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NOVEL FINITE DIFFERENCE SCHEME FOR

THE NUMERICAL SOLUTION OF TWO-DIMENSIONAL

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
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Abstract. In the present article, a new methodology has been developed

to solve two-dimensional (2D) Navier-Stokes equations (NSEs) in new form

proposed by Pukhnachev (J. Appl. Mech. Tech. Phys., 45:2 (2004), 167–171)

who introduces a new unknown function that is related to the pressure and the

stream function. The important distinguish of this formulation from vorticity-

stream function form of NSEs is that stream function satisfies to the transport

equation and the new unknown function satisfies to the elliptic equation. The

scheme and algorithm treat the equations as a coupled system which allows

one to satisfy two conditions for stream function with no condition on the new

function. The numerical algorithm is applied to the lid-driven cavity flow as the

benchmark problem. The characteristics of this flow are adequately represented

by the new numerical model.

Key Words. Navier-Stokes equations, incompressible viscous flow, finite-

difference scheme.

1. Introduction

There are many numerical schemes for the solution of the Navier-Stokes Equa-
tions (NSEs) representing incompressible viscous flows. Some of these are schemes
utilize primitive variables (velocity-pressure), vorticity-stream function, stream func-
tion (biharmonic equation), and vorticity-velocity formulation. The primary diffi-
culty in obtaining numerical solutions with primitive variable formulation is that
there is no evolution equation for the pressure variable. To avoid the troubles asso-
ciated with primitive variable approach, stream function vorticity and vorticity-
velocity formulations of the NSEs are widely used. Unfortunately, the correct
boundary values of vorticity are not always easy to get. In the present study we use
a new form of the NSEs. Aristov and Pukhnachev [1] and Pukhnachev [7] proposed
new form of the NSEs for the case of axisymmetric and 2D flows, respectively. The
2D NSEs in the terms of new unknown functions contain one transport equation for
the stream function and one elliptic equation for the new unknown function. This
system only resembles the vorticity and stream function’s form but the physical
meaning of the coupling function is different from the vorticity. We have con-
structed finite-difference scheme for the NSEs in the new form. Our algorithm
treats the equations as a coupled system which allows us to satisfy two conditions
for stream function with no condition on the new unknown function. The proposed
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scheme can easily be extended to solving axisymmetric NSEs. The performance of
the proposed method is investigated by considering well-known benchmark prob-
lem. A test case involves simulating a 2D lid-driven cavity flow at Reynolds number
Re 6 1000, when the motion is strictly laminar and steady. Several numerical in-
vestigations have been reported the characteristics of this cavity flow. Moreover,
viscous fluid flow inside a driven cavity has been a common experiment approach
used to check or improve numerical techniques (see for example, [2, 3, 4, 5, 6, 8]).

The content of this paper is organized as follows. In the next section, we derive
new formulation of the NSEs with no-slip boundary conditions. Section 3 briefly
describes the problem used for the test case and detailed description of numerical
algorithm. The results of validation of the finite-difference scheme are presented
in Section 4, where we make a detailed comparison with available numerical and
experimental data.

2. The New Formulation of Navier-Stokes equations

To make paper self completed we first represent the transformation of viscous
incompressible NSEs in 2D to a new form. The viscous incompressible flow is
governed by the NSEs in a Cartesian coordinate system (x, y),

ut + uux + vuy = −
1

ρ
px + ν

(

uxx + uyy
)

,(1)

vt + uvx + vvy = −
1

ρ
py + ν

(

vxx + vyy
)

,(2)

ux + vy = 0,(3)

where u and v are the velocity components in x− and y− directions, respectively;
p is the pressure, ρ is the fluid density, and ν is the kinematic viscosity. The fluid
is subjected to potential external forces. In 2D, the constrain of incompressibility
∇ · v = 0 can be satisfied exactly by expressing velocity vector in terms of stream
function ψ according to

(4) u =
∂ψ

∂y
, v = −

∂ψ

∂x
.

