool for 3D prestack depth imaging.

Key Words. prestack depth imaging, prestack migration, wavefield extrapo-

lation, wave equation, hybrid method, parallel compuation, MPI

1. Introduction

The three-dimensional prestack depth migration or imaging is an important and
effective engineering tool widely used in oil and gas industry, and it has become a
standard technique for complex geological structures exploration. The 3D imaging
process can be regarded as a data continuation downward with the surface data
such as the shot-gather data. The downward continuation of the prestack data
should be carried out in the 5D-space of a full 3D prestack geometry (recording
time, source surface location, and receiver surface location). Due to the tremendous
amount of the raw or field data, this requires a very expensive computational cost.
For obvious reasons, it is important to develop efficient methods which can be
economically applied in exploration.
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Generally speaking, there are two classes of methods: Kirchhoff and non Kirch-
hoff. The Kirchhoff approach proposed by Schneider (1978) is the most commonly
used method for the prestack depth migration due to its high efficiency and great
flexibility in dealing with 3D data geometry. It can be employed to efficiently mi-
grate data sets with uneven spatial sampling and data sets that are subsets of the
complete prestack data, such as common-offset cubes and common-azimuth cubes.
These advantages have led the industry to adapt almost exclusively the Kirchhoff
method for 3D prestack migration. It should be noted that the migration accuracy
of the Kirchhoff approach relies on the high-frequency asymptotic ray approxima-
tion. In order to increase the imaging accuracy, more accurate ray-tracing scheme
is required; however, the requirements of the multi-pathing and the correct ampli-
tudes of each arrival are computationally expensive. For non-Kirchhoff methods,
most of the computing resource is consumed in the calculation of the propagating
wavefield components that are either equal to zero or they do not contribute to the
final image. The performance of the non-Kirchhoff methods can be improved by
developing fast algorithms such as the fast Fourier transform (FFT) and the use of
parallel computations.

The inverse time migration (Baysal, et al., 1983) is one of the non-Kirchhoff
migration methods. The technique is capable of obtaining wave solutions and is
developed based on the full or a two-way wave equation. All reflections, including
the multiples and arbitrary steep reflectors can be imaged, but the imaging precision
is inferior to that of a one-way wave equation for complex velocity media and
structures. In this paper, we focus on a one-way wave equation.

Unlike an asymptotic solution using a high-frequency assumption in the Kirchhoff
migration, the methods based on a one-way wave extrapolation are derived from the
full wave equation. Thus, it can handle large lateral velocity variations and steep
dipping events. Various numerical algorithms have been implemented using this
approach, for examples, the phase-shift method (Gazdag, 1978), the phase-shift
plus interpolation method (Gazdag and Sguazzero, 1984), the split-step method
(Stoffa, 1990) and the Fourier finite-difference method (Ristow and Rühl, 1995).
These methods were originally developed for two spatial dimensional cases, but
they are now extended to 3D applications for prestack depth migration.

By taking advantage of the fast Fourier transform Methods, Stolt (1978) im-
plemented an efficient algorithm in the frequency-wavenumber domain, which is
capable of dealing with the steep dips up to 90◦; however, it can not handle the
lateral velocity variations. To improve the Stolt’s method, the phase-shift method
which can adapt the media with velocity varying only in depth and the split-step
Fourier (SSF) migration which can handle the lateral migration dip are proposed. A
further enhancement can be achieved by applying the SSF method with taking ac-
count the multiple reference velocities and incorporating the Fourier finite-difference
(FFD) method to attain the accuracy under the situation with a strong velocity
contrast. The FFD method can be regarded as a cascade of the SSF method and the
finite-difference method for downward continuation in applications to large lateral
velocity variations and high steep reflectors.

Another type of approximating wave equation method is the plane wave imag-
ing or the slant stack migration. Here, the data are first stacked with the raw
shot-gather data. Ottolini and Claerbout (1984) presented a migration method
for common midpoint slant stack seismic data in a constant velocity media. The
common midpoint data are processed as a plane wave section and the migration
is performed on the individual common midpoint plane wave sections. However,
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the plane wave migration differs from the conventional slant stack migration in the
sense that the regulated illumination approach now controls the complexity of the
incident wavefield at the target level. This in turn leads to a highly accurate image
as reported by Rietveld and Berkhout (1994). Migration by summing over several
shots data together and imaging with a single migration are another migration
algorithms with the wavefield synthesizing method. Readers interested for more
details should refer to the works by Louis et al. (2000) and Zhang (2004).

The double square-root equation provides an alternative way for developing a
migration method in the midpoint-offset coordinates. In this approach, the wave-
field extrapolation is carried out with a double-square root (DSR) rather than a
single-square root (SSR). The DSR prestack migration equation can be employed
for images with strong velocity variations by using a phase-shift plus interpolation
or a split-step correction. Popovici (1996) proposed a simple split-step modification
to the DSR prestack migration, which has proven to be a powerful migration algo-
rithm capable of handling strong lateral velocity variations and producing a very
good imaging for the benchmark Marmousi model. However, compared with the 3D
SSR prestack depth migration, the DSR migration is not computationally efficient
because numerous Fourier transforms is needed in the computations. Biondi and
Palacharla (1997) considered a 3D common-azimuthal DSR migration to reduce the
computing cost, and the saving is achieved due to the computations are performed
in the original 4D-space instead of the usual 5D-space for the application of the
conventional full 3D prestack downward-continuation operator. Obviously, the 3D
common-azimuthal DSR prestack migration has the limitation of a narrow azimuth.

