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NONLINEAR MODEL REDUCTION USING GROUP PROPER

ORTHOGONAL DECOMPOSITION
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(Communicated by Max D Gunzburger)

Abstract. We propose a new method to reduce the cost of computing nonlinear terms in projec-
tion based reduced order models with global basis functions. We develop this method by extending

ideas from the group finite element (GFE) method to proper orthogonal decomposition (POD)
and call it the group POD method. Here, a scalar two-dimensional Burgers’ equation is used as

a model problem for the group POD method. Numerical results show that group POD models

of Burgers’ equation are as accurate and are computationally more efficient than standard POD
models of Burgers’ equation.
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1. Introduction

A challenge in the simulation of systems modeled by partial differential equa-
tions (PDE) is to reduce computational cost while preserving accuracy. To this
end, much research in numerous aspects of the simulation of PDE has been per-
formed. These efforts include attempts to reduce computational cost by improving
algorithmic efficiency, developing parallel computing schemes, and applying model
order reduction techniques. For example, reduced order modeling for fluid flows
has seen extensive application of the Galerkin projection with proper orthogonal
decomposition (POD) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

In this work, we submit a new method to reduce the cost of computing nonlinear
terms in projection based reduced order models with global basis functions by
extending ideas from the group finite element (GFE) method to POD1. We shall
further refer to this approach as the group proper orthogonal decomposition (POD)
method.

The GFE method, also known as product approximation, expresses the nonlin-
ear terms of a PDE in grouped form - as the product of separate space and time
dependent quantities. This leads to the spatial discretization of nonlinear terms
being computed once before integration and a substantial reduction in computa-
tional cost [12, 13, 14]. Here, instead of projecting grouped nonlinear terms onto a
local finite element basis, we show that the projection of grouped nonlinear terms
onto a set of global basis functions reduces the cost of simulation due to symmetry
in the nonlinear terms. Although a Galerkin projection onto a POD basis is used
here for illustration, we anticipate this method to be generally applicable to other
global basis functions and Petrov-Galerkin projections.
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To determine the accuracy of the group POD method, computational solutions
of group POD and standard POD models of Burgers’ equation are compared to
analytical manufactured benchmark solutions [15, 16, 17, 18, 19]. Our experiments
show close agreement between simulations of the group POD and standard POD
models of Burgers’ equation.

To assess the computational cost of the group POD method, total integration
times and operation counts for the nonlinear terms of the group POD model of
Burgers’ equation are compared to the standard POD model. For the quadratic
nonlinearity of Burgers’ equation, our results show the group POD method provides
a clear computational advantage over the standard POD approach in terms of
operation count and total integration time.

Following this introduction, we provide background on POD and the GFE method.
The standard and group POD models of Burgers’ equation are developed in Section
3, followed by their implementation and operation counts in Section 4. Section 5
contains numerical results which demonstrates that group POD models of Burg-
ers’ equation are as accurate and are more efficient than the standard POD form.
Finally, we provide a mathematical extension of the group POD method to cubic
nonlinearities in Section 6.

2. Background

We begin by providing background on two concepts key to the group POD
method: proper orthogonal decomposition (POD) itself and the group finite el-
ement (GFE) method. While POD offers computational advantages through a
reduction in order, the GFE method offers computational gains through the con-
struction of nonlinear terms. Following the background on POD, we illustrate the
computational advantage of grouping the nonlinear terms with the GFE form of
Burgers’ equation.

2.1. Notation. To describe POD based model reduction for partial differential
equations, we use the following notation. Let X be a Hilbert space with its inner
product and corresponding norm denoted (·, ·)X and ‖·‖X , respectively. A function,

u, is in L2(0, T ;X) if for each 0 ≤ t ≤ T , u(t) is in X, and
∫ T

0
‖u(t)‖2X dt <∞.

2.2. Proper Orthogonal Decomposition (POD). At the turn of the twentieth
century, the closest fitting lines or planes to a set of points in space was investigated
by Pearson [20]. Independently, almost three decades later, a similar treatment
appeared by Hotelling where the “method of principal components” was coined
[21]. The analysis presented in [20] and [21] formed the linear algebraic approach
to what many now call proper orthogonal decomposition (POD).

