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A SPECTRAL METHOD ON TETRAHEDRA

USING RATIONAL BASIS FUNCTIONS
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Abstract. A spectral method using fully tensorial rational basis functions

on tetrahedron, obtained from the polynomials on the reference cube through

a collapsed coordinate transform, is proposed and analyzed. Theoretical and

numerical results show that the rational approximation is as accurate as the

polynomial approximation, but with a more effective implementation.
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1. Introduction

Spectral/hp element methods, which are capable of extending the merits of spec-
tral methods to complex geometries, have become increasingly popular in com-
putational fluid dynamics, atmospheric modeling and many other fields [6, 15,
5]. While the quadrilateral/hexahedral spectral element methods (QSEM) have
achieved tremendous advances since the 80s [21, 18], considerable progress has been
made recently in the triangular/tetrahedral element methods (TSEM). The TSEM
have proven to be more flexible for complex domains and for adaptivity, and the cur-
rently existing approaches can be roughly classified as (i) the use of Koornwinder-
Dubiner polynomials [7, 23, 15]; (ii) approximations by non-polynomials on triangu-
lar elements [3, 13], and (iii) approximations by polynomials on triangular elements
using special nodal points such as Fekete points [14, 24, 19].

Although the use of polynomials on triangles/tetrahedra seems to be natural,
this also brings the loss of some flexibility and some difficult implementation issues.
For example, the Koornwinder-Dubiner polynomial basis functions, obtained from
the collapsed transform, are based on a warped tensor product, which is more com-
plicated in implementation and analysis than the standard tensorial case. However,
if one drops the requirement of being polynomials on the triangular/tetrahedral el-
ements, such issues can be circumvented. In a very recent paper [22], we proposed
a fully tensorial TSEM using rational basis functions obtained from the polyno-
mials in the reference square through a collapsed coordinate transform. This ap-
proach was shown to be at least as accurate as the warped tensorial TSEM using
Koornwinder-Dubiner polynomials, and be able to be effectively implemented as
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the QSEM due to the fully tensorial nature and the availability of the nodal ba-
sis. In this paper, we discuss the generalization of this method to the case of
three dimensional tetrahedron with an aim towards an adaptive element method
on unstructured meshes. The extension to three dimensions is nontrivial for sev-
eral reasons. Firstly, the collapsed transform from a tetrahedron to the reference
cube induces severer singularities (i.e., two faces of the cube are collapsed into one
edge and one vertex of the tetrahedron) than that of the two dimensional case.
Hence, much care has to be taken for dealing with the singularities in both imple-
mentations and analysis. On the other hand, the complication of geometry leads
to some additional difficulties for the construction of modal/nodal basis functions,
and numerical implementations as well.

The outline of the paper is as follows. In Section 2, we introduce the collapsed
coordinate transform and the rational basis functions. We also present some results
on the approximation properties of the new basis in Sobolev spaces. In Section 3, we
implement the rational spectral methods for some model equations on tetrahedron.
The final section is for the extension to the tetrahedral spectral elements and some
discussions. We end this section with some notations to be used throughout the
paper.

• Let Ω ⊆ R
3 be a bounded domain, and ω be a generic positive weight

function which is not necessary in L1(Ω). Denote by (u, v)ω,Ω :=
∫
Ω
uvωdΩ

the inner product of L2
ω(Ω) whose norm is denoted by ‖ · ‖ω,Ω. For any

m ≥ 0, we use Hm
ω (Ω) and Hm

0,ω(Ω) to denote the usual weighted Sobolev
spaces, whose norm and semi-norms are denoted by ‖u‖m,ω,Ω and |u|m,ω,Ω,
respectively. In case of no confusion would arise, ω (if ω ≡ 1) may be
dropped from the notations.

• Let N be the set of non-negative integers and Z
− the set of negative integers.

For any N ∈ N, we set I = (−1, 1) and denote by PN (I) the set of all
polynomials of degree ≤ N , and set P0

N (I) :=
{
φ ∈ PN(I) : φ(±1) = 0

}
.

• We use the expression A . B to mean that A ≤ cB, where c is a generic
positive constant independent of any function and of any discretization
parameters.

2. Rational basis functions and approximations on tetrahedra

We introduce in this section a family of orthogonal rational basis functions on
tetrahedra, and study its approximation properties in Sobolev spaces.

2.1. The collapsed coordinate transform. It is known that there exists an
affine mapping between the reference tetrahedron:

T =
{
(x, y, z) : 0 < x, y, z, x+ y + z < 1

}
,(2.1)

and any arbitrary tetrahedron TP with vertices P0 = (u0, v0, w0)
tr, P1 = (u1, v1, w1)

tr,
P2 = (u2, v2, w2)

tr and P3 = (u3, v3, w3)
tr, which takes the form





u = u0(1 − x− y − z) + u1x+ u2y + u3z,

v = v0(1− x− y − z) + v1x+ v2y + v3z,

w = w0(1− x− y − z) + w1x+ w2y + w3z.

In view of this, we shall restrict our attentions to the reference tetrahedron T . We
also introduce a second coordinate (ξ, η, ζ)−system on the reference cube Q :=
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(−1, 1)3. The so-called collapsed coordinate transform between Q and T is given by

x =
1+ ξ

2

1− η

2

1− ζ

2
, y =

1 + η

2

1− ζ

2
, z =

1 + ζ

2
, ∀ (ξ, η, ζ) ∈ Q,(2.2)

with the inversion:

ξ =
2x

1− y − z
− 1, η =

2y

1− z
− 1, ζ = 2z − 1, ∀ (x, y, z) ∈ T .(2.3)

As illustrated in Figure 2.1, this transform collapses the faces
{
(ξ, η, ζ) ∈ Q :

ζ = 1
}

and
{
(ξ, η, ζ) ∈ Q : η = 1

}
of Q into the vertex (0, 0, 1) and the edge{

(x, y, z) ∈ T : x = 0, y+ z = 1} of T , respectively. Hence, it is referred to as the
collapsed coordinate transform (also known as the Duffy system [8]), which is one
of the indispensable building blocks of the spectral/hp element methods in [15].
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Figure 2.1. The collapsed transform between the cube Q and the
tetrahedron T .

It is important to point out that the vertex (x, y, z) = (0, 0, 1) and the edge{
(x, y, z) ∈ T : x = 0; y+ z = 1} are multi-valued, since both of them correspond

to a face of Q. However, there hold

0 ≤
y

1− z
=

1 + η

2
≤ 1, as (y, z) → (0, 1) or ζ → 1,

0 ≤
x

1− y − z
=

1+ ξ

2
≤ 1, as (x, y, z) → (0, 0, 1) or ζ → 1.

(2.4)

This situation is reminiscent of the coordinate singularity of the polar and spherical
coordinates.

The following calculus associated with the transform (2.2)–(2.3) will be used
frequently throughout this paper:





∂ξ

∂x
=

2

1− y − z
=

8

(1− η)(1 − ζ)
,

∂η

∂x
= 0,

∂ζ

∂x
= 0,

∂ξ

∂y
=

2x

(1− y − z)2
=

4(1 + ξ)

(1− η)(1 − ζ)
,
∂η

∂y
=

2

1− z
=

4

1− ζ
,

∂ζ

∂y
= 0,

∂ξ

∂z
=

2x

(1− y − z)2
=

4(1 + ξ)

(1 − η)(1− ζ)
,
∂η

∂z
=

2y

(1 − z)2
=

2(1 + η)

1− ζ
,
∂ζ

∂z
= 2,

(2.5)
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and





∂x

∂ξ
=

(1− η)(1 − ζ)

8
=

1− y − z

2
,

∂x

∂η
= 0,

∂x

∂ζ
= 0,

∂y

∂ξ
= −

(1 + ξ)(1 − ζ)

8
= −

x(1 − z)

2(1− y − z)
,
∂y

∂η
=

1− ζ

4
=

1− z

2
,

∂y

∂ζ
= 0,

∂z

∂ξ
= −

(1 + ξ)(1− η)

8
= −

x

2(1− z)
,

∂z

∂η
= −

1 + η

4
= −

y

2(1− z)
,
∂z

∂ζ
=

1

2
.

(2.6)

Hence, the determinant of the Jacobian of (2.2)–(2.3) is

∂(x, y, z)

∂(ξ, η, ζ)
=

(1− η)(1 − ζ)2

64
=

(1 − y − z)(1− z)

8
.(2.7)

Throughout this paper, we shall associate a function u in T with a function v in Q
through

v(ξ, η, ζ) = u(x, y, z), ∀(x, y, z) ∈ T , ∀(ξ, η, ζ) ∈ Q.(2.8)

One verifies readily that

∂xu =
8

(1 − η)(1− ζ)
∂ξv =

2

1− y − z
∂ξv,

∂yu =
4

1− ζ
∂ηv +

4(1 + ξ)

(1− η)(1 − ζ)
∂ξv =

2

1− z
∂ηv +

2x

(1 − y − z)2
∂ξv,

∂zu = 2∂ζv +
2(1 + η)

1− ζ
∂ηv +

4(1 + ξ)

(1− η)(1− ζ)
∂ξv

= 2∂ζv +
2y

(1− z)2
∂ηv +

2x

(1− y − z)2
∂ξv,

(2.9)

and conversely,

∂ξv =
1− y − z

2
∂xu =

(1− η)(1 − ζ)

8
∂xu,

∂ηv =
1− z

2
∂yu−

x(1 − z)

2(1− y − z)
∂xu =

1− ζ

4
∂yu−

(1 + ξ)(1 − ζ)

8
∂xu,

∂ζv =
1

2
∂zu−

y

2(1− z)
∂yu−

x

2(1− z)
∂xu

=
1

2
∂zu−

1 + η

4
∂yu−

(1 + ξ)(1 − η)

8
∂xu.

(2.10)

The factors 1/(1−η) and 1/(1−ζ) in (2.9) play the same role as 1/r in the spherical
coordinates. We also observe that the collapsed transform implies v(ξ, η, 1) =
u(0, 0, 1) and v(ξ, 1, ζ) = u(0, y, 1− y). As a result,

(2.11) ∂ξv(ξ, η, 1) = ∂ηv(ξ, η, 1) = ∂ξv(ξ, 1, ζ) = 0.

Note that the above corresponds to the pole condition in the polar and spherical
coordinates.