With the advent in parallel computations, wave equation migration approach is
currently emerging as a standard and practical tool for wavefield extrapolation. In
this paper, we present hybrid methods for 3D shot-gather prestack depth migration.
The most attractive feature of the proposed algorithms is that the performance can
be significantly enhanced by massive parallelism. The parallel implementation using
the MPI library ensures the platform portability and the efficiency for the spatial
decomposition. Numerical simulations for two case studies are reported, and the
computational results clearly demonstrate the proposed parallel hybrid algorithms
are successful and computationally efficient.

2. Wavefield extrapolation

2.1. Acoustic approximation. We first review the acoustic approximation and
present the physical explanation by the use of the wave equation. For an elastic
inhomogeneous media, the governing equation for the motion in continuum is

(1) ρ
∂2ui

∂t2
=

3
∑

j=1

∂σji

∂xj
, i = 1, 2, 3,

where u = (u1, u2, u3) is the displacement of the particle at (x1, x2, x3) = (x, y, z).
Let t and σji denote the time and the stress component, respectively, and let the
positive z-axis pointing downward. For a linear isotropic elastic media and by
applying the Hook’s law, the stress-displacement relation is given by

(2) σji = σij = λδij∇ · u+ µ(
∂ui

∂xj
+

∂uj

∂xi
), i, j = 1, 2, 3,

where λ and µ are known as the Lamé moduli, and δij is the Kronecker symbol.
Making an acoustic approximation for an elastic media, i.e., set µ = 0 or σij =



376 W. ZHANG AND Y. WONG

0(i 6= j), we obtain the following equation from Eqs. (1) and (2)

(3) ρ
∂2u

∂t2
= −∇p,

where p = −λ∇ · u is the pressure. Suppose λ and ρ are invariant with time, then

(4)

∂2p
∂t2 = −λ∇ · (∂2

u

∂t2 ) = −λ∇ · (− 1
ρ∇p)

= λ[ 1ρ∇ · ∇p+∇ 1
ρ∇p]

= λ
ρ∇2p+ λ∇ 1

ρ∇p.

That is,

(5) ∇2p− 1

v2
∂2p

∂t2
= ∇ ln ρ∇p,

where v =
√

λ
ρ . Eq. (4) is an acoustic wave equation describing the dilatational

wave. It is noted that there exists shear wave and various transmitted waves in
an elastic media. Migration/imaging based on the acoustic wave equation provides
an approximation which is reasonable and has been widely used in seismic image
processing. The justifications are given as follows. First, the exact source gener-
ates both the dilatational wave and the surface wave. The surface wave, however,
propagates only near the earth surface while the object interface to be imaged are
much more deeper. Secondly, various transmitted shear waves are produced only
when the incidence angle of the dilatational wave is sufficiently large; however, the
data collecting geometry in the field usually adopts a small offset which implies a
small incidence angle. Consequently, the transmitted waves are very weak or may
not even exist. Therefore, the use of an acoustic approximation is usually very
effective. Moreover, the density ρ in Eq. (5) can be treated as a constant since it
varies very smoothly with the spatial positions. Therefore, the approximated 3D
acoustic wave equation for imaging is simplified to

(6)
1

v2
∂2p

∂t2
− ∂2p

∂x2
− ∂2p

∂y2
− ∂2p

∂z2
= 0,

where x, y, z are the space variables, p(t, x, y, z) is the acoustic pressure and v(x, y, z)
is the medium velocity.

2.2. Wavefield splitting. The migration or imaging is a process extrapolating
the given data on the surface (boundary values) downward in depth. Instead of
using a two-way wave equation given in Eq. (6), we decouple a second-order equa-
tion into a system of two first-order partial differential equations. Introducing the
Fourier transform of t, x and y for p and the function f(t, x, y, z)

(7) f(ω, kx, ky, z) =
1

(2π)3

∫ ∫ ∫

ei(ωt−kxx−kyy)f(t, x, y, z)dxdydt,

where kx and ky are the wavenumbers, and ω is the angular frequency. Taking the
Fourier transform of t, we get

(8)
ω2

v2
P +

∂2P

∂x2
+

∂2P

∂y2
+

∂2P

∂z2
= 0,

where P = P (ω, x, y, z). It should be noted that while P (ω, x, y, 0) is known, ∂P
∂z |z=0

is unknown. It is difficult to employ the wavefield extrapolation using Eq.(8), since
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two boundary conditions are required. The difficulty can be overcome by rewriting
Eq. (8) as

(9)
∂

∂z

[

P
∂P
∂z

]

=

[

0 1

−(ω
2

v2 + ∂2

∂x2 + ∂2

∂y2 ) 0

]

[

P
∂P
∂z

]

:= A

[

P
∂P
∂z

]

.

The matrix A is then decomposed as

(10) A = LΛL−1,

where

(11) L =

[

1 1

−i
√

ω2

v2 + ∂2

∂x2 + ∂2

∂y2 i
√

ω2

v2 + ∂2

∂x2 + ∂2

∂y2

]

,

(12) Λ =





−i
√

ω2

v2 + ∂2

∂x2 + ∂2

∂y2 0

0 i
√

ω2

v2 + ∂2

∂x2 + ∂2

∂y2



 ,

(13) L−1 =
1

2





1 i
√

ω2

v2
+ ∂2

∂x2 + ∂2

∂y2

1 − i
√

ω2

v2
+ ∂2

∂x2 + ∂2

∂y2



 .