Since the work of Pearson and Hotelling, many have studied or used POD in a
range of fields such as oceanography [22], fluid mechanics [1, 2, 4], system feedback
control [23, 24, 25, 26, 27, 28], and system modeling [5, 8, 10, 29]. Following
many predecessors, we use POD as tool for model reduction where the POD of a
function, u ∈ L2(0,∞;X), gives a basis that best represents u ∈ L2(0,∞;X) in a
mean-square sense [8, 9].

The method of snapshots is a practical approach to compute the POD of a
function known pointwise in time. The method of snapshots may be derived from
the continuous POD operator by assuming a piecewise constant representation of
u in time as shown in [9]. The remainder of this section outlines the procedure.
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Suppose u ∈ L2(0, T ;X) is obtained at times t1 < t2 < t3 . . . < tS such that
ti ∈ [0, T ] for i = 1, . . . , S, and the value of the time step size, 4t = ti+1 − ti, for

i = 1, . . . , (S − 1), is constant. Let the set {u(ti)}Si=1 denote the set of S snapshots
of a solution, u(t), of a dynamic system. Then, the correlation matrix, K, of the

data set {u(ti)}Si=1 may be defined as

(1) K =

(
1

S
(ui, uj)X

)S

i,j=1

where ui = u(ti) and uj = u(tj) are the ith and jth snapshot of u(t). Let {λk, vk}
denote the eigenvalues of K and the corresponding normalized eigenvectors. Then,
the kth POD basis function of the POD basis set Ψ = {ψk}Sk=1 is given by

(2) ψk =
1√
S λk

S∑
i=1

[vk]iui,

where [vk]i represents the ith element of the kth orthonormal eigenvector of K.
Note that ψk, computed from equation (2), shares the same representation as

the snapshot set {ui}Si=1. For example, if each snapshot is represented as

ui =

N∑
`=1

R`(ti)β`(x)

where each R`(ti) is a time dependent coefficient, and {β`(x)} is a collection of
functions; it follows that the kth POD mode ψk(x) is given by

(3) ψk(x) =

N∑
`=1

γ`kβ`(x)

where the coefficients γ`k are computed from (2) as

γ`k =
1√
S λk

S∑
i=1

[vk]iR`(ti).

The general representation of the POD mode (3) will be used in Section 4 in the
implementation of the group and standard POD models of Burgers’ equation.

2.3. The Group Finite Element (GFE) Method. The group finite element
(GFE) method, also known as “product approximation,” is a finite element (FE)
technique for certain types of nonlinear partial differential equations. Experiments
with the GFE method have shown an increase in economy and a slight increase in
the nodal accuracy compared to FE solutions of the unsteady Burgers’ equations
and many other problems [12, 13, 14]. The authors are unaware of convergence
theory for the GFE applied to Burgers’ equation; however, theoretical results exist
for other problems [12, 30, 31, 32, 33, 34, 35]



NONLINEAR MODEL REDUCTION 359

Here, we illustrate the GFE method with its application to a model problem.
Consider the following form of Burgers’ equation

(4)

ut + uux + uuy − ν (∇2u) = f, (x, y) ∈ Ω, t > 0,

u(t, ∂Ω) = 0, t > 0,

u(0, x, y) = u0(x, y), (x, y) ∈ Ω ,

where u = u(t, x, y) = u(t,x) represents the dependent variable, f = f(t, x, y) is
some forcing on the system, ν is a constant positive parameter, and ∂Ω denotes the
boundary of the spatial domain, Ω.