2.2. Orthogonal systems on T . Let ωα,β,γ,δ = ωα,β,γ,δ(x, y, z) := (1 − x −
y − z)αxβyγzδ with α, β, γ, δ > −1, be the weight function on the tetrahedron T .
Further, let Jα,β

n be the (generalized) Jacobi polynomials as defined in Appendix
A. Karniadakis and Sherwin [23] introduced an orthogonal polynomial system in
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L2(T ), which turns to be a special case (with α = β = γ = δ = 0) of the general
orthogonal polynomials in L2

ωα,β,γ,δ(T ) defined in [25]:

J α,β,γ,δ
lmn (x, y, z) = (1 − y − z)lJα,β

l

( 2x

1− y − z
− 1

)
(1− z)m

× J2l+1+α+β,γ
m

( 2y

1− z
− 1

)
J2l+2m+2+α+β+γ,δ
n

(
2z − 1

)
, ∀(x, y, z) ∈ T .

(2.12)

In fact, the orthogonal polynomials are transformed from a product of one-dimensional
polynomials via the mapping (2.3):

J α,β,γ,δ
lmn (x, y, z) =Gα,β,γ,δ

lmn (ξ, η, ζ) = Jα,β
l (ξ)

(1− η

2

)l

J2l+1+α+β,γ
m (η)

×
(1− ζ

2

)l+m

J2l+2m+2+α+β+γ,δ
n (ζ), ∀(ξ, η, ζ) ∈ Q.

In contrast to the standard tensor product, the subscripts and superscripts in

J α,β,γ,δ
lmn are intrinsically dependent, and it is referred to as a warped (or general-

ized) tensor product. Such types of polynomials were also considered in [20, 16, 7]
in two or three dimensional settings. Tetrahedral spectral/hp element methods us-
ing these Koornwinder-Dubiner polynomials on both the tetrahedral elements and
the reference cubic elements have been systematically developed in [15]. However,
the warped tensor structure of the basis functions makes it difficult to analyze
(cf. [12]) and somewhat difficult to implement, particularly, when very high-order
polynomials have to be used. Moreover, no nodal basis is available.

In fact, by restricting to polynomials, one may loss some flexibility and face
some complicated issues. Motivated by [22], we shall develop a spectral method
using fully tensorial rational basis functions, which is easy to implement and is also
spectrally accurate. For this purpose, we define

Rα,β,γ,δ
lmn (x, y, z) = Jα,β

l

( 2x

1− y − z
− 1

)
J1+α+β,γ
m

( 2y

1− z
− 1

)
J2+α+β+γ,δ
n

(
2z − 1

)
,

(2.13)

for all (x, y, z) ∈ T , which is generated from a tensor product of the Jacobi poly-
nomials

Rα,β,γ,δ
lmn (x, y, z) = R̃α,β,γ,δ

lmn (ξ, η, ζ)

= Jα,β
l (ξ)J1+α+β,γ

m (η)J2+α+β+γ,δ
n (ζ), ∀(ξ, η, ζ) ∈ Q.

(2.14)

By the orthogonality of the Jacobi polynomials and (2.7), we have that
(
Rα,β,γ,δ

lmn ,Rα,β,γ,δ
l′m′n′

)

ωα,β,γ,δ,T

=

∫∫∫

T

Rα,β,γ,δ
lmn (x, y, z)Rα,β,γ,δ

l′m′n′ (x, y, z)ω
α,β,γ,δ(x, y, z)dxdydz

=
1

26+3α+3β+2γ+δ

∫ 1

−1

Jα,β
l (ξ)Jα,β

l′ (ξ)̟α,β(ξ)dξ

×

∫ 1

−1

J1+α+β,γ
m (η)J1+α+β,γ

m′ (η)̟1+α+β,γ(η)dη

×

∫ 1

−1

J2+α+β+γ,δ
n (ζ)J2+α+β+γ,δ

n′ (ζ)̟2+α+β+γ,δ(ζ)dζ

=γα,βl γ1+α+β,γ
m γ2+α+β+γ,δ

n δll′δmm′δnn′ := γα,β,γ,δlmn δll′δmm′δnn′ ,

(2.15)
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where ̟a,b(t) = (1− t)a(1 + t)b is the Jacobi weight function, and

(2.16) γα,βl =
1

(2l + α+ β + 1)

Γ(l + α+ 1)Γ(l + β + 1)

Γ(l + 1)Γ(l + α+ β + 1)
.

Consequently,
{
Rα,β,γ,δ

lmn

}
are orthogonal in L2

ωα,β,γ,δ(T ), and clearly, by dropping
the requirement of being polynomials on T , the new basis is formed by a standard
tensor product of one-dimensional basis functions. In this paper, we will only use
the special case with α = β = γ = δ = 0, so the resultant system is orthogonal with
a uniform weight. For notational convenience, we shall omit the superscripts, and
simply denote

Rlmn(x, y, z) = R0,0,0,0
lmn (x, y, z)

= J0,0
l

( 2x

1− y − z
− 1

)
J1,0
m

( 2y

1− z
− 1

)
J2,0
n

(
2z − 1

)

= R̃lmn(ξ, η, ζ) = J0,0
l (ξ)J1,0

m (η)J2,0
n (ζ),

(2.17)

and the constant in (2.15) is

(2.18) γlmn = γ0,0l γ1,0m γ2,0n =
1

(2l+ 1)(2m+ 2)(2n+ 3)
.

2.3. Approximations by the rational basis functions. We now analyze the
approximations of functions in L2(T ) by the truncated series of the rational basis.
At this point, a natural question is whether this rational approximation on the
tetrahedron is as accurate as or better than the polynomial approximation? We
shall answer this question by performing error analysis in the original coordinates
of the tetrahedron, and by presenting illustrative numerical results. The difficulty
in obtaining error bounds in the original coordinates is that the collapsed coordi-
nate transform induces a coordinate singularity, similar to the polar and spherical
coordinate transforms. However, in polar and spherical geometries, one actually
prefers to write the equations in polar and spherical coordinates rather than the
original Cartesian coordinates, so it is natural to work in the “transformed” polar or
spherical coordinates. But for tetrahedral domains, one obviously prefers to work
with the original coordinates.

2.3.1. L2−projection errors. For any function u ∈ L2(T ), we write

u(x, y, z) =

∞∑

l=0

∞∑

m=0

∞∑

n=0

ûlmnRlmn(x, y, z).(2.19)

Setting

χα1,β1;α2,β2;α3,β3 = χα1,β1;α2,β2;α3,β3(ξ, η, ζ) := ̟α1,β1(ξ)̟α2,β2(η)̟α3,β3(ζ),

and v(ξ, η, ζ) = u(x, y, z), one verifies that v ∈ L2
χ0,0;1,0;2,0 (Q), and

u(x, y, z) = v(ξ, η, ζ) =

∞∑

l=0

∞∑

m=0

∞∑

n=0

v̂lmnR̃lmn(ξ, η, ζ),(2.20)

where {R̃lmn} are defined in (2.14), and

ûlmn =
1

γlmn

∫∫∫

T

u(x, y)Rlmn(x, y, z)dxdydz

=
1

26γlmn

∫∫∫

Q

v(ξ, η, ζ)R̃lmn(ξ, η, ζ)χ
0,0;1,0;2,0(ξ, η, ζ)dξdηdζ
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=
1

26γlmn

∫ 1

−1

J2,0
n (ζ)̟2,0(ζ)

∫ 1

−1

J1,0
m (η)̟1,0(η)

∫ 1

−1

v(ξ, η, ζ)J0,0
l (ξ)dξdηdζ

= v̂lmn.

Define the finite-dimensional space

(2.21) ℜLMN := span
{
Rlmn : 0 ≤ l ≤ L, 0 ≤ m ≤M, 0 ≤ n ≤ N

}
.

Define the truncated series

ΠLMNu(x, y, z) =

L∑

l=0

M∑

m=0

N∑

n=0

ûlmnRlmn(x, y, z) ∈ ℜLMN ,

and clearly,
∫∫∫

T

(
ΠLMNu− u

)
Φ dxdydz = 0, ∀Φ ∈ ℜLMN .(2.22)

For a more precise description of the error, we define the Jacobi weighted space
for any q, r, s ∈ N,

Hq,r,s(T ) =

{
u ∈ L2(T ) : ‖u‖Hq,r,s(T ) :=

(
‖u‖2T + |u|2Hq,r,s(T )

) 1
2

<∞

}
,

where the semi-norm is defined by

|u|Hq,r,s(T ) =
(
‖∂rxu‖

2
ωq,q,0,0,T +

r∑

j=0

‖∂jy(∂y − ∂x)
r−ju‖2ωj,r−j,r,0,T

+
s∑

j=0

s−j∑

k=0

‖∂jz(∂z − ∂y)
k(∂z − ∂x)

s−j−ku‖2ωj,s−j−k,k,s,T

) 1
2

.

Note that the weight functions in the above norms are uniformly bounded, so we
have the usual Sobolev space Hr(T ) ⊂ Hr,r,r(T ).

Theorem 2.1. For any u ∈ Hq,r,s(T ) with integers q, r, s ≥ 0, we have

∥∥ΠLMNu− u
∥∥
T
. L−q

∥∥∂qxu
∥∥
ωq,q,0,0,T

+M−r
r∑

j=0

∥∥∂jy(∂y − ∂x)
r−ju

∥∥
ωj,r−j,r,0,T

+N−s
s∑

j=0

s−j∑

k=0

∥∥∂jz(∂z − ∂y)
k(∂z − ∂x)

s−j−ku
∥∥
ωj,s−j−k,k,s,T

.

(2.23)

In particular, we denote ΠM = ΠMMM . Then for any u ∈ Hr(T ) with integer

r ≥ 0,
∥∥ΠMu− u

∥∥
T
.M−r|u|Hr(T ),(2.24)

where the semi-norm | · |Hr(T ) is defined by

|u|Hr(T ) =




s∑

j=0

s−j∑

k=0

∥∥∂jz∂ky∂r−j−k
x u

∥∥2
T




1
2

.

We postpone the proof of this theorem to Appendix B.
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2.3.2. Quadrature and interpolation on the tetrahedron. We now define
the quadrature and interpolation on tetrahedron, which are essential for numerical
integrations/differentiations in spectral approximations, and also for the introduc-
tion of the nodal basis. In view of the singularity of the coordinate transform, it is
appropriate to use Gauss-Lobatto points in ξ−direction, and Gauss-Radau points
in the other two directions.

Let {ξl}
M
l=0 , {ηm}

M
m=0 and {ζn}

M
n=0 be the roots of (1−ξ

2)J1,1
M−1(ξ), (1+η)J

1,1
M (η)

and (1 + ζ)J2,1
M (ζ), respectively. Further let

ωξ
l =

2

M(M + 1)
[
J0,0
M (ξl)

]2 , 0 ≤ l ≤M,

ωη
m =

2(1− ηm)

(M + 1)(M + 2)
[
J0,0
M+1(ηm)

]2 , 0 ≤ m ≤M,

ωζ
n =

4(1− ζn)

(M + 1)(M + 3)
[
J1,0
M+1(ζn)

]2 , 0 ≤ n ≤M.