New form of NSEs is based on the following observation. The substitution of Eq. (4)
into Eq. (1) yields

(5)
∂

∂y
(ψt − ψxψy − ν∆ψ) +

∂

∂x

(

1

ρ
p+ ψ2

y

)

= 0,

where

∆
def
=

∂2

∂x2
+

∂2

∂y2
.

Therefore, there is a function Φ satisfies the relations

(6)
1

ρ
p = −ψ2

y +Φy,

and

(7) ψt − ψxψy +Φx = ν∆ψ.

Differentiating Eq. (6) and Eq. (7) with respect to y and x, respectively, and substi-
tuting the resulting expressions into Eq. (2), where u and v are expressed in terms
of ψ, we obtain

(8) ∆Φ = 2ψy∆ψ.



NUMERICAL SOLUTION OF 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 323

We will consider only the case where the no-slip conditions are satisfied at the
boundary of the flow domain. In term of the stream function ψ only, boundary
conditions are

(9) ψ = 0,
∂ψ

∂n
= b(x, y),

where
∂ψ

∂n
means derivative in the direction of normal vector to the boundary.

To complete the formulation of the problem it is necessary to specify the initial
conditions

(10) ψ = ψ0(x, y), t = 0.

The main goal of this work is to develop and validate a finite-difference scheme for
solving the system (7)–(10).

3. Numerical Technique

The standard benchmark problem for testing 2D NSEs is the lid driven cavity
flow as shown in Fig. 1. The fluid contained inside a squared cavity is set into
motion by the top wall which is sliding at constant velocity from left to right.
Let L be the characteristic length scale associated with the cavity geometry and
U be the characteristic velocity scale associated with the moving boundary. The

Primary eddy

Bottom left
secondary eddy

Bottom right
secondary eddy

U

Figure 1. Lid driven square cavity flow configuration.

non-dimensional parameter of the problem is

(11) Re =
LU

ν
.

The system of equations (1)–(3) is rendered dimensionless as follows

(12) x =
x∗

L
, y =

y∗

L
, t =

t∗ν

L2
, u =

u∗

U
, v =

v∗

U
.

We cover the domain Q = {0 6 x 6 1, 0 6 y 6 1}, with a uniform grid

Qh = {(xi, yj)|xi = (i − 1.5)hx, yj = (j − 1.5)hy, i = 1, . . . , Nx, j = 1, . . . , Ny}

with spacings

hx =
1

Nx − 2
, hy =

1

Ny − 2
,
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in the x− and y− directions, respectively. Such grid allows one to use central
differences to approximate boundary conditions with second-order on two point
stencils.

The essential element of the proposed here algorithm is that Eqs. (7) and (8)
for ψ and Φ are considered as a coupled system. This formulation is based on
the idea of regarding the two boundary conditions for ψ as actual conditions for
the ψ − Φ system. Note that ψ and Φ are evaluated on the full-time steps. We
employ second-order central-difference approximations for the operators in Eqs. (7)
and (8). The system of difference equations is

(13)
ψn+1
i,j − ψn

i,j

τ
−

Re
(ψn

i+1,j − ψn
i−1,j)(ψ

n+1
i,j+1 − ψn+1

i,j−1) + (ψn+1
i+1,j − ψn+1

i−1,j)(ψ
n
i,j+1 − ψn

i,j−1)

8hxhy
+

Re

(

Φn+1
i+1,1 − Φn+1

i−1,j

)

2hx
=

1

2

(

△ψn+1
i,j +△ψn

i,j

)

,

(14) △Φn+1
i,j =

1

2hy

[

(ψn
i,j+1 − ψn

i,j−1)△ψ
n+1
i,j + (ψn+1

i+1,j − ψn+1
i−1,j)△ψ

n
i,j

]

,

i = 2, . . . , Nx − 1, j = 1, . . . , Ny − 1.

The boundary conditions are written in the following form

ψn+1
2,j + ψn+1

1,j

2
= 0,

ψn+1
2,j − ψn+1

1,j

hx
= 0,

ψn+1
Nx,j

+ ψn+1
Nx−1,j

2
= 0,

ψn+1
Nx,j

− ψn+1
Nx−1,j

hx
= 0,

j = 2, . . . , Ny − 1,

ψn+1
i,2 + ψn+1

i,1

2
= 0,

ψn+1
i,2 − ψn+1

i,1

hy
= 0,

ψn+1
i,Ny

+ ψn+1
i,Ny−1

2
= 0,

ψn+1
i,Ny

− ψn+1
i,Ny−1

hy
= 1,

i = 2, . . . , Nx − 1.