The GFE method requires two main steps: rewriting the nonlinear terms of the
governing equations in grouped form and determining a supplementary grouped
trial function. The nonlinear terms of Burgers’ equation (4) may be grouped as

(5) uux + uuy =
1

2
(u2)x +

1

2
(u2)y,

so that the grouped variable, u2, is identified. Let a standard FE approximation to
u(t,x) be written

(6) u(t,x) ≈ uN (t,x) =

N∑
j=1

αj(t)βj(x),

where N is the number of basis functions, βj(x) is the jth piecewise linear FE
basis function, and each αj(t) is an undetermined function of time. In the group
method, the FE trial function is required to interpolate the grouped variable, u2,
at the nodes, that is,

(7) u2(t,xn) ≈ u2
N (t,xn) =

 N∑
j=1

αj(t)βj(xn)

2

,

where xn = (xn, yn) is the nth node point of a computational grid. Note that at
the nodes

βj(xn) =

{
1 if j = n
0 if j 6= n

,

since the basis is piecewise linear. Thus, the right hand side of (7) may be simplified
to give the group finite element approximation at the nodes

(8) u2
N (t,xn) =

N∑
j=1

α2
j (t)βj(xn).

Let QX denote the operator that maps the nodal approximation (8) onto its piece-
wise linear interpolant. Then, the grouped approximation may be represented
continuously over the entire domain as

(9) u2
N (t,x) ≈ QX u2

N (t,xn) =

N∑
j=1

α2
j (t)βj(x).
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The use of the standard (6) and grouped (9) approximations in the weak form
of Burgers’ equation (4) leads to the GFE differential equations

(10)
M α̇ = −νAα−G(α) + V(t),

α(0) = α0 = [(u0, βi)]
N
i=1 ,

where

G(α) = N [diag(α)]α,

and

(11)
[M]ij = (βj , βi), [A]ij = (βj,x, βi,x) + (βj,y, βi,y) ,

[N]ij = (βj,x, βi) + (βj,y, βi) , [V(t)]i = (f, βi) ,

and (f, g) =
∫

Ω
f(x)g(x)dx is the standard L2(Ω) inner product. Throughout this

work we use a comma to separate the index of a variable and its partial derivative.
For example, in (11), βj,x denotes ∂βj/∂x.

The reduced computational cost of the semi-discrete GFE form (10) is due to the
separation of the space and time dependent components in the nonlinear terms. As
a result, the inner products, (βj,x, βi) and (βj,y, βi) of the nonlinear term, G(α),
may be computed once before integration. In contrast, a standard FE form of
Burgers’ equation (4) requires the re-evaluation of the nonlinear terms of the inner
products at each time step during simulation.

The computational advantage of the GFE method over the conventional FE
method for two and three dimensional Burgers’ equations and viscous compressible
flows is demonstrated in [13, 14]. As with the GFE method, we show that the
projection of the grouped approximations onto a global POD basis also provides a
computational advantage.

3. The Standard and Group POD Models for Burgers’ Equation

A common practice in POD model construction is to remove the time average of
the data set prior to computing the POD basis [36, 37, 38]. To this end, we write
Burgers’ equation (4) in terms of its fluctuation about the mean. Let the solution
variable, u, be separated into the sum of its time average and fluctuation as

(12) u(t,x) = U(x) + v(t,x)

where the time average is approximated as

(13) U(x) =
1

S

S∑
i=1

u(ti,x).

When the separated solution (12) is substituted into Burgers’ equation (4) we obtain

(14)

vt + vvx + vvy − ν(4v +4U) + U(Ux + Uy) + . . .

U(vx + vy) + ν(Ux + Uy) = f, (x, y) ∈ Ω, t > 0,

v(t, ∂Ω) = 0, t > 0,

v(0,x) = v0, (x, y) ∈ Ω.

Equation (14) is the general form of the model problem considered in this work.
We shall further refer to (14) as the fluctuation Burgers’ equation.
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3.1. The Development of the Standard POD Form of Burgers’ Equation.
Let the POD approximation of the fluctuation variable, v(t,x), be written as

(15) v(t,x) ≈ vp(t,x) =

M∑
j=1

aj(t)ψj(x),

where vp(t,x) denotes the POD approximation to the fluctuation variable, ψj is the
jth POD mode, and aj(t) is an unknown time-dependent coefficient. The projection
of the fluctuation Burgers’ equation (14) onto the POD basis, Ψ = {ψi}Mi=1, poses
the variational problem to find vp ∈ VPOD = span{Ψ} so that

(16)

(vp,t, ψi) + (vpvp,x + vpvp,y, ψi) + . . .