Namely, {ξl, ω
ξ
l }

M
l=0 are the nodes and weights of the Legendre-Gauss-Lobatto quad-

rature, {ηm, ω
η
m}Mm=0 and {ζn, ω

ζ
n}

M
n=0 are the nodes and weights of the Jacobi-

Gauss-Radau quadrature with the weight functions ̟1,0(η) and ̟2,0(ζ), respec-
tively.

The quadrature grids on T are defined as

xlmn =
1 + ξl
2

1− ηm
2

1− ζn
2

, ylmn =
1 + ηm

2

1− ζn
2

, zlmn =
1 + ζn

2
,

0 ≤ l,m, n ≤M.
(2.25)

Some samples of the points are depicted in Figure 2.2 (left). We further define the
discrete inner product on T by

(u, v)M,T :=
1

64

M∑

l=0

M∑

m=0

M∑

n=0

u(xlmn, ylmn, zlmn)v(xlmn, ylmn, zlmn)

× ωξ
l ω

η
mω

ζ
n, ∀u, v ∈ C(T ),

(2.26)

which is exact, i.e., (u, v)M,T = (u, v)T , for any u, v ∈ ℜM−1,M,M . Further, we

define the rational interpolation operator. For any u ∈ C(T ), the interpolant
IIMu ∈ ℜMMM such that

(IIMu)(xlmn, ylmn, zlmn) = u(xlmn, ylmn, zlmn), 0 ≤ l,m, n ≤M.(2.27)

Finally, we conclude this section with a theorem on the error estimate for the
rational interpolation IIM , whose proof will be postponed to Appendix C.

Theorem 2.2. For any u ∈ Hr(T ), with integers r ≥ 3, we have
∥∥IIMu− u

∥∥
T
.M−r|u|Hr(T ).(2.28)

3. Rational spectral methods on the tetrahedron

Consider the modified Helmholtz equation on the tetrahedron T :

(3.1) −∆u+ γu = f in T ; u|∂T = 0, γ ≥ 0.

The variational formulation of (3.1) is to find u ∈ H1
0 (T ) such that

(3.2) a(u, v) :=
(
∇u,∇v

)
T
+ γ

(
u, v

)
T
=

(
f, v

)
T
, ∀v ∈ H1

0 (T ),
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(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(0, 0, 0)

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

(0, 0, 0)

Figure 2.2. Distributions of the collocation points (M = 10).
Left: the transformed points given by (2.25). Right: Legendre-
Gauss-Lobatto nodes along all the ξ, η and ζ directions, which will
be used to define the nodal basis functions in Section 4.

which, thanks to the Lax-Milgram lemma and the Poincaré inequality, admits a
unique solution satisfying

(3.3) ‖∇u‖T + ‖u‖T . ‖f‖T .

Denote by ℜM := ℜMMM (cf. (2.21)), and define X0
M = ℜM ∩ H1

0 (T ). It is

clear that the transform (2.2) maps X0
M in T to

(
P0
M (I)

)3
in Q. The rational

spectral-Galerkin approximation to (3.2) is to find uM ∈ X0
M such that

(3.4) a(uM , ϕ) = (IIMf, ϕ)T , ∀ϕ ∈ X0
M ,

which has a unique solution satisfying (3.3) with uM and IIMf in place of u and
f, respectively.

3.1. Error estimates. By a standard argument, one derives from (3.2) and (3.4)
that

‖uM − u‖H1(T ) . inf
vM∈X0

M

‖vM − u‖H1(T ) +
∥∥IIMf − f

∥∥
L2(T )

.
∥∥Π1,0

M − u
∥∥
H1(T )

+
∥∥IIMf − f

∥∥
L2(T )

,
(3.5)

where Π1,0
M : H1

0 (T ) → X0
M is the H1

0 -orthogonal projection, defined by

(3.6)
(
∇(Π1,0

M u− u), ∇Φ
)
T
= 0, ∀Φ ∈ X0

M .

Hence, to analyze the error, we need the following result.

Lemma 3.1. For any u ∈ H1
0 (T ) ∩Hr(T ) with r ≥ 1,

‖Π1,0
M u− u‖µ,T .Mµ−r|u|Hr(T ), µ = 0, 1.(3.7)

The argument for this proof is quite similar to that of Theorem 3.2 in [22].
Basically, it is essential to prove the estimate with µ = 1, and the case with µ = 0
can be shown by a duality argument. In contrast with the L2−estimate, after we
transform ‖Π1,0

M u− u‖1,T to the corresponding norm in Q, some of the norms may
involve Jacobi weights with negative integer parameters −1 or −2. Hence, some
one-dimensional generalized Jacobi approximation results (cf. [9, 10]) have to be
used to handle the singular weights. Here, we omit the lengthy proof.

We now obtain the following theorem on the error estimates of the rational
spectral-Galerkin approximation (3.4).
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Theorem 3.1. Let u and uM be the solutions of (3.2) and (3.4), respectively. If

u ∈ H1
0 (T ) ∩Hr(T ) and f ∈ Hs(T ) with r ≥ 1 and s ≥ 3, then we have

(3.8) ‖uM − u‖Hµ(T ) .Mµ−r|u|Hr(T ) +M−s|f |Hs(T ), µ = 0, 1.

Proof. Then, applying Lemma 3.1 and Theorem 2.2 to the above, we obtain im-
mediately (3.8) with µ = 1. The result for µ = 0 can then be derived by using a
standard duality argument. �

Remark 3.1. Alternative to (3.4), we can also consider the following rational spectral-
Galerkin approximation with numerical integration: find uM ∈ X0

M such that

(3.9) aM (uM , ϕ) := γ(uM , ϕ)M,T + (∇uM ,∇ϕ)M,T = (f, ϕ)M,T , ∀ϕ ∈ X0
M ,

which is suitable for the approximation on arbitrary tetrahedron. In fact, it can be
easily shown that Theorem 3.1 holds for (3.9) as well.

Remark 3.2. The optimal results for polynomial approximation on simplices are
established in [4]. However, the results in [4] are expressed in terms of Sturm-
Liouville operator on simplices or in terms of polynomial expansion coefficients. It
is not a trivial task (cf. [12], [17]) to bound these terms by simple derivative terms
as presented here.

3.2. Modal basis functions. In order to treat non-homogeneous boundary con-
ditions and/or to enforce continuity across the interfaces in a tetrahedral spectral-
element method, we need to construct basis functions for

(3.10) XLMN = ℜLMN ∩ C(T ) ∩H1(T ).

For this purpose, we first point out that under the mapping (2.2)-(2.3), the space
H1(T ) corresponds to the weighted space

H̃1(Q) :=
{
v ∈ L2

χ0,0;1,0;2,0 (Q) : ∂ξv ∈ L2
χ0,0;−1,0;0,0(Q), ∂ηv ∈ L2

χ0,0;1,0;0,0(Q)

and ∂ζv ∈ L2
χ0,0;1,0;2,0 (Q)

}
,

with the norm

‖v‖H̃1(Q) =
(
‖∂ξv‖

2
χ0,0;−1,0;0,0 + ‖∂ηv‖

2
χ0,0;1,0;0,0 + ‖∂ζv‖

2
χ0,0;1,0;2,0 + ‖v‖2χ0,0;1,0;2,0

) 1
2

.

One verifies the equivalence by using (2.4) and (2.9)–(2.10):

‖v‖H̃1(Q) . ‖u‖H1(T ) . ‖v‖H̃1(Q).

Now it can be readily verified that under the transform (2.2), XLMN corresponds
to

X̃LMN :=
{
Ψ ∈ PL(Iξ)× PM (Iη)× PN (Iζ) :

∂ξΨ(ξ, 1, ζ) = ∂ξΨ(ξ, η, 1) = ∂ηΨ(ξ, η, 1) = 0
}
.

Meanwhile, we recall for the following C0−model basis for PL(Iξ) × PM (Iη) ×
PN (Iζ) :

(3.11) Ψlmn(ξ, η, ζ) := ψl(ξ)ψm(η)ψn(ζ), 0 ≤ l ≤ L, 0 ≤ m ≤M, 0 ≤ n ≤ N,

where

(3.12) ψk(z) =






1 + z

2
=

1

2

(
J0,0
0 (z) + J0,0

1 (z)
)
= J0,−1

1 (z), k = 0,

1− z

2
=

1

2

(
J0,0
0 (z)− J0,0

1 (z)
)
= −J−1,0

1 (z), k = 1,

J0,0
k (z)− J0,0

k−2(z) =
2(2k − 1)

k − 1
J−1,−1
k (z), k ≥ 2.
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Observe that for any 0 ≤ l ≤ L, 1 ≤ m ≤M, 1 ≤ n ≤ N ,

∂ξΨlmn(ξ, 1, ζ) = ∂ξΨlmn(ξ, η, 1) = ∂ηΨlmn(ξ, η, 1) = 0.

Hence, by adding

Ψ−1,−1,0(ξ, η, ζ) := 1× 1× ψ0(ζ) ∈ X̃LMN ,

Ψ−10n(ξ, η, ζ) := 1× ψ0(η)ψn(ζ) ∈ X̃LMN , 1 ≤ n ≤ N,
(3.13)

we have that

(3.14) X̃LMN = span
{
Ψlmn(ξ, η, ζ) : (l,m, n) ∈ ΥLMN

}
,

where the index set

ΥLMN :=
{
(l,m, n) : 0 ≤ l ≤ L, 1 ≤ m ≤M, 1 ≤ n ≤ N

}

∪
{
(−1, 0, n) : 0 ≤ n ≤ N

}
∪
{
(−1,−1, 0)

}
.

(3.15)

Let Φlmn(x, y, z) = Ψlmn(ξ, η, ζ) (under the mapping (2.2)–(2.3)), and

(3.16) XLMN = span
{
Φlmn(x, y, z) : (l,m, n) ∈ ΥLMN

}
.

Then {Φlmn}(l,m,n)∈ΥLMN
forms a rational C0−basis of H1(T ). Moreover, as in

the p−version of finite elements, we can split this modal basis into interior and
boundary modes (including vertex, edge and face modes). All interior modes are
zero on the tetrahedron boundary, and the vertex modes have a unit magnitude
at one vertex and are zero at all other vertices, while the edge modes only have
magnitude along one edge, and the face modes only have magnitude along one face.