Now, by taking the Fourier transforms for the three variables x, y, t in Eq. (6), we
obtain the following equations in the frequency-wavenumber domain

(14) (
∂2

∂z2
+ k2z)P = (

∂

∂z
+ ikz)(

∂

∂z
− ikz)P = 0,

where

(15) kz =
ω

v

√

1− v2

ω2
(k2x + k2y),

is the square-root operator. The counterpart of the square-root operator in the
frequency-space domain is given by

(16) Kz =
ω

v

√

1 +
v2

ω2
(
∂2

∂x2
+

∂2

∂y2
).

Suppose the total wavefield P is decomposed into the downgoing wave D and the
upcoming wave U . Then, D and U satisfy

(17) P = D + U,

and

(18)
∂P

∂z
= −i

√

ω2

v2
+

∂2

∂x2
+

∂2

∂y2
(D − U),

or expressed in a matrix notation

(19)

[

P
∂P
∂z

]

= L

[

D

U

]

.

Hence, Eq. (9) can be rewritten as

(20)
∂

∂z
L

[

D

U

]

= (LΛL−1)L

[

D

U

]

.

or

(21)
∂

∂z

[

D

U

]

= (Λ − L−1∂L

∂z
)

[

D

U

]

.
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That is,

(22)
∂D

∂z
= −i

√

ω2

v2
+

∂2

∂x2
+

∂2

∂y2
D − 1

2kz

∂kz

∂z
(D − U),

(23)
∂U

∂z
= i

√

ω2

v2
+

∂2

∂x2
+

∂2

∂y2
U +

1

2kz

∂kz

∂z
(D − U).

Eqs. (22) and (23) represent accurate one-way wave equations for the wavefield
extrapolation in an inhomogeneous media. Similarly, the extrapolation for a two-
way wave equation can be implemented using the above two equations; however,
the downgoing wavefield D and the upcoming wavefield U are coupled in Eqs. (22)
and (23). The downgoing wavefield is needed when one extrapolates the upcom-
ing wavefield in depth with Eq. (23), while the upcoming wavefield is required
when extrapolating the downgoing wavefield using Eq. (22). Consequently, the
extrapolation process is quite complicated. However, if D is the incident wave with
an incidence angle below the critical angle, then the reflected wavefield is small
compared to D. On the contrary, if U is the incident wave with an incidence angle
below the critical angle, the reflected wavefield will also be a small quantity. Hence,
by neglecting the critical angle, Eqs. (22) and (23) can be simplified as

(24)
∂D

∂z
= −i

√

ω2

v2
+

∂2

∂x2
+

∂2

∂y2
D − 1

2kz

∂kz

∂z
D,

(25)
∂U

∂z
= i

√

ω2

v2
+

∂2

∂x2
+

∂2

∂y2
U +

1

2kz

∂kz

∂z
(−U).

Eqs. (24) and (25) are decoupled one-way wave equations for the downgoing and
the upcoimg wavefield, respectively. If the media is homogeneous along the z-
coordinate (it may be inhomogeneous in lateral directions), then ∂Kz

∂z = 0 and Eqs.
(24) and (25) can be reduced to

(26)
∂D

∂z
= −i

√

ω2

v2
+

∂2

∂x2
+

∂2

∂y2
D,

(27)
∂U

∂z
= i

√

ω2

v2
+

∂2

∂x2
+

∂2

∂y2
U.

Generally speaking, we assume that the media is homogeneous in the vertical z-
direction with an extrapolating depth step [z, z +∆z]. Hence, using one boundary
value, we can solve Eqs. (26) and (27), and this is also valid approximately for the
inhomogeneous cases.

In the frequency and wavenumber domain, the downgoing wave Eq. (26) becomes

(28)
∂D

∂z
= −ikzD = −i

ω

v

√

1− v2

ω2
(k2x + k2y)D,

and the upcoming wave Eq. (27) can be expressed as

(29)
∂U

∂z
= +ikzU = +i

ω

v

√

1− v2

ω2
(k2x + k2y)U,

respectively.
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2.3. Approximating the square-root operator. From a computational point
of view, the major difficulty in dealing with Eqs. (28) or (29) is that they are
non-local pseudo-differential equations. The key step in resolving the problem is to
approximate the square-root operator. One notes that if θ is the incidence angle
of planewave and φ is the azimuthal angle of plenewave, then vkx

ω = sin θ cosφ and
vky

ω = sin θ sinφ. In the following, we discuss four possible ways for approximating
the square-root operator kz. Let define

(30) kz =
ω

v
k̄z , k̄z =

√

1− v2

ω2
(k2x + k2y).

1. In the first approach, we apply the general Padé approximation. By making
the orthogonalization for the functions 1, t, t2 in [0, 1] with the weight ω(t) = 1+ t.
The orthogonal polynomial can be written as

(31) Qn(t) = (t− an)Qn−1(t)− bnQn−2(t),

where

(32) Q0(t) = 1, Q1(t) = t− a1, an =
(tQn−1, Qn−1)

(Qn−1, Qn−1)
, bn =

(tQn−1, Qn−2)

(Qn−2, Qn−2)
.