(UUx + UUy + Ux + Uy, ψi)− ν (∇vp,∇ψi)− ν (∇U,∇ψi) + . . .

(Uvp,x + Uvp,y + Uxvp + Uyvp, ψi) = (f, ψi) , a0 = (vp 0, ψi),

for i = 1, . . . ,M . When the POD approximation (15) is substituted into the varia-
tional problem (16), a nonlinear ODE system in terms of the unknown coefficients,
a = [a1, a2, . . . , aM ]T, is obtained as

(17)
M ȧ = −A a− Ns(a) −V(t),

a(0) = a0

where,

[M]ij = (ψj , ψi)

[A]ij = (U ψx,j + U ψy,j + Ux ψj + Uy ψj , ψi) + ν (ψj,x, ψi,x) + . . .

ν (ψj,y, ψi,y)

[Ns(a)]i =
M∑

k,j=1

[(ψk ψj,x, ψi) + (ψk ψj,y, ψi)] ak aj

[V]i = (−f + U Ux + U Uy, ψi) + ν (Ux, ψi,x ) + ν (Uy, ψi,y )

[a0]i = (v0, ψi) .

Note that M is the identity matrix, since the POD modes are orthonormal. We refer
to equation (17) as the standard POD form of the fluctuation Burgers’ equation.

3.2. The Development of the Group POD Form of Burgers’ Equation.
As with the group finite element method, the group POD method requires two
main steps: posing the nonlinear terms of the PDE in group form and introducing
a grouped POD approximation.

The fluctuation Burgers’ equation (14) may be written in grouped form as

(18)
vt + (v2)x + (v2)y − ν(4v +4U) + U(Ux + Uy) + . . .

U(vx + vy) + ν(Ux + Uy) = f, (x, y) ∈ Ω, t > 0,

The projection of the grouped fluctuation Burgers’ equation (18) onto the POD set,
{ψi}Mi=1, poses the variational problem to find vp ∈ VPOD = span{Ψ} such that

(19)

(vp,t, ψi) +
(
(v2

p)x + (v2
p)y, ψi

)
+ . . .

(UUx + UUy + Ux + Uy, ψi)− ν (∇vp,∇ψi)− ν (∇U,∇ψi) + . . .

(Uvp,x + Uvp,y + Uxvp + Uyvp, ψi) = (f, ψi) , a0 = (vp 0, ψi),
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for i = 1, . . . ,M . Let the grouped variable, v2, of the grouped fluctuation Burgers’
equation (18) be approximated as

(20) v2(t,x) ≈ v2
p(t,x) =

M∑
j=1

Fj(a)ψj(x),

where each Fj(a) is an unknown function of the POD approximation coefficients
a. When the standard POD approximation (15) and grouped POD approximation
(20) are substituted into the grouped variational problem (19), the group POD
form of the fluctuation Burgers’ equation is obtained as

(21)
M ȧ = −A a−NgF (a)−V(t),

a(0) = a0

where M (the identity matrix) A, V, and a0 are identical to the standard POD
form of the fluctuation Burgers’ equation (17), Ng is given by

[Ng]ij = (ψj,x, ψi) + (ψj,y, ψi) ,

and F (a) = [F1, F2, . . . , FM ]T is determined below.
To compute the nonlinear term we follow a nodal approach similar to that pre-

sented in the GFE method of Section 2.3. Let the group POD approximation (20)
be evaluated with the standard POD approximation (15) at the grid nodes as

(22) v2(t,xn) ≈ v2
p(t,xn) =

M∑
j=1

Fj(a)ψj(xn) =

 M∑
j=1

aj(t)ψj(xn)

2

.

Let γnj = ψj(xn), the value of the jth POD mode at the nth node. Then,

(23)

M∑
j=1

Fjγnj =

 M∑
j=1

ajγnj

2

=

M∑
j,`=1

γnjγn`aja`.