• Interior modes:

Φlmn(x, y, z) = Ψlmn(ξ, η, ζ), 2 ≤ l ≤ L, 2 ≤ m ≤M, 2 ≤ n ≤ N ;(3.17)

• Face modes:






x+ y + z = 1 (ξ = 1) : Φ0mn(x, y, z) = Ψ0mn(ξ, η, ζ), 2 ≤ m ≤M, 2 ≤ n ≤ N,

x = 0 (ξ = −1) : Φ1mn(x, y, z) = Ψ1mn(ξ, η, ζ), 2 ≤ m ≤M, 2 ≤ n ≤ N,

y = 0 (η = −1) : Φl1n(x, y, z) = Ψl1n(ξ, η, ζ), 2 ≤ l ≤ L, 2 ≤ n ≤ N,

z = 0 (ζ = −1) : Φlm1(x, y, z) = Ψlm1(ξ, η, ζ), 2 ≤ l ≤ L, 2 ≤ m ≤M ;

(3.18)

• Edge modes:





x+ y + z = 1, y = 0
(ξ = 1, η = −1) : Φ01n(x, y, z) = Ψ01n(ξ, η, ζ), 2 ≤ n ≤ N,

x+ y + z = 1, x = 0
(η = 1) : Φ−10n(x, y, z) = Ψ−10n(ξ, η, ζ), 2 ≤ n ≤ N,

x+ y + z = 1, z = 0
(ξ = 1, ζ = −1) : Φ0m1(x, y, z) = Ψ0m1(ξ, η, ζ), 2 ≤ m ≤M,

x = y = 0 (ξ = η = −1) : Φ11n(x, y, z) = Ψ11n(ξ, η, ζ), 2 ≤ n ≤ N,

x = z = 0 (ξ = ζ = −1) : Φ1m1(x, y, z) = Ψ1m1(ξ, η, ζ), 2 ≤ m ≤M,

y = z = 0 (η = ζ = −1) : Φl11(x, y, z) = Ψl11(ξ, η, ζ), 2 ≤ l ≤ L;

(3.19)
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• Vertex modes:




x = y = z = 0
(ξ = η = ζ = −1) : Φ111(x, y, z) = Ψ111(ξ, η, ζ),

x = 1, y = z = 0
(ξ = 1, η = ζ = −1) : Φ011(x, y, z) = Ψ011(ξ, η, ζ),

y = 1, x = z = 0
(η = 1, ζ = −1) : Φ−101(x, y, z) = Ψ−101(ξ, η, ζ),

z = 1, x = y = 0
(ζ = 1) : Φ−1,−1,0(x, y, z) = Ψ−1,−1,0(ξ, η, ζ).

(3.20)

In order to enforce C0-continuity between adjacent tetrahedral elements, we re-
quired that L = M = N . Accordingly, we denote XM = XMMM and likewise for

X̃M and ΥM .

3.3. Implementations. We now examine the linear system associated with the
spectral-Galerkin approximation (3.4).

For convenience, we shall make use of the following functions and identities:

ψ0
l (ξ) := J0,0

l (ξ)− J0,0
l−2(ξ)

=
l + 1

2l + 1
J1,0
l (ξ)−

l

2l + 1
J1,0
l−1(ξ)−

l − 1

2l− 3
J1,0
l−2(ξ) +

l − 2

2l − 3
J1,0
l−3(ξ),

ψ1
l (ξ) := ∂ξψ

0
l (ξ) = (2l − 1)J0,0

l−1(ξ) = lJ1,0
l−1(ξ) − (l − 1)J1,0

l−2(ξ),

ψ2
l (ξ) := (1 + ξ)∂ξψ

0
l (ξ) = lJ0,0

l (ξ) + (2l− 1)J0,0
l−1(ξ) + (l − 1)J0,0

l−2(ξ)

=
l(l + 1)

2l+ 1
J1,0
l (ξ) +

l(l+ 1)

2l + 1
J1,0
l−1(ξ) −

(l − 2)(l − 1)

2l− 3
J1,0
l−2(ξ)

−
(l − 2)(l − 1)

2l − 3
J1,0
l−3(ξ),

ψ3
m(η) :=

1

1− η
ψ0
m(η) = −J1,0

m−1(η) − J1,0
m−2(η),

ψ4
n(ζ) := (1− ζ)∂ζψ

0
n(ζ) = −nJ0,0

n (ζ) + (2n− 1)J0,0
n−1(ζ) − (n− 1)J0,0

n−2(ζ),

ψ5
n(ζ) := (1− ζ)ψ0

l (ζ) = −
n+ 1

2n+ 1
J0,0
n+1(ζ) + J0,0

n (ζ) +
2n− 1

(2n+ 1)(2n− 3)
J0,0
n−1(ζ)

− J0,0
n−2(ζ) +

n− 2

2n− 3
J0,0
n−3(ζ).

It is easy to verify that

Φlmn(x, y, z) = ψ0
l (ξ)× ψ0

m(η)×̟−1,0(ζ)ψ5
n(ζ),

∂xΦlmn(x, y, z) = 8 ψ1
l (ξ)× ψ3

m(η)×̟−1,0(ζ)ψ0
n(ζ),

∂yΦlmn(x, y, z) = 4 ψ2
l (ξ)× ψ3

m(η)×̟−1,0(ζ)ψ0
n(ζ)

+ 4 ψ0
l (ξ)× ψ1

m(η)×̟−1,0(ζ)ψ0
n(ζ),

∂zΦlmn(x, y, z) = 4 ψ2
l (ξ)× ψ3

m(η)×̟−1,0(ζ)ψ0
n(ζ)

+ 2 ψ0
l (ξ)× ψ2

m(η)×̟−1,0(ζ)ψ0
n(ζ) + 2 ψ0

l (ξ) × ψ0
m(η)×̟−1,0(ζ)ψ4

n(ζ).

Let

Aij = (aijmn)2≤m,n≤M , aijmn = (ψi
m, ψ

j
n)I , 0 ≤ i, j ≤ 5,

Bij = (bijmn)2≤m,n≤M , bijmn = (ψi
m, ψ

j
n)̟1,0,I , 0 ≤ i, j ≤ 3.
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Then for any 2 ≤ l,m, n, l′,m′, n′ ≤M ,

(Φlmn,Φl′m′n′)T =
1

64
a00ll′ b

00
mm′ a55nn′ ,

(∂xΦlmn, ∂xΦl′m′n′)T = a11ll′ b
33
mm′ a00nn′ ,

(∂yΦlmn, ∂yΦl′m′n′)T =
1

4

(
a22ll′ b

33
mm′ + a00ll′ b

11
mm′ + a20ll′ b

31
mm′ + a02ll′ b

13
mm′

)
a00nn′ ,

(∂zΦlmn, ∂zΦl′m′n′)T =
1

4
a22ll′ b

33
mm′ a00nn′ +

1

16
a00ll′ b

22
mm′ a00nn′ +

1

16
a00ll′ b

00
mm′ a44nn′

+
1

8
a20ll′ b

32
mm′ a00nn′ +

1

8
a02ll′ b

23
mm′ a00nn′ +

1

8
a20ll′ b

30
mm′ a04nn′

+
1

8
a02ll′ b

03
mm′ a40nn′ +

1

16
a00ll′ b

20
mm′ a04nn′ +

1

16
a00ll′ b

02
mm′ a40nn′ .

Set

uM (x, y, z) =

M−2∑

l=0

M−2∑

m=0

M−2∑

n=0

û(M−1)((M−1)l+m)+nΦl+2,m+2,n+2(x, y, z),

f(M−1)((M−1)l+m)+n = (IIMf,Φl+2,m+2,n+2)T , 0 ≤ l,m, n ≤M − 2,

and

û = (û0, û1, · · · , û(M−1)3−1)
tr, f̂ = (f0, f1, · · · , f(M−1)3−1)

tr.

Further denote by ⊗ the tensor product of matrices, i.e., A⊗B = (ai,jB)0≤i,j≤M−2.
Then the linear system resulted from (3.4) becomes

(S+ γM)û = f̂ ,(3.21)

where

M =
1

64
A00 ⊗B00 ⊗A55,

and

S = A11 ⊗B33 ⊗A00

+
1

4

(
A22 ⊗B33 +A00 ⊗B11 +A02 ⊗B13 +A20 ⊗B31

)
⊗A00

+
{(1

4
A22 ⊗B33 +

1

16
A00 ⊗B22 +

1

8
A02 ⊗B32 +

1

8
A20 ⊗B23

)
⊗A00

+
1

16
A00 ⊗

(
B00 ⊗A44 +B02 ⊗A40 +B20 ⊗A04

)

+
1

8
A02 ⊗B03 ⊗A40 +

1

8
A20 ⊗B30 ⊗A04

}
.

The nonzero entries of these matrices can be exactly evaluated. The structures of
the mass matrix M and the stiffness matrix S are depicted in Figure 3.2. Therefore,
the linear system can be effectively solved by using an efficient sparse solver such
as SPARSEPACK.

Alternatively, one may attempt to use a suitable iterative solver. As is typical in
a spectral method, the matrix S+γM is usually very ill conditioned so it is necessary
to construct a suitable preconditioner. We now examine the condition numbers of
the stiffness and mass matrices as well as the effect of diagonal preconditioner.

For this purpose, let Λ =
(
diag(S)

)−1/2
. We plot below the condition numbers of

the matrices S, S̃ = ΛSΛ, Tγ := S+ γM and T̃γ = ΛTγΛ for various M and
γ = 104.
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Figure 3.1. Condition numbers of S (marked by ’o’), S + γM
(marked by ’⋄’), ΛSΛ (marked by ’*’) and ΛSΛ+γΛMΛ (marked
by ’·’) against various M . The accompanied dashed lines are the
reference curves for cM5.8, cM5.1, cM4.2 and cM4.0.

We observe from the figure that there are visible improvements for the order of
the condition numbers versusM after applying the diagonal preconditioner. How to
construct a simple and optimal preconditioner in this case is still an open question.
We refer to [13] for an attempt using finite difference.
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Figure 3.2. The structure of the mass matrix (left), and the stiffness
matrix (right), where M = 8.

3.4. Numerical results. To illustrate the convergence rate of our rational ap-
proximation, we implemented the rational approximation to the model equation
(3.1) with two exact solutions and we report our numerical results below.

For a given M , we denote the discrete L2− error by

(3.22) EM =
√
(uM − u, uM − u)M,T .

Example 1. We consider the equation (3.1) with γ = 0 and the exact solution:

(3.23) u(x, y) = xyz(ex+y+z − e), (x, y, z) ∈ T .

Example 2. We consider the equation (3.1) with γ = 0 and the exact solution:

(3.24) u(x, y) = sin
πx

2
sin

πy

2
sin

πz

2
sin

π(1 − x− y − z)

2
, (x, y, z) ∈ T .