Then, we obtain the following approximation expression

(33)
√

1− t2 =
p0Q0(t) + p1Q1(t)

Q0(t) + q1Q1(t)
:=

a0 − a1t

b0 − b1t
,

where

(34) a0 = 2.020, a1 = 2.081, b0 = 1.998, b1 = 1.752.

These coefficients are determined by requiring

(35) (k̄z(t)−
p0Q0(t) + p1Q1(t)

q0Q0(t) + q1Q1(t)
, Qi(t)) = 0, i = 0, 1, 2.

Setting

(36) t1 =
v

ω
kx, t2 =

v

ω
ky, t2 =

v2

ω2
(k2x + k2y),

then k̄z can be approximated by

k̄z =
√

1− t2 =
√

1− t21 − t22 = 1− 1

2
t21 −

1

2
t22 +O(t4)

= (1 − 1

2
t21) + (1− 1

2
t22)− 1 +O(t4)

=
√

1− t21 +
√

1− t22 − 1 +O(t4)

=
a0 − a1t1

b0 − b1t1
+

a0 − a1t2

b0 − b1t2
− 1 +O(t4)

≈ a0 − a1t1

b0 − b1t1
+

a0 − a1t2

b0 − b1t2
− 1.(37)

Here, the error term O(t4) is omitted. Therefore, kz can be approximated by

(38) kz =
ω

v

[a0 − a1
v
ωkx

b0 − b1
v
ωkx

+
a0 − a1

v
ωky

b0 − b1
v
ωky

− 1
]

.

2. In the second method, the approximation is based on theQebywev expression

(39) k̄z(t) =
√
1− t =

∞
∑

k=0

CkTk(t), t =
v2

ω2
(k2x + k2y) := sin2 θ.
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Hence, k̄z(t) is approximated by using the following rational expression

(40) Rmn(t) =
pm(t)

qn(t)

where

(41) pm(t) =

m
∑

i=0

aiTi(t), qn(t) =

n
∑

j=0

bjTj(t).

The coefficients ai(i = 0, 1, · · · ,m) and bj(j = 0, 1, · · · , n) are the non-zero solu-
tions of the following system, and setting b0 = 1:

(42)
a0 = b0C0 +

1
2

n
∑

r=1
brCr,

ak = b0Ck +
1
2bkC0 +

1
2

n
∑

r=1
br(Cr+k + C|r−k|), k = 1, 2, · · · ,m+ n.

The following expression is then used to approximate k̄(t) in (39)

(43) k̄(t) =
1

4
A0 +

N−1
∑

k=1

AkTk(t) +
1

4
ANTN(t),

where

(44) Ak =
2

N

N
∑

j=0

f(cos
jπ

N
) cos

jπk

N
, k = 0, 1, · · · , N.

If we let m = n = 1 in Eq. (41) and set N = 5 in Eq. (43), we obtain the expression

(45)
√

1− sin2 θ = 1− 0.4767 sin2 θ

1− 0.3767 sin2 θ
.

Thus the square-root operator can be approximated by

(46) kz ≈ ω

v
[1−

0.4761 v2

ω2 (k
2
x + k2y)

1− 0.3767 v2

ω2 (k2x + k2y)
].

3. Another possible approximation is to consider a Taylor expansion:

(47)
√

1− t2 ≈ [1− 1

2
t2 − 1

8
t4 − · · · ].

Hence, it gives

(48) kz ≈ ω

v
[1− v2

2ω2
(k2x + k2y)−

v4

8ω4
(k2x + k2y)

2 − · · · ].

The approximation includes up to the fourth-order terms for the spatial derivatives.
For practical computations, it is sufficed to use the first two terms to approximate
kz.

4. The fourth approximation for the square-root operator is developed from the
continued fraction expansion of

√
1− t2:

(49) Sn+1 = 1− t2

1 + Sn
, S0 = 1.

Hence, we get

(50) k̄z,n+1 = [1−
ω2

v2 (k
2
x + k2y)

1 + k̄z,n
], k̄z,0 = 1,
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and the second-order approximation of kz is given by

(51) k̄z,2 =
ω

v
[1−

0.5ω2

v2 (k
2
x + k2y)

1− 0.25ω2

v2 (k2x + k2y)
].

It should be noted that the approximation based on a second-order continued frac-
tion expansion is as accurate as that using the fourth-order Taylor expansion, but
it includes only the second-order terms for the spatial derivatives.