Note that γnjγn` = γn`γnj , that is, there is symmetry in the cross terms. Thus, for
j 6= ` we may avoid computing γnjγn` twice by writing

(24) v2
p(t,xn) =

M∑
j,`=1

γnjγn`aja` = γ̂n â

where γ̂n is a 1× 1
2 (M2 +M) vector written as

γ̂n = [ γn1γn1, 2γn1γn2, . . . , 2γn1γnM , γn2γn2, 2γn2γn3, . . .
2γn2γnM , . . . , γnMγnM ]

and

â = [a1a1, a1a2, . . . , a1aM , a2a2, a2a3, a2a4, . . . , a2aM , . . . , aMaM ]T

is a 1
2 (M2 + M) × 1 vector. For n = 1, 2, . . . , N , we may write equation (23) in

matrix form as

(25) ΓF (a) = Γ̂ â,

where Γ is the N ×M matrix of POD mode coefficients
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(26) Γ =

 γ11 γ12 . . . γ1M

...
...

. . .
...

γN1 γN2 . . . γNM


and Γ̂ is the N × 1

2 (M2 +M) matrix [ γ̂1, γ̂2, . . . , γ̂N ]T.
If the number of grid nodes is larger than the number of POD modes (N >

M), in terms of F (a), equation (25) is overdetermined and has no solution for
F (a). However, we do not attempt to approximate F (a) using (25); rather, we

substitute Γ̂ â in the group POD discretization. Here, we illustrate this substitution
by evaluating the nonlinear terms of the group POD form of the fluctuation Burgers’

equation (21), NgF (a) = [(ψj,x, ψi) + (ψj,y, ψi)]
M
i,j=1 F (a),

Assuming the POD mode takes the form of (3), when the standard POD ap-
proximation (15) is substituted into Ng we obtain

(27) NgF (a) ≈


M∑
j=1

N∑
k,`=1

Fj

[
γkj

(∫
Ω

βk,xβ` + βk,yβ` dx

)
γ`i

]
M

i=1

.

In matrix form, the right hand side of equation (27) becomes

(28) NgF (a) ≈ ΓTN ΓF (a),

where Γ and N are defined in equations (26) and (11), respectively. We now

substitute Γ̂ â for ΓF (a), from equation (25), into the right hand side of (28) to
obtain

(29) NgF (a) ≈ ΓTN Γ̂â.

Note that ΓTNΓ̂ may be computed offline. Let

(30) N̂ = ΓTNΓ̂,

where N̂ is M × 1
2 (M2 +M). Then, the group POD approximation may be finally

written as

(31) NgF (a) ≈ N̂ â.

With this, the GPOD model (21) becomes

(32)
M ȧ = −A a− N̂â−V(t),

a(0) = a0.

This is the model used for the computations performed herein.
Note: Although we assumed the POD modes are represented as in equation

(3), this is not required in general. All that must be done is to approximate
Ng = ΓTNΓ, for some matrix N. This can easily be accomplished by setting
a computational grid and approximating the integrals in Ng with quadrature.

4. The Computational Cost of Group and Standard Nonlinear Terms

In this section we present a general implementation of the group and standard
POD models for the fluctuation Burgers’ equation and compare the number of mul-
tiplication operations required to compute their nonlinear terms. The group POD
form of the nonlinear term of the fluctuation Burgers’ equation will be shown to re-
quire M3− 1

2M
2− 1

2M less floating point operations (flops) than the standard POD
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implementation, where one flop is taken as an addition, subtraction, multiplication
or division floating point operation, and M is the model order.

Throughout, we assume the nonlinear terms in the group POD model are com-
puted using equation (31), as described in the previous section.