Since u ∈ Hr(T ) for any r > 0, Theorem 3.1 indicates that the error will converge
faster than any algebraic order. Indeed, as shown in Figure 3.3 (left), the errors
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decay exponentially, typical for a spectral approximation to an analytic function.
Hence, our numerical results are in good agreement with the error estimates in
Theorem 3.1.
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Figure 3.3. Maximum pointwise errors (marked by ’o’) and
L2−errors (marked by ’⋄’) against various M. Left: example 1;
Right: example 2.
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Figure 3.4. Maximum pointwise errors (marked by ’o’) and
L2−errors (marked by ’⋄’) against various M for example 3 with
α = 4.3, β = 3.4 and δ = 2.5. The dashed and the dash-dot
lines are reference curves for error = cM−5 and error = cM−5.5,
respectively.

Example 3. We consider the equation (3.1) with γ = 1 and the exact solution:

(3.25) u(x, y) = xαyβzδ(1− x− y), ∀ (x, y, z) ∈ T , α, β, δ > 0.

If α, β, δ ∈ N, we expect that our numerical solution converges exponentially to the
exact solution. While for α, β and/or δ being non-integer, we can also expect a
convergence rate corresponding to the regularity of the exact solution and the right
hand side term. In Figure 3.4, we plot the maximum and L2−errors v.s. various
M with α = 4.3, β = 3.4 and δ = 2.5 in the semi-logarithm scale. The algebraic
convergence rate is evidenced by the near straight lines in the plot.

4. Extensions and discussions

We introduce in this section a set of nodal basis, which is more computation-
ally practical for the element methods. We also briefly discuss how to extend
the previous single domain implementation to multi-domain cases. These serve
as important ingredients towards a spectral/hp element method on unstructured
tetrahedral meshes.
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4.1. Nodal basis. It is more practical to use a nodal basis. Different from the
quadrature on T , where the Gauss-Radau points are used, we adopt the Gauss-
Lobatto points on Q in all three directions, which are more suitable for imposing
continuity between tetrahedral elements.

Denote by 1 = ξL0 > ξL1 > · · · > ξLL = −1 the L + 1 roots of the polynomial

(1 − ξ2)J1,1
L−1(ξ). The Lagrange basis polynomials at the Legendre-Gauss-Lobatto

points are

ϕL
l (ξ) =

∏

0≤k≤N

k 6=l̃

ξ − ξLk
ξL
l̃
− ξk

=
1

2N

(1− ξ2)J1,1
L−1(ξ)

(ξL
l̃
− ξ)J0,0

L (ξL
l̃
)
,

where l̃ = mod (l − 1, L+ 1). Besides, we use the notation ϕL
−1(ξ) ≡ 1.

Further denote ΨLMN
lmn (ξ, η, ζ) = ϕL

l (ξ)ϕ
M
m (η)ϕN

n (ζ). By the same argument as
for the modal basis in Section 3, one readily finds that

X̃LMN =
{
Ψ ∈ PL(Iξ)× PM (Iη)× PN (Iζ) :

∂ξΨ(ξ, 1, ζ) = ∂ξΨ(ξ, η, 1) = ∂ηΨ(ξ, η, 1) = 0
}

= span
{
ΨLMN

lmn (ξ, η, ζ) : (l,m, n) ∈ ΥLMN

}
.

Recalling that XLMN corresponds to X̃LMN under the coordinate transform (2.2),
we finally derive the nodal basis of the approximation space XLMN ,

(4.1) XLMN = span
{
ΦLMN

lmn (x, y, z) : (l,m, n) ∈ ΥLMN

}
,

where ΦLMN
lmn (x, y, z) = ΨLMN

lmn (ξ, η, ζ) under the transform (2.2).
It is worthwhile to note that the nodal basis functions in (4.1) are constructed

by the Legendre-Gauss-Lobatto Lagrange basis polynomials for all the ξ-, η- and
ζ-directions. Of course, one can also use different types of Lagrange polynomials
for different directions, just in the way like the interpolation operator IIM has been

defined. Nevertheless, owing to the essential continuity condition of X̃LMN , one
should use only the Jacobi-Gauss-Lobatto Lagrange basis polynomials instead of
the Jacobi-Gauss-Radau ones for the construction of the nodal basis functions.

4.2. Multi-domain rational approximations. Let Ω be an open bounded do-
main. Consider the Poisson type equation:

(4.2) −∆u+ γu = f in Ω; u|∂Ω = 0, γ ≥ 0.

The variational formulation of (4.2) is to find u ∈ H1
0 (Ω) such that

(4.3) a(u, v) =
(
∇u,∇v

)
Ω
+ γ(u, v)Ω = (f, v)Ω, ∀v ∈ H1

0 (Ω).

We now briefly describe how to setup a multi-domain spectral-element method
for (4.3), for more details in this regard, we refer to the books [2, 15]. To simplify
the presentation, we shall restrict ourselves to polygonal domains.

Let Ω be an open bounded polygonal domain which can be decomposed as fol-
lows:

(4.4) Ω̄ = ∪K
k=1Ω̄k, Ωi ∩ Ωj = Ø, i 6= j,

where each Ωk is either a tetrahedron or a hexahedron. Let Fk be a bijection of

class C∞ which maps
¯̂
Ω onto Ω̄k, where Ω̂ is either the reference tetrahedron T if

Ωk is a tetrahedron or the reference cube Q if Ωk is a hexahedron. We denote

(4.5) X̃k
M = {vM = v̂M ◦ F−1

k : v̂M ∈ ℜMMM (T )} if Ωk is a tetrahedron;
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or

(4.6) X̃k
M = {vM = v̂M ◦ F−1

k : v̂M ∈ [PM (I)]3} if Ωk is a hexahedron.

Setting

(4.7) X̃M = {vM ∈ H1(Ω) : vM |Ωk
∈ X̃k

M , 1 ≤ k ≤ K}, X̃0
M = X̃M ∩H1

0 (Ω),

the combined rational function-Legendre spectral-element approximation to (4.3)

is: to find uM ∈ X̃0
M such that

(4.8)

K∑

k=1

(
γ(uM , vM )Ωk

+ (∇uM ,∇vM )Ωk

)
=

K∑

k=1

(IIk
Mf, vM )Ωk

, ∀vM ∈ X̃0
M ,

where IIk
Mf ∈ Xk

M such that IIk
Mf(x

k
lmn, y

k
lmn, z

k
lmn) = f(xklmn, y

k
lmn, z

k
lmn), 0 ≤

l,m, n ≤M , and (xklmn, y
k
lmn, z

k
lmn) = Fk(x̂

k
lmn, ŷ

k
lmn, ẑ

k
lmn) with (x̂klmn, ŷ

k
lmn, ẑ

k
lmn),

0 ≤ l,m, n ≤M , being the collocation points in the reference tetrahedron or refer-
ence cube.

Then, using the standard error estimates of the projection and interpolation
operators for the Legendre approximation (see, for instance, [1]) and the error esti-
mates of the projection and interpolation operators for the rational approximation
established in Section 2, then following procedure similar to that in Section 6.2 of
[2], it is expected that the following result can be proved:

Proposition 4.1. Assuming that the solution of (4.3) u ∈ H1
0 (Ω) and u|Ωk

∈
Hr(Ωk) for 1 ≤ k ≤ K with r ≥ 1, and that f |Ωk

∈ Hs(Ωk) for 1 ≤ k ≤ K with

s ≥ 3. Then, the approximate solution uM of (4.8) satisfies the following error

estimate:

(4.9) ‖u− uM‖1,Ω .

K∑

k=1

(
M1−r‖u‖Hr(Ωk) +M−s‖f‖Hs(Ωk)

)
.

Remark 4.1. It can be shown that Proposition 4.1 holds if we replace the inner
product in (4.8) in each subdomain by the discrete inner product (cf. Remark 3.1).

4.3. Concluding remarks. We introduced in this paper a rational spectral ap-
proximation on tetrahedron. The basis functions were obtained from tensor prod-
uct of one-dimensional polynomials on the cube through the collapsed coordinate
transform (2.2). We presented some error estimates with the norms expressed in the
original coordinates on the tetrahedron, which are as accurate as the tensorial poly-
nomial approximations. Furthermore, these rational basis functions appeared to be
easier to deal with, both in analysis and in practice, than the Koornwinder-Dubiner
polynomial basis functions. Hence, this rational approximation potentially provides
a good alternative to the polynomial approximation for tetrahedral domains. We
provided the implementation details for the rational spectral-Galerkin approxima-
tion to some model equations, and showed that the resulted linear system is sparse
and can be efficiently solved, for example, by a sparse solver. We also gave illus-
trative numerical results which are essentially in agreement with the theoretical
estimates.

This work is a first step towards developing a spectral-element method for three-
dimensional complex geometries using rational functions on tetrahedron. The fun-
damental approximation results established here can be used to derive error esti-
mates for the rational interpolations which are essential for a complete analysis for
the spectral-element method using rational functions on tetrahedron.
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Appendix A. One dimensional approximation results

We derive and refine in this appendix some one-dimensional results on Jacobi
polynomial approximations and Jacobi-Gauss-type interpolation approximations,
which serve as important tools for error analysis of rational approximation on the
tetrahedron T .

A.1. Jacobi polynomials. The classical Jacobi polynomials, denoted by Jα,β
k (ζ),

ζ ∈ I with α, β > −1, are mutually orthogonal with respect to the Jacobi weight
function ̟α,β(ζ) = (1− ζ)α(1 + ζ)β :

∫ 1

−1

Jα,β
n (ζ)Jα,β

m (ζ)̟α,β(ζ)dζ =
∥∥Jα,β

n

∥∥2
̟α,β ,I

δmn,(A.1)

where δmn is the Kronecker symbol, and

(A.2)
∥∥Jα,β

n

∥∥2
̟α,β ,I

=
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
.

Notice that the classical Jacobi polynomials are only defined for α, β > −1, while
in a recent work [9, 22], the definition of Jacobi polynomials are extended to cases
where α and/or β are negative integers through the following formula,

Jα,β
n (ζ) =





Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

(
ζ − 1

2

)−α

J−α,β
n+α (ζ), α ∈ Z

−,

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

(
ζ + 1

2

)−β

Jα,−β
n+β (ζ), β ∈ Z

−.

The generalized Jacobi polynomials keep the orthogonality (A.1)-(A.2) of the classic
Jacobi polynomials. We refer to [22] for more properties of this kind of generalized
Jacobi polynomials.

A.2. Jacobi polynomial approximations. We define the orthogonal projection

πα,β
N : L2

̟α,β (I) → PN (I) ∩ L2
̟α,β (I) by

(A.3)

∫ 1

−1

(
πα,β
N w − w

)
φ̟α,βdζ = 0, ∀φ ∈ PN (I) ∩ L2

̟α,β(I).