We now investigate the effectiveness of the four approximations (1, 2, 3 and 4)
presented in this section. In Fig. 1, we compare the performance of the approxi-
mations with the exact value of the square-root operator. Here, we keep the first
two terms in the Taylor expansion (47) for method 3, and the second-order contin-
ued fraction approximation is used for method 4. The test case is constructed by
setting t = sin θ in

√
1− t2, and the x axis denotes the degree representing the dip

of a reflector in the wave equation imaging process. The results show that method
2, namely the Qebywev approximation, provides the best approximation. Among
the four approximations, method 4 based on the second-order continued fraction
expansion is less accurate compared to method 2, but is better than methods 1
and 3. Fig. 2 displays the absolute errors of the four approximations, in which
the horizontal solid line corresponds to 1% error. It is of interest to note that the
maximal angle of the four approximations crossing the 1% error threshold occurs
at 33◦, 65◦, 31◦ and 48◦, for methods 1, 2, 3 and 4, respectively. Obviously, the
larger the value of the angle before reaching the 1% error threshold, the better the
approximation for the square-root operator. Therefore, we conclude that method 2
using the Qebywev expression gives the best approximation, and has a small error
up to the 65◦ imaging dip.
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Figure 1. Comparisons of four approximations with exact value
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Based on the results illustrate in Figs. 1 and 2, we now present a general hybrid
scheme. Using the identity formulae

(52)
√

1− t2 = 1− 1

π

∫ 1

−1

√

1− S2
t2

1− t2S2
dS,

the square-root operator kz can be rewritten as

(53) kz =
ω

v
[1− 1

π

∫ 1

−1

√

1− S2
(vkx)

2 + (vky)
2

ω2 − (Svkx)2 − (Svky)2
]dS.

Then, by the use of the Gauss integral formulae

(54)
1

π

∫ 1

0

√

1− S2f(S)dS ≈ 1

2

m
∑

l=1

Cm,lf(Sm,l),

where

(55) Sm,l = cos(
lπ

m+ 1
), Cm,l =

l

m+ 1
sin2(

lπ

m+ 1
).

Taking m = 1, S1,1 = 0, C1,1 = 1, inserting the expressions (53)∼(55) into Eqs.(28)
and (29), we obtain the 15◦ one-way wave equation. Letting m = 2, S2,1 = −S2,2 =
1
2 , C2,1 = C2,2 = 1

2 , it gives the 45◦ wave equation (Claerbout, 1985).
In order to include large lateral velocity variations, we introduce a reference

velocity v0(z) which was also used in the reference of Ristow and Rühl (1995). The
square-root operator kz can now be approximated as

(56) kz ≈ kz1 + kz2 + kz3.

Therefore, the one-way wavefield extrapolation equation for the downgoing wave D
and the upgoing wave U is given by

(57)
∂P

∂z
= ±i[kz1 + kz2 + kz3]P,
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where P represents D for the positive sign + and U for the negative sign −, kz1,
kz2 and kz3 are defined as follows

(58) kz1 =

√

ω2

v20
− k2x − k2y, kz2 =

ω

v
(1− v

v0
), kz3 =

b v
ω (

∂2

∂x2 + ∂2

∂y2 )

1 + a v2

ω2 (
∂2

∂x2 + ∂2

∂y2 )
.

The wavefield P downward continued at depth z+∆z is computed from the wave-
field at depth z using the formal expression

(59) P (ω, x, y, z +∆z) ≈ P (ω, x, y, z)e±i(kz1+kz2+kz3)∆z.

Notice that kz1 is in the frequency-wavenumber domain, whereas kz2 and kz3 are in
the frequency-space domain. The parameters a and b in kz3 are chosen to allow large
migration angle in the one-way wave equation. Ristow and Dühl (1995) proposed
a = 1

2 (1 − v0
v ) and b = 1

4 [(
v0
v )2 + v0

v + 1], and recently, Zhang and Zhang (2006)

suggested a = 1
2 (1 −

v0
v ) and b = 0.3767[(v0v )2 + 1], in which the factor 0.3767 was

due to the Qebywev approximation. Detailed comparisons of the two selections
for a and b are reported in Zhang and Zhang (2006). The wavefield extrapolation
can now be carried out in the following three steps. The first step is the phase-shift
correction in the frequency-wavenumber domain. The time-shift computation in the
second step is in the frequency-space domain, and then follows by the third step -
the finite-difference migration which is also in the frequency-space domain. Since
the wavefield extrapolation is completed alternatively in the frequency-wavenumber
and in the frequency-space domain, it is referred as the hybrid method.

2.4. Wavefield extrapolation algorithms. The first step of wavefield extrapo-
lation can be formulated as

(60) Pn+1
k,l = e±ikz1∆zPn

k,l,

where k = 0, · · · , Nx−1; l = 0, · · · , Ny−1;n = 0, · · · , Nz−1, and the computations
are completed in the frequency-wavenumber domain. The second step is expressed

(61) Pn+1
k,l = e±ikz2∆zPn

k,l,

which is computed in the frequency-space domain. We now present the detailed
implementation for the third step. The one-way wave equation corresponding to
the finite-difference migration operator kz3 is given by

(62)
∂P

∂z
= ±i

b v
ω (

∂2

∂x2 + ∂2

∂y2 )

1 + a v2

ω2 (
∂2x
∂x2 + ∂2

∂y2 )
P.

The equation takes account of the effects due to the wave diffraction. For simplicity,
we choose the positive sign + in Eq.(62), it then leads to the following alternating
directional implicit (ADI) scheme

(63)
[1 + (α1 − iβ1)δ

2
x]P

n+1/2
k,l = [1 + (α1 + iβ1)δ

2
x]P

n
k,l,

[1 + (α2 − iβ2)δ
2
y]P

n+1
k,l = [1 + (α2 + iβ2)δ

2
y ]P

n+1/2
k,l .