4.1. The Cost of the Standard POD Implementation. Recall the standard
POD form of the fluctuation Burgers’ equation (17). When the POD mode (3) is
substituted into (17) we obtain

M ȧ = −A a−Ns(a)−V(t),

a(0) = a0,

where

M = ΓT M1 Γ,

A = ΓT [ A1 + νA2 + A3] Γ,

Ns(a) = aT ΓT E Γ a,

V = ΓT [ νV1 + V2 −V3 ],

a0 = ΓT T,

and

[M1]ij = (βj , βi), [A1]ij = (Uβx,j , βi) + (Uβy,j , βi),

[A2]ij = (βj,x, βi,x) + (βj,y, βi,y), [A3]ij = (Uxβj , βi) + (Uyβj , βi),

[E]ijk = (βj,x βk, ψi) + (βj,y βk, ψi), [V1]i = (Ux, βi,x) + (Uy, βi,y),

[V2]i = (UUx, βi) + (UUy, βi), [V3]i = (f, βi),

[T]i = (v0, βi),

for i, j = 1, . . . , N and k = 1, . . . ,M . The above ODE system (33) is the computa-
tional form of the standard POD model of Burgers’ equation implemented in this
work. The nonlinear term, Ns(a), may be written as

(33)


ak γ`k (β` βp,x + β` βp,x, ψ1) γpj aj
ak γ`k (β` βp,x + β` βp,x, ψ2) γpj aj

...
ak γ`k (β` βp,x + β` βp,x, ψM ) γpj aj

 =


aT S1 a
aT S2 a

...
aT SM a


where a is an M × 1 vector and Si = ΓT Ei Γ is a dense, nonsymmetric, M ×
M matrix. To our knowledge, the right hand side of equation (33) has no more
computationally efficient form and is written as implemented in our code.

The computation of each of the M rows of (33) requires 2M2 + M − 1 flops.
Thus, the total number of flops required to compute the nonlinear terms for the
standard POD implementation is as follows:

(34) Cost of standard nonlinear terms = 2M3 +M2 −M.
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4.2. The Cost of the Group POD Implementation. Recall the group POD
form of the fluctuation Burgers’ equation (29). When the POD mode (3) is substi-
tuted into (29) we obtain

(32)
M ȧ = −A a− N̂â−V(t),

a(0) = a0,

where M, A, V(t), and a0 are identical to the standard implementation (33), and

N̂ = ΓTNΓ̂, equation (30) of Section 3.2. Equation (32) is the form of the group
POD model for the fluctuation Burgers’ equation implemented in this work.

In Section 3.2, we showed that N̂ is size M × 1
2 (M2 +M) and â is size 1

2 (M2 +

M)× 1. The product N̂ â requires M3 +M2 −M flops, plus 1
2 (M2 +M) flops to

compute â. Thus, the total number of operations to compute the nonlinear group
POD term is

(35) Cost for group nonlinear term = M3 +
3

2
M2 − 1

2
M.

By comparison, the computation of the nonlinear term of the group POD model
requires M3 − 1

2M
2 − 1

2M flops less than the standard POD implementation.
We further investigate the computational cost of the group POD method in

Section 5, where a comparison of total integration times of the group and standard
POD models for the fluctuation Burgers’ equation is performed.

5. Numerical Results

In this section, we assess the accuracy and computational cost of the group
POD model of the fluctuation Burgers’ equation (32) with a comparison to the
standard POD implementation (33). Simulations show that the group POD model
is as accurate and more efficient than the standard POD model for the fluctuation
Burgers’ equation.

5.1. The Accuracy of the Group POD Method. To quantify the accuracy
of each model, an analytical benchmark solution for Burgers’ equation was created
using the method of manufactured solutions (MMS). The MMS is a verification
procedure for computer codes that solve partial differential equations (PDEs). In
the MMS, an analytical benchmark solution is manufactured by substituting an an-
alytical function into each term of a PDE and appending the result as an analytical
forcing on the system. The manufactured solution chosen for this analysis was

(36) u(t,x) = 10xy(x− 1)(y − 1)[sin(2xt)e−
t
2 + cos(yt)e−

t
4 + sin(xyt)e−t].

This function (36) was chosen, in part, to satisfy the zero boundary conditions
and ensure the influence of the nonlinear terms during the simulation. More in-
formation on the guidelines of choosing a manufactured solution may be found in
[15, 17, 19]. We computed the analytical forcing function, f , by substituting the
manufactured solution into each term in the left hand side of Burgers’ equation (4),
using MATLAB’s symbolic toolbox to perform the calculation.