Note that for α, β > −1, we have PN (I) ∩ L2
̟α,β(I) = PN(I), but when α and/or

β are negative integers, suitable boundary conditions are involved. For example,
PN(I) ∩ L2

̟−1,−1(I) = P0
N(I) = PN(I) ∩H1

0 (I).
To describe the approximation errors, we introduce the non-uniformly weighted

Sobolev space

(A.4) Bσ
α,β(I) :=

{
w ∈ L2

̟α,β (I) : w(k)(ζ) ∈ L2
̟α+k,β+k(I), 0 ≤ k ≤ σ

}
, ∀ σ ∈ N,

equipped with the norm and semi-norm

(A.5) ‖w‖Bσ
α,β

(I) :=
( σ∑

k=0

∥∥w(k)
∥∥2

̟α+k,β+k,I

) 1
2

, |w|Bσ
α,β

(I) :=
∥∥w(σ)

∥∥
̟α+σ,β+σ,I

.

Let I be the identity operator. It is obvious that for any N,M ∈ N and N ≥M,

the projection operator πα,β
N satisfies

∥∥πα,β
M w

∥∥
̟α,β ,I

≤
∥∥πα,β

N w
∥∥
̟α,β ,I

≤
∥∥w

∥∥
̟α,β ,I

, ∀w ∈ L2
̟α,β(I),(A.6)

∥∥(πα,β
N − I

)
w
∥∥
̟α,β ,I

≤
∥∥(πα,β

M − I
)
w
∥∥
̟α,β ,I

≤
∥∥w

∥∥
̟α,β ,I

, ∀w ∈ L2
̟α,β (I).(A.7)

Another property is as follows.
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Lemma A.1. If w ∈ L2
̟α,β (I) and w(σ) ∈ L2

̟α+2σ,β+2σ(I) with α, β > −1 and

integer N ≥ σ > 0, then we have

(A.8)
∥∥(πα,β

N − I
)
w
∥∥
̟α,β ,I

.
∥∥w(σ)

∥∥
̟α+2σ,β+2σ,I

.

Proof. Since (A.8) for σ = 1 has already been proved in [22], it suffices to prove
that for any 0 ≤ l ≤ σ,

∥∥(πδ,γ
l − I)w

∥∥
̟δ,γ ,I

.
∥∥(πδ+2,γ+2

l−1 − I)w′
∥∥
̟δ+2,γ+2,I

,(A.9)

if w ∈ L2
̟δ,γ (I) and w

′ ∈ L2
̟δ+2,γ+2(I) with δ, γ > −1.

Integrating by parts yields that for 0 ≤ k ≤ l,
((
πδ,γ
l w − w

)
′,
(
Jδ,γ
k

)′)
̟δ+1,γ+1,I

=
(
πδ,γ
l w − w,−̟−δ,−γ

(
̟δ+1,γ+1

(
Jδ,γ
k

)′)′)
̟δ,γ ,I

=
(
πδ,γ
l w − w, k(k + δ + γ + 1)Jδ,γ

k

)
̟δ,γ ,I

= 0,

where we use the Sturm-Liouville equation for Jacobi polynomials to derive the

second equality sign. Noting that (πδ,γ
l w)′ is a polynomial of degree l − 1, we

readily find that
(
πδ,γ
l w

)
′ = πδ+1,γ+1

l−1 w′.

Meanwhile, since πδ,γ
l recovers any polynomial of degree no greater than l, it holds

that

w − πδ,γ
l w = w − πδ,γ

l w + πδ,γ
l πδ+1,γ+1

l w − πδ+1,γ+1
l w

=
(
I− πδ,γ

l

)(
I− πδ+1,γ+1

l

)
w.

As an immediate consequence,
∥∥(I− πδ,γ

l

)
w
∥∥
̟δ,γ ,I

=
∥∥(I− πδ,γ

l

)(
w − πδ+1,γ+1

l w
)∥∥

̟δ,γ ,I

.
∥∥(w − πδ+1,γ+1

l w
)′∥∥

̟δ+2,γ+2,I
=

∥∥w′ − πδ+2,γ+2
l−1 w′

∥∥
̟δ+2,γ+2,I

=
∥∥(I− πδ+2,γ+2

l−1 )w′
∥∥
̟δ+2,γ+2,I

,

where we use Lemma 2.1 in [22] for obtaining the inequality above. This finally
ends the proof. �

The main approximation result is stated in the following lemma.

Lemma A.2 ([22]). Let α, β > −1 or be negative integers. Then for any w ∈
Bσ

α,β(I) with integers σ ≥ µ ≥ 0,

∥∥(πα,β
N w − w

)(µ)∥∥
̟α+µ,β+µ,I

. Nµ−σ
∥∥(πα+σ,β+σ

N−σ − I
)
w(σ)

∥∥
̟α+σ,β+σ,I

. Nµ−σ
∥∥w(σ)

∥∥
̟α+σ,β+σ,I

.
(A.10)

A.3. Jacobi-Gauss-type interpolation approximation. The interpolation on
the tetrahedron T defined in Section 2 is based on a map of the tensorial product
of Legendre-Gauss-Lobatto (LGL) and Jacobi-Gauss-Radau (JGR) interpolations
on the cube Q.

We first consider the one-dimensional Legendre-Gauss-Lobatto interpolation.
Let {ξLj }

N
j=0 be the LGL interpolation points (i.e., zeros of (1 − ξ2)J1,1

N−1(ξ)) .

For any w ∈ C(Ī), the LGL interpolant IL
Nw ∈ PN (I) and satisfies

(IL
Nw)(ξ

L
j ) = w(ξLj ), 0 ≤ j ≤ N.(A.11)

We have the following approximation result.
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Lemma A.3 ([22]). If w ∈ L2(I) and w′ ∈ Bσ−1
0,0 (I) with integers σ ≥ µ ≥ 0 and

σ ≥ 1, then we have

∥∥(IL
Nw − w)(µ)

∥∥
̟µ−1,µ−1,I

. Nµ−σ
∥∥(πσ−1,σ−1

N−σ − I)w(σ)
∥∥
̟σ−1,σ−1,I

. Nµ−σ
∥∥w(σ)

∥∥
̟σ−1,σ−1,I

.
(A.12)

We now turn to the Jacobi-Gauss-Radau (JGR) interpolation associated with

the weight function ̟α,0(η) = (1 − η)α. Let {ηR,α
j }Nj=0 be the JGR interpolation

points (i.e., zeros of (1 + η)Jα,1
N (η)). For any w ∈ C([−1, 1)), the JGR interpolant

is defined by IR,α
N w ∈ PN (I) and

(IR,α
N w)(ηR,α

j ) = w(ηR,α
j ), 0 ≤ j ≤ N.(A.13)

For α = 1, IR,α
N is reduced to Jacobi-Gauss-Radau interpolation operator IR

N ana-
lyzed in [22]. In order to establish the error estimate, we use the stability result of
the JGR interpolation operator (cf. Theorem 4.5 of [11]). Use Lemma 2.2 of [11]

and let the intermediate polynomial wN = P̂ 1
N,α,0w. Then by a standard argument

as in [22], we can derive the following result for IR,α
N .

Lemma A.4. If w ∈ Bσ
α,0(I) with α > −1, σ ≥ µ ≥ 0 and σ ≥ 1, then

∥∥(IR,α
N w − w

)(µ)∥∥
̟µ+α,µ,I

. Nµ−σ
∥∥(πσ+α,σ

N−σ − I
)
w(σ)

∥∥
̟σ+α,σ ,I

. Nµ−σ
∥∥w(σ)

∥∥
̟σ+α,σ ,I

.
(A.14)

Appendix B. The proof of Theorem 2.1

Let πα,β
L : L2

ωα,β(I) → PN(I) ∩ L2
ωα,β (I) be the one-dimensional orthogonal

projection defined in Appendix A. It is obvious that ΠLMNu = π0,0
L,ξπ

1,0
M,ηπ

2,0
M,ζv

(the subscript ξ indicates the operator π0,0
L acts on the variable ξ and likewise for

η and ζ). A direct calculation, together with (2.7) and (A.6), leads to

∥∥ΠLMNu− u
∥∥
T
=

1

8

∥∥π0,0
L,ξπ

1,0
M,ηπ

2,0
N,ζv − v

∥∥
χ0,0;1,0;2,0

≤
∥∥π0,0

L,ξv − v
∥∥
χ0,0;1,0;2,0 +

∥∥π0,0
L,ξ

(
π1,0
M,ηv − v

)∥∥
χ0,0;1,0;2,0

+
∥∥π0,0

L,ξπ
1,0
M,η

(
π2,0
N,ζv − v

)∥∥
χ0,0;1,0;2,0

≤
∥∥π0,0

L,ξv − v
∥∥
χ0,0;1,0;2,0 +

∥∥π1,0
M,ηv − v

∥∥
χ0,0;1,0;2,0 +

∥∥π2,0
N,ζv − v

∥∥
χ0,0;1,0;2,0 .

Using (A.10) yields

‖ΠLMNu− u‖T . L−q
∥∥∂qξv

∥∥
χq,q;1,0;2,0 +M−r

∥∥∂rηv
∥∥
χ0,0;r+1,r;2,0

+N−s
∥∥∂sζv

∥∥
χ0,0;1,0;s+2,s .

Now, we bound the norms of v in the right hand side by the norms of u. By using
(2.10), we have

∂lξv(ξ, η, ζ) =
((1− η)(1− ζ)

8

)l

∂lxu(x, y, z), l ≥ 1.(B.1)
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Further, a recursive use of (2.10) gives

∂lηv(ξ, η, ζ) = ∂l−1
η

((1 − ξ)(1− ζ)

8
∂y +

(1 + ξ)(1− ζ)

8
(∂y − ∂x)

)
u(x, y, z)

=
((1 − ξ)(1− ζ)

8
∂l−1
η ∂y +

(1 + ξ)(1 − ζ)

8
∂l−1
η (∂y − ∂x)

)
u(x, y, z) = · · ·

=

l∑

j=0

(
l

j

)((1− ξ)(1 − ζ)

8

)j( (1 + ξ)(1 − ζ)

8

)l−j

∂jy(∂y − ∂x)
l−ju(x, y, z),

(B.2)

and

∂lζv(ξ, η, ζ) = ∂l−1
ζ

( (1− ξ)(1 − η)

8
∂z +

1 + η

4
(∂z − ∂y)

+
(1 + ξ)(1 − η)

8
(∂z − ∂x)

)
u(x, y, z)

=
( (1− ξ)(1 − η)

8
∂l−1
ζ ∂z +

1 + η

4
∂l−1
ζ (∂z − ∂y)

+
(1 + ξ)(1 − η)

8
∂l−1
ζ (∂z − ∂x)

)
u(x, y, z)

= · · · =
l∑

j=0

l−j∑

k=0

(
l

j, k

)( (1− ξ)(1 − η)

8

)j(1 + η

4

)k( (1 + ξ)(1− η)

8

)l−j−k

× ∂jz(∂z − ∂y)
j(∂z − ∂x)

l−j−ku(x, y, z),

(B.3)

where
(

l
j,k

)
= Γ(l+1)

Γ(j+1)Γ(k+1)Γ(l−j−k+1) . Thanks to the above identities and the tri-

angle inequality, we obtain that
∥∥ΠLMNu− u

∥∥
T
. L−q

∥∥∂qxu
∥∥
χq,q;2q+1,0;2q+2,0

+M−r
r∑

j=0

∥∥∂jy(∂y − ∂x)
r−ju

∥∥
χ2j,2r−2j;r+1,r;2r+2,0

+N−s
s∑

j=0

s−j∑

k=0

∥∥∂jz(∂z − ∂y)
k(∂z − ∂x)

s−j−ku
∥∥
χ2j,2s−2j−2k;2s−2k+1,2k;s+2,s .