Here, Pn
k,l represents P (ω, k∆x, l∆y, n∆z), δ2x and δ2y are the second-order central

differences with respect to x and y, respectively. The spatial steps in x, y and z

are denoted by ∆x, ∆y and ∆z, respectively. The coefficients α1, α2, β1 and β2

are defined as

(64) α1 =
av2

ω2∆x2
, α2 =

av2

ω2∆y2
, β1 =

b∆zv

2ω∆x2
, β2 =

b∆zv

2ω∆y2
.
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The ADI scheme is computationally efficient, and only the solutions of the tri-
diagonal matrices resulting from splitting in the x− and y− direction given in Eq.
(63) are required. The ADI has the accuracy of O(∆x2+∆y2+∆z2). Even though
the ADI scheme may cause numerical anisotropic errors, it is possible to reduce
the azimuthal errors using the multi-way methods (Collina and Joly, 1995; Ristow
and Rühl, 1997). Recently, Zhang and Zhang (2006) proposed an algorithm to the
eliminate numerical anisotropic errors.

To analysis the stability of the ADI scheme, we apply the Fourier analysis method

(Thomas, 1995). First, by eliminating the variable P
n+ 1

2

k,l , the ADI can be rewritten
as

(65) [1+(α1−iβ1)δ
2
x][1+(α2−iβ2)δ

2
y]P

n+1
k,l = [1+(α2+iβ2)δ

2
y][1+(α1+iβ1)δ

2
x]P

n
k,l.

Here, we suppose the operators δ2x and δ2y are interchangeable, which is usually
satisfied for a rectangular domain. Note that the errors between the exact solutions
and the numerical solutions, εnk,l, also satisfy similar equation given in Eq. (65).
We now consider a Fourier component of the computational error, which is given
by

(66) εnk,l = V neiσ1k∆xeiσ2l∆y,

where i =
√
−1, σ1 and σ2 are the spatial wavenumbers in x− and y− direction,

respectively, V n is the Fourier amplitude at a particular time step n. Substituting
Eq. (66) into Eq. (64), we obtain

(67)

[1 + (α1 − iβ1)(−4 sin2 α1∆x
2 ) + (α2 − iβ2)(−4 sin2 α2∆y

2 )+

(α1 − iβ1)(α2 − iβ2)(−4 sin2 α1∆x
2 )(−4 sin2 α2∆y

2 )]V n+1

= [1 + (α1 + iβ1)(−4 sin2 α1∆x
2 ) + (α2 + iβ2)(−4 sin2 α2∆y

2 )+

(α1 + iβ1)(α2 + iβ2)(−4 sin2 α1∆x
2 )(−4 sin2 α2∆y

2 )]V n.

Thus, the amplifying factor G = V n+1

V n for the errors is given by

(68) G =
c+ id

c− id
,

where
(69)

c = 1− 4α1 sin
2 σ1∆x

2 − 4α2 sin
2 σ2∆y

2 + 16(α1α2 − β1β2) sin
2 σ1∆x

2 sin2 σ2∆y
2 ,

d = −4β1 sin
2 σ1∆x

2 − 4β2 sin
2 σ2∆y

2 + 16(α1β2 + α2β1) sin
2 σ1∆x

2 sin2 σ2∆y
2 .

In fact, G is the ratio of the error representing the Fourier amplitudes as a function
of the time steps. Therefore, we require |G| ≤ 1 to ensure the stability, and it is
unconditional stable when |G| = 1. The ADI scheme considered in this paper is a
two-step implicit scheme, and Hale (1999) presented stable explicit schemes for the
wavefield extrapolation.

The hybrid algorithm for the wavefield extrapolation consists of the following
steps:

Step 1. Apply the fast Fourier transform (FFT) with respect to t for the given
shot-gather data p(t, x, y, z), i.e.,

(70) p1(ω, x, y, z) =
1

2π

∫

p(t, x, y, z)eiωtdt.

In discrete form, it is given by

(71) p1(l, x, y, z) ≈
∆t

2π

Nt−1
∑

k=0

p(k, x, y, z)ei
2nπk
Nt , l = 0, 1, · · · , Nt − 1,
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where Nt is the sampling points in t.
Step 2. Apply FFT with respect to x and y for the data p1(ω, x, y, z) at the

extrapolation depth z, i.e,

(72) FFTx,y[p(ω, x, y, z)] =
1

(2π)2

∫ ∫

p1(ω, x, y, z)e
−i(kxx+kyy)dxdy.

Suppose Nx and Ny are the period sampling points in x− and y− direction, re-
spectively, the discrete version for Eq. (70) is

(73)
p̃(ω, k, l, z) ≈ ∆x∆y

(2π)2

Nx−1
∑

m=0

Ny−1
∑

n=0

p1(ω, k, l, z)e
−i( 2πkm

Nx
+ 2πln

Ny
)

k = 0, 1, · · · , Nx − 1; l = 0, 1, · · · , Ny − 1.

Step 3. Compute the phase-shift correction

(74) P (ω, kx, ky, z +∆z) = FFTx,y[p1(ω, x, y, z)]e
iA1∆z.

Step 4. Transform the inverse FFT with respect to kx and ky for data P (ω, kx, ky , z+
∆z), i.e., IFFTkk,ky

[P (ω, kx, ky, z +∆z)].
Step 5. Compute the time-shift correction

(75) p1(ω, x, y, z +∆z) = e
iω( 1

v
− 1

v0
)
IFFTkk,ky

[P (ω, kx, ky, z +∆z)].