(15)

To combine Eqs. (13)–(15) as a single linear system with banded matrix we intro-
duce new system of indices as follows

k(i,j) = 2(j − 1)Nx + 2i− 1, i = 1, . . . , Nx,

m(i,j) = 2(j − 1)Nx + 2i = k(i,j) + 1, j = 1, . . . , Ny.

Each node (i, j) of grid Qh associates with two indices k(i,j) and m(i,j). Index k(i,j)
is an odd number and index m(i,j) is an even number. It is easy to see that

k(i+1,j) = k(i,j) + 2, k(i,j+1) = k(i,j) + 2Nx,

k(i−1,j) = k(i,j) − 2, k(i,j−1) = k(i,j) − 2Nx,
(16a)

m(i+1,j) = m(i,j) + 2, m(i,j+1) = m(i,j) + 2Nx,

m(i−1,j) = m(i,j) − 2, m(i,j−1) = m(i,j) − 2Nx.
(16b)

Now we introduce a new grid function σ = {σk, k = 1, ..., 2NxNy} which is defined
on the composite grid. Let components of the grid function σk with even indices
represent ψi,j and components with odd indices σm(= σk+1) represent Φi,j . Sub-
stituting σk instead ψi,j and substituting σm instead Φi,j into Eqs. (13)–(14), we
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recast algebraic system as follows

σn+1
k − σn

k

τ
+

Re

8hxhy

[

(

σn
k+2 − σn

k−2

) (

σn+1
k+2Nx

− σn+1
k−2Nx

)

+
(

σn+1
k+2 − σn+1

k−2

)

(

σn
k+2Nx

− σn
k−2Nx

)

]

−
Re

2hx

(

σn+1
k+1 − σn+1

k−3

)

=
1

2

(

∆σn+1
k +∆σn

k

)

,

(17a)

∆σn+1
m =

(σn
m+2Nx−1 − σn

m−2Nx−1)

2hy
∆σn+1

m−1 +
(σn+1

m+2Nx−1 − σn+1
m−2Nx−1)

2hy
∆σn

m−1,

(17b)

where

∆σk =
(σk+2 − 2σk + σk−2)

h2x
+

(σk+2Nx
− 2σk + σk−2Nx

)

h2y
.

The straightforward implementation of the algorithm leads to a problem with a
numerically singular matrix. There are different ways to regularize the problem. We
found that adding a small term at the boundary gives the best results. According
to this idea, Eq. (15) can be rewritten for function σ as follows

σn+1
k + σn+1

k+2

2
= 0,

σn+1
m+1 − σn+1

m−1

hx
= εσn+1

m , i = 1, j = 1, . . . , Ny,(18a)

σn+1
k + σn+1

k−2

2
= 0,

σn+1
m−1 − σn+1

m−3

hx
= εσn+1

m , i = Nx, j = 1, . . . , Ny,(18b)

σn+1
k + σn+1

k+2Nx

2
= 0,

σn+1
m+2Nx+1 − σn+1

m−1

hy
= 0, j = 1, i = 1, . . . , Nx,(18c)

σn+1
k + σn+1

k−2Nx

2
= 0,

σn+1
m−1 − σn+1

m−2Nx−1

hy
= 1, j = Ny, i = 1, . . . , Nx,(18d)

where ε is a small number. If the steady flow is needed then the algorithm can be
considered as an iterative procedure and iterations are terminated at certain time
n = N when the following criterion is satisfied

maxi,j
∣

∣σN+1
i,j − σN

i,j

∣

∣

maxi,j
∣

∣σN+1
i,j

∣

∣

6 10−8

Note that the linear system for the coupled formulation of the ψ − Φ problem can
be written as the following multi-diagonal system for the composite grid function
σ