Note that for any α1, β1, α2, β2, α3, β3 ≥ 0,
∣∣χα1,β1;α2,β2;α3,β3(ξ, η, ζ)

∣∣ . 1, ∀ (ξ, η, ζ) ∈ Q.(B.4)

We finally get that
∥∥ΠLMNu− u

∥∥
T
. L−q

∥∥∂qxu
∥∥
χq,q;2q+1,0;2q+2,0

+M−r
r∑

j=0

∥∥∂jy(∂y − ∂x)
r−ju

∥∥
χj,r−j;r+1,r;2r+2,0

+N−s
s∑

j=0

s−j∑

k=0

∥∥∂jz(∂z − ∂y)
k(∂z − ∂x)

s−j−ku
∥∥
χj,s−j−k;s−k+1,k;2s+2,s

. L−q
∥∥∂qxu

∥∥
ωq,q,0,0 ,T

+M−r
r∑

j=0

∥∥∂jy(∂y − ∂x)
r−ju

∥∥
ωj,r−j,r,0,T

+N−s
s∑

j=0

s−j∑

k=0

∥∥∂jz(∂z − ∂y)
k(∂z − ∂x)

s−j−ku
∥∥
ωj,s−j−k,k,s,T

.
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This completes the proof.

Appendix C. The Proof of Theorem 2.2

Let v(ξ, η, ζ) = u(x, y, z). One verifies readily that

(IIMu)(x, y, z) = (Iξ
M Iη

MIζ
Mv)(ξ, η, ζ).(C.1)

where Iξ
M = IL

M,ξ is the Legendre-Gauss-Lobatto interpolation operator in ξ, Iη
M =

IR,1
M,η and Iζ

M = IR,2
M,ζ are the Jacobi-Gauss-Radau interpolation operator in η and

ζ, respectively (cf. Appendix A).
We begin the proof with (C.1), (2.7), (A.12), (A.14) and the triangle inequality,

∥∥(IIM − I)u
∥∥
T
=

1

8

∥∥(Iξ
M Iη

MIζ
M − I)v

∥∥
χ0,0;1,0;2,0

.
∥∥(Iξ

M − I)v
∥∥
χ−1,−1;1,0;2,0 +

∥∥(Iη
M − I)v

∥∥
χ0,0;1,0;2,0 +

∥∥(Iζ
M − I)v

∥∥
χ0,0;1,0;2,0

+
∥∥(Iξ

M − I)(Iη
M − I)v

∥∥
χ−1,−1;1,0;2,0 +

∥∥(Iξ
M − I)(Iζ

M − I)v
∥∥
χ−1,−1;1,0;2,0

+
∥∥(Iη

M − I)(Iζ
M − I)v

∥∥
χ0,0;1,0;2,0 +

∥∥(Iξ
M − I)(Iη

M − I)(Iζ
M − I)v

∥∥
χ−1,−1;1,0;2,0

. M−r
∥∥∂rξv

∥∥
χr−1,r−1;1,0;2,0 +

∥∥(Iη
M − I)v

∥∥
χ0,0;1,0;2,0 +

∥∥(Iζ
M − I)v

∥∥
χ0,0;1,0;2,0

+M−1
∥∥(Iη

M − I)∂ξv
∥∥
χ0,0;1,0;2,0 +M−1

∥∥(Iζ
M − I)∂ξv

∥∥
χ0,0;1,0;2,0

+
∥∥(Iη

M − I)(Iζ
M − I)v

∥∥
χ0,0;1,0;2,0 +M−1

∥∥(Iη
M − I)(Iζ

M − I)∂ξv
∥∥
χ0,0;1,0;2,0

. M−r
∥∥∂rξv

∥∥
χr−1,r−1;1,0;2,0 +M−r

∥∥∂rηv
∥∥
χ0,0;r+1,r;2,0 +

∥∥(Iζ
M − I)v

∥∥
χ0,0;1,0;2,0

+M−r
∥∥(πr,r−1

M−r+1,η − I)∂r−1
η ∂ξv

∥∥
χ0,0;r,r−1;2,0 +M−1

∥∥(Iζ
M − I)∂ξv

∥∥
χ0,0;1,0;2,0

+M−1
∥∥(Iζ

M − I)∂ηv
∥∥
χ0,0;2,1;2,0 +M−2

∥∥(Iζ
M − I)∂η∂ξv

∥∥
χ0,0;2,1;2,0

. M−r
(∥∥∂rξv

∥∥
χr−1,r−1;1,0;2,0 +

∥∥∂rηv
∥∥
χ0,0;r+1,r;2,0 +

∥∥∂rζv
∥∥
χ0,0;1,0;r+2,r

+
∥∥(πr,r−1

M−r+1,η − I)∂r−1
η ∂ξv

∥∥
χ0,0;r,r−1;2,0

+
∥∥(πr+1,r−1

M−r+1,ζ − I)∂r−1
ζ ∂ξv

∥∥
χ0,0;1,0;r+1,r−1

+
∥∥(πr+1,r−1

M−r+1,ζ − I)∂r−1
ζ ∂ηv

∥∥
χ0,0;2,1;r+1,r−1

+
∥∥(πr,r−2

M−r+2,ζ − I)∂r−2
ζ ∂η∂ξv

∥∥
χ0,0;2,1;r,r−2

)
.

(C.2)

For further simplification, we note that

8∂r−1
η ∂ξv = ∂r−1

η

(
(1− η)(1 − ζ)∂xu

)

= (1− η)(1 − ζ)∂r−1
η (∂xu)− (r − 1)(1− ζ)∂r−2

η (∂xu),

8∂r−1
ζ ∂ξv = ∂r−1

ζ

(
(1− η)(1 − ζ)∂xu

)

= (1− η)(1 − ζ)∂r−1
ζ (∂xu)− (r − 1)(1− η)∂r−2

ζ (∂xu),

and

8∂r−1
ζ ∂ηv = ∂r−1

ζ

(
2(1− ζ)∂yu− (1 + ξ)(1 − ζ)∂xu

)

= 2(1− ζ)∂r−1
ζ ∂yu− (1 + ξ)(1 − ζ)∂r−1

ζ ∂xu− 2(r − 1)∂r−2
ζ ∂yu

+ (r − 1)(1 + ξ)∂r−2
ζ ∂xu.
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Thus by (A.8) and the triangle inequality, we have

∥∥(πr,r−1
M−r+1,η − I

)
∂r−1
η ∂ξv

∥∥
χ0,0;r,r−1;2,0

.
∥∥(πr,r−1

M−r+1,η − I
)(
(1− ζ)∂r−2

η (∂xu)
)∥∥

χ0,0;r,r−1;2,0

+
∥∥(πr,r−1

M−r+1,η − I
)(
(1− η)(1 − ζ)∂r−1

η (∂xu)
)∥∥

χ0,0;r,r−1;2,0

.
∥∥∂η

(
(1− ζ)∂r−2

η (∂xu)
)∥∥

χ0,0;r+2,r+1;2,0

+
∥∥(1 − η)(1− ζ)∂r−1

η (∂xu)
∥∥
χ0,0;r,r−1;2,0

.
∥∥∂r−1

η (∂xu)
∥∥
χ0,0;r+2,r+1;4,0 +

∥∥∂r−1
η (∂xu)

∥∥
χ0,0;r+2,r−1;4,0

.
∥∥∂r−1

η (∂xu)
∥∥
χ0,0;r+2,r−1;4,0 ,

(C.3)

∥∥(πr+1,r−1
M−r+1,ζ − I

)
∂r−1
ζ ∂ξv

∥∥
χ0,0;1,0;r+1,r−1

.
∥∥(πr+1,r−1

M−r+1,ζ − I
)(
(1− η)∂r−2

ζ (∂xu)
)∥∥

χ0,0;1,0;r+1,r−1

+
∥∥(πr+1,r−1

M−r+1,ζ − I
)(
(1− η)(1 − ζ)∂r−1

ζ (∂xu)
)∥∥

χ0,0;1,0;r+1,r−1

.
∥∥∂ζ

(
(1− η)∂r−2

ζ (∂xu)
)∥∥

χ0,0;1,0;r+3,r+1

+
∥∥(1 − η)(1− ζ)∂r−1

ζ (∂xu)
∥∥
χ0,0;1,0;r+1,r−1

.
∥∥∂r−1

ζ (∂xu)
∥∥
χ0,0;3,0;r+3,r+1 +

∥∥∂r−1
ζ (∂xu)

∥∥
χ0,0;3,0;r+3,r−1

.
∥∥∂r−1

ζ (∂xu)
∥∥
χ0,0;3,0;r+3,r−1 ,

(C.4)

and

∥∥(πr+1,r−1
M−r+1,ζ − I

)
∂r−1
ζ ∂ηv

∥∥
χ0,0;2,1;r+1,r−1

.
∥∥(πr+1,r−1

M−r+1,ζ − I
)(
2∂r−2

ζ ∂yu− (1 + ξ)∂r−2
ζ ∂xu

)∥∥
χ0,0;2,1;r+1,r−1

+
∥∥(πr+1,r−1

M−r+1,ζ − I
)(
2(1− ζ)∂r−1

ζ ∂yu− (1 + ξ)(1 − ζ)∂r−1
ζ ∂xu

)∥∥
χ0,0;2,1;r+1,r−1

.
∥∥∂ζ

(
(1− ξ)∂r−2

ζ ∂yu+ (1 + ξ)∂r−2
ζ (∂y − ∂x)u

)∥∥
χ0,0;2,1;r+3,r+1

+
∥∥(1− ξ)(1 − ζ)∂r−1

ζ ∂yu− (1 + ξ)(1 − ζ)∂r−1
ζ (∂yu− ∂x)u

∥∥
χ0,0;2,1;r+1,r−1

.
∥∥∂r−1

ζ ∂yu
∥∥
χ2,0;2,1;r+3,r+1 +

∥∥∂r−1
ζ (∂y − ∂x)u

∥∥
χ0,2;2,1;r+3,r+1

+
∥∥∂r−1

ζ ∂yu
∥∥
χ2,0;2,1;r+3,r−1 +

∥∥∂r−1
ζ (∂y − ∂x)u

∥∥
χ0,2;2,1;r+3,r−1

.
∥∥∂r−1

ζ ∂yu
∥∥
χ2,0;2,1;r+3,r−1 +

∥∥∂r−1
ζ (∂y − ∂x)u

∥∥
χ0,2;2,1;r+3,r−1 .