Step 6. Perform the finite-difference computations with data p1(ω, x, y, z +∆z)
in the frequency-space domain using Eqs. (63) and (64). Then, return to Step
2 until the maximum depth is reached. To avoid the artifacts due to the com-

plex wavenumebr, we filter the field in the domain where k2x + k2y ≥ ω2

v2 at each
extrapolation.

2.5. Imaging and boundary conditions. The subsurface images are recon-
structed by extrapolating the downgoing wavefield D and the upcoming wavefield
U simultaneously. Now, applying the imaging condition proposed by Claerbout
(1971)

(76) I(x) =
∑

xs

∑

ω

UD∗

at each image point, where x = (x, y, z) is the imaging position, ω is the angular
frequency and xs = (xs, ys, zs) is the location for the source. U(ω,x;xs) and
D(ω,x;xs) are the upgoing/receiver and the downgoing/source wavefields at xs,
respectively. D∗ denotes the complex conjugate of D. The reflection coefficient R
can be written as

(77) R(x) =
∑

xs

∑

ω

UD∗

ε+DD∗
.

A small positive number ε is added to the denominator to improve the stability.
The imaging condition Eq. (77) reveals the reflectivity variations of the interface.
However, it usually produces additional noises to the resulting images as ε is re-
lated to the ratio of the single/noise. Finally, the entire images Ω are obtained by
summing the partial images of different shot lines:

(78) Ω(x) =
∑

xl

I(x)δ(xs − xl),

where xl = (xl, yl, zl) is the shot-line position.
In order to perform the computation in a finite domain, boundary conditions

must be imposed to avoid the artifacts due to the boundary reflections. Engquist
and Majda (1977) proposed absorbing boundary conditions for modeling schemes
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based on finite difference of full acoustic equation, Calyton and Engquist (1980)
developed absorbing boundary condition for the wave equation migration in two
dimensional case. Here we generalize to three dimensional case using the approx-
imation of the square-root operator, i.e. the dispersion relations. Considering the
finite-difference migration operator kz3 in Eq. (58), i.e.,

(79) kz3 =
b v
ω (

∂2

∂x2 + ∂2

∂y2 )

1 + a v2

ω2 (
∂2

∂x2 + ∂2

∂y2 )
.

To ensure stability, the second-order derivative ∂2

∂x2 or ∂2

∂y2 should be avoided at the

different sides of the boundary (Clayton and Engquist, 1980). Transforming Eq.
(79) into the frequency-wavenumber domain, it can be written as

(80) kz3 = −
b v
ω (k

2
x + k2y)

1− a v2

ω2 (k2x + k2y)
.

Supposing the computational domain is given by x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, then
the value of kz3 at x = x0 is chosen as

(81) kz3 = −
α v

ωkx + b v
ωk

2
y

1− β v2

ω2 kx − a v2

ω2 k2y
,

where α and β are determined by matching dispersion relation at the boundary
x = x0 to the interior. The differential equation corresponding to Eq. (81) is

(82) [1 + iβ
v2

ω2

∂

∂x
+ a

v2

ω2

∂2

∂y2
]
∂P

∂z
= i[iα

v

ω

∂

∂x
+ b

v

ω

∂2

∂y2
]P.

where i =
√
−1. The splitting form is given by

[1 + i(
βv

ω
− i

∆zα

2
)
v

ω

∂

∂x
][1 + (

av

ω
− i

b∆z

2
)
v

ω

∂2

∂y2
]Pn+1

= [1 + i(
βv

ω
+ i

∆zα

2
)
v

ω

∂

∂x
][1 + (

av

ω
+ i

b∆z

2
)
v

ω

∂2

∂y2
]Pn.(83)

The finite-difference scheme for Eq. (83) can be expressed as

(84) [1 + iγ1δ
0
x]Q

n+1
k,l = [1 + iγ2δ

0
x][1 + η2δ

2
y ]P

n
k,l,

where

(85) γ1 = (
βv

ω
− i

α∆z

2
)

v

2ω∆x
, γ2 = (

βv

ω
+ i

α∆z

2
)

v

2ω∆x
,

(86) η1 = (
av

ω
− i

b∆z

2
)

v

ω∆y2
, η2 = (

av

ω
+ i

b∆z

2
)

v

ω∆y2
,

δ0x and δ2y are the second order central difference operator defined by

δ0xP
n
k,l = Pn

k+1,l − Pn
k−1,l, δ2yP

n
k,l = Pn

k,l+1 − 2Pn
k,l + Pn

k,l−1.(87)

Qn in Eq. (84) is the intermediate wavefield and Pn+1 is computed by the following
scheme

(88) [1 + η1δ
2
y]P

n+1
k,l = Qn+1

k,l .

For the boundary condition at x = x1, it can be determined by substituting b and α

with −b and −α in Eqs. (82) ∼ (88). Similarly, the absorbing boundary conditions
at y = y0 and y = y1 can be derived, but we will not reported Here,



A PARALLEL HYBRID COMPUTATIONS FOR 3D WAVE EQUATION 387

3. Parallel computations

Parallel computations offer a new powerful technique for large-scale scientific
computing, and message passing interface (MPI) is regarded as one of the standard
tools for parallel computing. The key issues to guarantee the success of a parallel
algorithm are to minimize the communications between the processors and ensuring
one task per processor can be implemented independently. Here, the parallel imple-
mentation using MPI system for the wavefield extrapolation algorithms presented
in the previous section is briefly described.