A POD basis was computed with the method of snapshots over the time interval
[0, 10] seconds. For these computations, the exact solution (36) was projected onto
a piecewise linear basis on a uniform triangular grid on [0, 1] × [0, 1]. The grid
resolution and time step size of the snapshot set was determined based on the
convergence of the POD eigenvalues and POD modes. To this end, we selected a
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Figure 1. POD eigenvalues 1 to 20 computed from a 1025 snap-
shot 65× 65 node snapshot set of the benchmark solution (36)

.

65×65 node grid with 1025 snapshots, which was sufficient for convergence. Figure
1 is a semi-log plot of the POD eigenvalues of the converged POD basis.

Standard and group POD models of the fluctuation Burgers’ equation were con-
structed for POD basis sizes ranging from 1 to 15 modes. Each reduced model was
integrated over the time interval 0 ≤ t ≤ 10 seconds with Matlab’s ode15s solver,
having absolute and relative error tolerances of of 10−5 and 10−3, respectively (the
default settings). For each integration, the initial condition was computed from
(36) as u(0,x) = 10xy(x− 1)(y − 1). The parameter ν was specified as 1/100.

To quantify the accuracy of the group and standard POD models, a relative
global error between the simulations and the benchmark solution (36) was evaluated
as

(37) errr =
‖u(ti)− ur(ti)‖L2

‖u(ti)‖L2

,

where ‖ · ‖L2 is the L2 norm evaluated as ‖ · ‖L2 =
(∫

Ω
| · |2dx

)1/2
, ti denotes the

ith point in time, and r denotes the order of the corresponding POD model.
Figures 2 and 3 are plots of the relative global error, errr, versus model order,

r, at various points in time during the simulation of the group POD model and
standard POD model of Burgers’ equation, respectively. For the points in time
shown, the relative global error of each model is shown to approximately converge
to values on the order of 10−4 to 10−3 with increasing POD basis size. Thus, we
find the group POD model of the fluctuation Burgers’ equation (33) as accurate as
the standard POD model for the fluctuation Burgers’ problem (32).
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Figure 2. Semilog plot of relative global error versus POD basis
size at various points in time for the simulation of the group POD
model of the fluctuation Burgers’ equation
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Figure 3. Semilog plot of relative global error versus POD basis
size at various points in time for the simulation of the standard
POD model of the fluctuation Burgers’ equation

5.2. The Efficiency of the Group POD Method. In this section, we further
investigate the computational cost of the group POD model (32) by comparing
total integration time to the standard POD implementation (33).
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In the previous section, we used an analytical forcing to construct a benchmark
solution to quantify model accuracy. However, the discretization of the cumber-
some analytical forcing function was required at each time step, which caused the
integration times of each model to be dominated by the discretization of the forcing,
f . To clearly assess the cost of computing the nonlinear terms of each model we
solve an unforced fluctuation Burgers’ equation (f = 0).

The unforced form of the Burgers’ problem, presented in Section 2.3, was solved
using the group finite element (GFE) method. We chose the initial condition to be
defined by the function

(38) u0 = sin(y
π

2
) sin(x

π

2
)

for (x, y) ∈ [ 1
10 ,

3
10 ]× [ 1

10 ,
3
10 ] and 0 elsewhere. Figure 4 is surface plot of the initial

condition (38) used in the GFE simulation of Burgers’ equation The GFE form of
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Figure 4. Surface plot of initial condition (38) used in the GFE
simulation of Burgers’ equation

Burgers’ equation (10) was solved over the time interval 0 ≤ t ≤ 5 seconds with
Matlab’s ode15s solver using the default settings. The parameter ν was specified
as 1/100.

The POD basis used to construct subsequent POD models was computed with
a snapshot set of the GFE simulation on a uniform triangular grid on [0, 1]× [0, 1]
over the time interval 0 ≤ t ≤ 5 seconds. The spatial and temporal refinement of
the snapshot set was determined based on the convergence of the POD eigenvalues
and POD modes. To this end, we selected a 33×33 node grid with 1025 snapshots,
which was sufficient for convergence. Figure 5 is a plot of the POD eigenvalues
computed from the converged POD basis.