(C.5)

Meanwhile, one verifies that

64∂r−2
ζ ∂η∂ξv = 8∂r−2

ζ ∂η
(
(1− η)(1 − ζ)∂xu

)

= 8∂r−2
ζ

(
(1 − η)(1− ζ)∂η∂x − (1− ζ)∂x

)
u

= ∂r−2
ζ

(
(1− η)(1 − ζ)2(2∂y∂xu− (1 + ξ)∂2xu)

)
− 8∂r−2

ζ

(
(1 − ζ)∂xu

)

= (1 − η)(1− ζ)2∂r−2
ζ

(
2∂y∂xu− (1 + ξ)∂2xu

)
− 8((1− ζ)∂r−2

ζ + ∂r−3
ζ )∂xu

− 2(r − 2)(1− η)
(
(1− ζ)∂r−3

ζ + ∂r−4
ζ

)(
2∂y∂xu− (1 + ξ)∂2xu)

)

+ 8(r − 1)∂r−3
ζ ∂xu+ (r − 2)(r − 1)(1− η)∂r−4

ζ (2∂y∂xu− (1 + ξ)∂2xu)
)
.
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As a result, we get, by (A.8) and the triangle inequality, that

∥∥(πr,r−2
M−r+2,ζ − I

)
∂r−2
ζ ∂η∂ξv

∥∥
χ0,0;2,1;r,r−2

.
∥∥(πr,r−2

M−r+2,ζ − I
)(
(1− η)(1 − ζ)2∂r−2

ζ (2∂y∂xu− (1 + ξ)∂2xu)
)∥∥

χ0,0;2,1;r,r−2

+
∥∥(πr,r−2

M−r+2,ζ − I
)(
(1− η)((1 − ζ)∂r−3

ζ + ∂r−4
ζ )

(2∂y∂xu− (1 + ξ)∂2xu)
)∥∥

χ0,0;2,1;r,r−2

+
∥∥(πr,r−2

M−r+2,ζ − I
)(
(1− η)∂r−4

ζ (2∂y∂xu− (1 + ξ)∂2xu)
)∥∥

χ0,0;2,1;r,r−2

+
∥∥(πr,r−2

M−r+2,ζ − I
)(
((1− ζ)∂r−2

ζ + ∂r−3
ζ )∂xu

)∥∥
χ0,0;2,1;r,r−2

+
∥∥(πr,r−2

M−r+2,ζ − I
)(
∂r−3
ζ ∂xu

)∥∥
χ0,0;2,1;r,r−2

.
∥∥(1− η)(1 − ζ)2∂r−2

ζ (2∂y∂xu− (1 + ξ)∂2xu)
∥∥
χ0,0;2,1;r,r−2

+
∥∥∂ζ

(
(1− η)((1 − ζ)∂r−3

ζ + ∂r−4
ζ )(2∂y∂xu− (1 + ξ)∂2xu)

)∥∥
χ0,0;2,1;r+2,r

+
∥∥∂2ζ

(
(1− η)∂r−4

ζ (2∂y∂xu− (1 + ξ)∂2xu)
)∥∥

χ0,0;2,1;r+4,r+2

+
∥∥∂ζ

(
((1 − ζ)∂r−2

ζ + ∂r−3
ζ )∂xu

)∥∥
χ0,0;2,1;r+2,r +

∥∥∂2ζ
(
∂r−3
ζ ∂xu

)∥∥
χ0,0;2,1;r+4,r+2

.
∥∥(1− η)(1 − ζ)2

(
(1− ξ)∂r−2

ζ ∂y∂xu+ (1 + ξ)∂r−2
ζ (∂y − ∂x)∂xu

)∥∥
χ0,0;2,1;r,r−2

+
∥∥(1− η)(1 − ζ)

(
(1− ξ)∂r−2

ζ ∂y∂xu+ (1 + ξ)∂r−2
ζ (∂y − ∂x)∂xu

)∥∥
χ0,0;2,1;r+2,r

+
∥∥(1− η)

(
(1− ξ)∂r−2

ζ ∂y∂xu+ (1 + ξ)∂r−2
ζ (∂y − ∂x)∂xu

)∥∥
χ0,0;2,1;r+4,r+2

+
∥∥(1− ζ)∂r−1

ζ ∂xu
∥∥
χ0,0;2,1;r+2,r +

∥∥∂r−1
ζ ∂xu

∥∥
χ0,0;2,1;r+4,r+2

.
∥∥(1− ξ)∂r−2

ζ ∂y∂xu+ (1 + ξ)∂r−2
ζ (∂y − ∂x)∂xu

∥∥
χ0,0;4,1;r+4,r−2

+
∥∥∂r−1

ζ ∂xu
∥∥
χ0,0;2,1;r+4,r

.
∥∥∂r−2

ζ ∂y∂xu
∥∥
χ2,0;4,1;r+4,r−2 +

∥∥∂r−2
ζ (∂y − ∂x)∂xu

∥∥
χ0,2;4,1;r+4,r−2

+
∥∥∂r−1

ζ ∂xu
∥∥
χ0,0;2,1;r+4,r .

(C.6)

Combining (C.2) with (C.3)-(C.6), we derive that

∥∥(IIM − I)u
∥∥
T
.M−r

(∥∥∂rξv
∥∥
χr−1,r−1;1,0;2,0 +

∥∥∂rηv
∥∥
χ0,0;r+1,r;2,0

+
∥∥∂rζv

∥∥
χ0,0;1,0;r+2,r +

∥∥∂r−1
η ∂xu

∥∥
χ0,0;r+2,r−1;4,0

+
∥∥∂r−1

ζ ∂xu
∥∥
χ0,0;2,0;r+3,r−1 +

∥∥∂r−1
ζ ∂yu

∥∥
χ2,0;2,1;r+3,r−1

+
∥∥∂r−1

ζ (∂y − ∂x)u
∥∥
χ0,2;2,1;r+3,r−1 +

∥∥∂r−2
ζ ∂y∂xu

∥∥
χ2,0;4,1;r+4,r−2

+
∥∥∂r−2

ζ (∂y − ∂x)∂xu
∥∥
χ0,2;4,1;r+4,r−2

)
.

(C.7)

In analogy to (B.2) and (B.3), we have that for integer l ≥ 1

∂lηv(ξ, η, ζ) =

l∑

j=0

(−1)l−j2−3l+j

(
l

j

)
(1 + ξ)l−j(1 − ζ)l∂jy∂

l−j
x u(x, y, z),

∂lζv(ξ, η, ζ) =

l∑

j=0

l−j∑

k=0

(−1)l−j2−3l+2j+k

(
l

j, k

)
(1 + ξ)l−j−k(1 − η)l−j−k(1 + η)k

× ∂jz∂
k
y∂

l−j−k
x u(x, y, z).
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Noting that for any α1, β1, α2, β2, α3, β3 ≥ 0,
∣∣χα1,β1;α2,β2;α3,β3(ξ, η, ζ)

∣∣ . 1, ∀ (ξ, η, ζ) ∈ Q,

we finally find that
∥∥(IIM − I)u

∥∥
T
.M−r

(∥∥∂rξv
∥∥
χ0,0;1,0;2,0 +

∥∥∂rηv
∥∥
χ0,0;1,0;2,0 +

∥∥∂r−1
η ∂xu

∥∥
χ0,0;1,0;2,0

+
∥∥∂rζv

∥∥
χ0,0;1,0;2,0 +

∥∥∂r−1
ζ ∂xu

∥∥
χ0,0;1,0;2,0 +

∥∥∂r−1
ζ ∂yu

∥∥
χ0,0;1,0;2,0

+
∥∥∂r−2

ζ ∂y∂xu
∥∥
χ0,0;1,0;2,0 +

∥∥∂r−2
ζ ∂2xu

∥∥
χ0,0;1,0;2,0

)

. M−r
(∥∥∂rxu

∥∥
χ0,0;1,0;2,0 +

r∑

j=0

∥∥∂jy∂r−j
x u

∥∥
χ0,0;1,0;2,0

+

r−1∑

j=0

∥∥∂jy∂r−j−1
x ∂xu

∥∥
χ0,0;1,0;2,0 +

r∑

j=0

r−j∑

k=0

∥∥∂jz∂ky∂r−j−k
x u

∥∥
χ0,0;1,0;2,0

+

r−1∑

j=0

r−j−1∑

k=0

(∥∥∂jz∂ky∂r−j−k−1
x ∂xu

∥∥
χ0,0;1,0;2,0 +

∥∥∂jz∂ky∂r−j−k−1
x ∂yu

∥∥
χ0,0;1,0;2,0

)

+

r−2∑

j=0

r−j−2∑

k=0

∥∥∂jz∂ky∂r−j−k−2
x ∂y∂xu

∥∥
χ0,0;1,0;2,0

+
r−2∑

j=0

r−j−2∑

k=0

∥∥∂jz∂ky∂r−j−k−1
x ∂2xu

∥∥
χ0,0;1,0;2,0

)

. M−r
(∥∥∂rxu

∥∥
χ0,0;1,0;2,0 +

r∑

j=0

∥∥∂jy∂r−j
x u

∥∥
χ0,0;1,0;2,0

+

r∑

j=0

r−j∑

k=0

∥∥∂jz∂ky∂r−j−k
x u

∥∥
χ0,0;1,0;2,0 +

r−1∑

j=0

r−j−1∑

k=0

∥∥∂jz∂k+1
y ∂r−j−k−1

x u
∥∥
χ0,0;1,0;2,0

)

. M−r
r∑

j=0

r−j∑

k=0

∥∥∂jz∂ky∂r−j−k
x u

∥∥
χ0,0;1,0;2,0 .M−r

r∑

j=0

r−j∑

k=0

∥∥∂jz∂ky∂r−j−k
x u

∥∥
T
.

This ends the proof.
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