For the 3D shot-gather migration problem considered in this paper, spatial par-
allelism rather than the frequency parallelism has a good scalability, so that it can
be effectively extended to solver large scale problems. In the spatial parallelism, the
entire space domain is split into a set of smaller subdomains. Then, in each subdo-
main, the wavefield extrapolation for the downgoing wave D and the upgoing wave
U is computed directly by one processor and the image of the subdomain is gener-
ated separately. The communications between processors are required only at the
starting and ending of computations. At the starting, data used for each subdomain
is sent to the corresponding processor from the main node, and then each processor
carries out its own task independently. After the images of each subdomain are
completed, they are forward to the main node and stack together using Eq. (76) to
form the entire imaging. One convenient spatial splitting scheme is according to the
scope of each shot line. The flow chart of the spatial parallelism is displayed in Fig.
3. The procedure is as follows: enter the MPI system, each processor will receive
the corresponding shot-gather data and the velocity data. Then the migration pro-
cess is performed and yields individual subdomain images. These images are stored
on all processors and finally are gathered together to produce the entire images
for the main processor. Since the communications are only needed at the starting
to send out data and to collect and stack data at the ending, no other message
communication is required during the wavefield extrapolation. Hence, an excellent
computational efficiency (nearly 99%) is achieved. Other parallel algorithms, such
as the frequency parallelism, and the frequency and space simultaneous parallelism
can be considered, but they are not discussed in this work.

Figure 3. Flow chart parallel computation for 3D shot-gather migration
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4. Numerical simulations

To validate and to investigate the effectiveness of the parallel hybrid method for
3D prestck deep imaging, we present two numerical simulations.

The first case study focuses on the SEG/EAEG subsalt model, which has been
regarded as a benchmark model to test capability of various migration or inversion
algorithms developed for exploration applications. The model has been used to
verify other wavefield extrapolation algorithms (Zhang and Zhang, 2004).

For the SEG/EAEG subsalt model, the data is generated from the shot-gather
data corresponding to 50 shot lines and each line has 68 by 6 seismic traces. The line
space is 160m and the shot space is 80m. The spatial step sizes ∆x, ∆y and ∆z are
40m, 40m and 20m, respectively. The record length is 4992s with 8ms sampling
time. No pre-processing such as the stacking is performed before the migration.
Hence, the resulting image is referred as prestack. In the spatial parallelism, each
processor is assigned to process partial or the completed shot line.

We now present a typical slice of the 3D shot-profile imaging. Fig. 4 is a vertical
slice of the known 3D velocity model at x = 5500m, and Fig. 5 is the migration slice
at the same position. In both figures, the x direction is chosen as the inline direction,
and the y direction represents the crossline direction. Comparisons between Figs.
4 and 5 show that the images of the subsalt are in good agreement.

With the successful validation of our proposed method applied to the well-known
benchmark model, the method is then tested to a wavefield extrapolation problem
with real data provided by BGP, which is one of the leading geophysical company
under the China National Petroleum Corporation(CNPC). The 3D field data are
collected from 15964 shots and using 64080 receivers. The maximal offset is 4769.5m
and the minimal offset is 270.4m. The trace space is 50m and the trace length is
6s with 1ms sampling rate (i.e.,∆t = 1ms). The line space is 250m with 100m
shot space, and 96 (16 by 6) receivers are placed at each shot. This data set
amounts to 215.5G bytes. This is a typical large-scale 3D prestack imaging problem.
Figs. 6 and 7 display two slices of the 3D imaging results for inline No.123 and
No.127, respectively. The two lines are 1km away as the line step is 250m. Useful
information about the main structures can be extracted from these figures, and it
clearly reveals that there is a large incline structure with the middle-sized dipping
angle in the left area. Moreover, the dips of the stratum are varying smoothly
in other areas. The results of the reconstructed images have been utilized by the
engineers and researchers at BGP-CNPC.

5. Conclusions

Three-dimensional prestack depth migration based on the wave equation plays
an important role in reconstruction of the seismic subsurface structures imaging.
In this paper, we present the hybrid method for 3D shot-gather prestack depth
migration. The most attractive feature of the proposed method is that it can be
implemented using parallel computations, so that tremendous improvement can be
achieved. Moreover, the scalability ensues that the method can be effectively ex-
tended to deal with large scale problems. Although there are many possibilities to
develop parallel algorithms, we focus on the parallelization of the prestack depth
migration at the shot loop in order to minimize the communications between pro-
cessors and to fully utilize the capability of each processor to attain the maximum
enhancement in parallel computations. The developed parallel hybrid method has
been tested to the well-know benchmark case - the SEG/EAEG model and also
to a 3D wavefield exploration with real data provided by BGP-CNPC. From the
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simulation results reported here, not only we can validate the proposed method,
but we also conclude that the technique is an effective tool for practical application
to 3D prestack depth migration.
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Figure 4. Typical slice of 3D SEG/EAEG salt velocity

model at x = 5500m.
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Figure 5. Resulting 3D wave equation imaging at

the same position as in Fig. 4.
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Figure 6. Resulting 3D wave equation imaging for inline No.123.

Figure 7. Resulting 3D wave equation imaging for inline No.127.
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