Standard and group POD models of the fluctuation Burgers’ equation were con-
structed for POD basis sizes ranging from 1 to 25 modes. Each reduced model was
integrated over the time interval 0 ≤ t ≤ 5 seconds using a fourth order Runge-
Kutta (RK4) solver having a constant time step size of 1/1000 seconds. The RK4
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Figure 5. POD eigenvalues 1 to 20 computed from a 33 × 33
node 1025 snapshot snapshot set of the unforced GFE simulation
of Burgers’ equation (10)

.

solver was chosen because the simplicity of its implementation allowed a clear as-
sessment of the link between total integration time and the cost of computing the
nonlinear terms of the Burgers’ POD models.

To quantify the total elapsed time for each integration, Matlab’s tic-toc feature
was used. The tic-toc command records real time between two points in a code,
specified by tic and toc. We applied tic-toc immediately before and after the RK4
solver for all simulations.

Group and standard POD models of orders 1 through 25 were integrated 100
times and the average integration time for each model order and type was computed.
Figure 6 is a plot of the average total integration time versus model order of the
standard (33) and group (32) POD implementations. The standard deviation of
the 100 simulation times for each model was on the order of 10−2 seconds. From
Figure 6, the group POD implementation (33) is shown to provide an increasing
savings with model order over the standard POD implementation (32), which is
consistent with the operation count savings, r3 − 1

2r
2 − 1

2r, presented in Section
4.2.

6. Extension to Other Nonlinear Problems

In this work, we applied the group POD method to the quadratic nonlinearity
of Burgers’ equation as model problem for an incompressible form of the Navier-
Stokes equations. We may also apply the group POD method to any equation with
a polynomial nonlinearity, for example, the compressible Navier-Stokes equations.
In foresight of this potential application, we provide a general extension of the
group POD method to a cubic nonlinearity.
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Figure 6. Total integration time (averaged over 100 trials) of
standard and group POD models of Burgers equation versus model
order

Consider a grouped cubic term v3(t,x). Following the approach in Section 3.2,
let the cubic term be approximated as

(39) v3
p(t,x) =

M∑
k=1

Fk(a)ψk(x)

where Fk(a) is an unknown function of the group POD coefficient. Let us evaluate
v3(t,x) at the nodes using the standard POD approximation as

(40) v3
p(t,xn) =

M∑
k=1

Fk(a)ψk(xn) =

 M∑
j=1

ajγnj

3

=
M∑

k,l,m=1

γnkγnlγnmakalam.

As with the quadratic nonlinearity of Section 3.2, Equation (40) may be written in
similar matrix form as

(41) ΓF (a) = Γ̂ â,

where Γ̂ and â are constructed in a pattern similar to the quadratic terms presented
in Section 3.2. This pattern may be observed by expanding the third term of
equation (40) for M = 2, 3, and 4. By taking advantage of the symmetry in the cross
terms (γnkγnlγnj = γnlγnjγnk = γnjγnkγnl), in terms of operation counts, an even
larger computational savings is obtained over the standard POD implementation.
We expect these savings to be realized in simulations of cubic group POD models.

7. Conclusions

In this work, we submitted the group proper orthogonal decomposition (POD)
method to write nonlinear POD based reduced order models with an improved
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computational cost in the nonlinear terms. The group POD method was developed
by extending ideas from group finite elements to global POD basis functions.

Here, a scalar, two-dimensional Burgers’ equation was used as a model problem.
The accuracy of the group POD model of Burgers’ equation was shown to be similar
to the standard POD model. The group POD method was also shown to provide
a reduced computational cost over the standard POD implementation with flop
counts and experiments quantifying total integration times. A brief extension of
the group POD method to cubic nonlinearities was also provided. On the basis of
comparable accuracy and improved economy, the group POD method seems to be
a promising technique for nonlinear model reduction.

Future work includes testing the group POD method on incompressible and
compressible forms of the Navier-Stokes equations. A complete convergence analysis
of the method (as in [7, 8, 9, 29]) would also be of interest.
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