(19) Bl−2Nx−1σ
n+1
l−2Nx−1 +Bl−2Nx

σn+1
l−2Nx

+Bl−3σ
n+1
l−3 +Bl−2σ

n+1
l−2

+Bl−1σ
n+1
l−1 +Blσ

n+1
l +Bl+1σ

n+1
l+1 +Bl+2σ

n+1
l+2

+Bl+2Nx−1σ
n+1
l+2Nx−1 +Bl+2Nx

σn+1
l+2Nx

+Bl+2Nx+1σ
n+1
l+2Nx+1 = Fl,

where l = 1, . . . , 2NxNy. The matrix of the linear system (19) is banded with
2Nx + 1 lower and upper bandwidths. We used standard routings DGBSV and
DGBSVX of the LAPACK to compute the solution of Eq. (19).

4. Results and Discussions

A validation test involves a 2D cavity flow at Reynolds number up to 1000,
wherein the flow is laminar and steady. Computations were performed for the lid-
driven cavity problem on grids from 32× 32 up to 102× 102. The impact of ε on
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the results is judiciously evaluated by numerical experiments and shown that for
ε ∈ [10−10, 10−4] the approximate solution agreed with know test case.

In order to validate the scheme, we compare the extremal values and space
location of stream function with [2, 3, 4, 5, 6]. Table 1 reports the characteristics
of the primary and right bottom secondary eddies at Re = 100 and Re = 1000,
respectively. This table shows the extreme values of ψ and the space location of the
extremal values of ψ. Top rows present our quantities obtained from simulation.
Then bottom rows display the quantities obtained by the other authors. For the
primary vortex in cases Re = 100 and 1000, our results agree within 5% with those
obtained by the other authors. For the secondary vortex in the case Re = 1000
with the grids 52×52, our results agree within 5% with Christov et al. [5] but differ
significantly up to 10% with those obtained by Botella et al. [2]. Our data obtained
using 102× 102 grid exhibit perfect match with other results from [2, 3, 4, 6]. The
geometrical structures of the flow are displayed in Figs. 2 and 3. The grid 102×102
is used. Note that the values of u (velocity along x− direction), v (velocity along
y−direction), and vorticity ω were computed from ψ after the iteration converge.
The values of u, v, and ω inside the domain were approximated using central-
difference while the values of u, v, and ω on the boundary were approximated using
one side first-order difference.

In Fig. 4, we compare the centerline u− and v− velocity profiles with data of
Ghia et al. [6]. The computational has been done for Reynolds number Re = 1000
with the grid 102 × 102. The velocity profiles are similar to the data of Ghia et
al. [6].

Table 1. Strength and location of the primary and bottom right
secondary vortices at Re = 100 and Re = 1000.

Ref. Grid Primary eddy Bottom right second. eddy
ψmin (xmin, ymin) ψmax (xmax, ymax)

Re = 100
Present 32× 32 −0.103615 (0.600, 0.733) 3.34039 × 10−6 (0.967, 0.067)

52× 52 −0.103569 (0.620, 0.740) 9.42029 × 10−6 (0.940, 0.060)
102× 102 −0.103510 (0.620, 0.740) 1.18920 × 10−5 (0.940, 0.060)

[2] 48 −0.10008 – – –
[4] 162× 162 −0.10397 (0.6198, 0.7369) – –
[6] 129× 129 −0.103 (0.5844, 0.7400) 1.25 × 10−5 (0.9401, 0.0599)

Re = 1000
Present 52× 52 −0.119825 (0.540, 0.560) 1.56192 × 10−3 (0.860, 0.100)

102× 102 −0.119280 (0.530, 0.560) 1.68817 × 10−3 (0.870, 0.110)
[2] 160 −0.118937 (0.5308, 0.5652) 1.72972 × 10−3 (0.8640, 0.1118)
[3] 1024 × 1024 −0.11892 (0.5312, 0.5654) 1.7292 × 10−3 (0.8643, 0.1123)
[4] 80× 80 −0.118710 (0.5346, 0.5645) – –
[5] 512× 512 −0.116269 (0.5316, 0.5660) 1.640 × 10−3 (0.8651, 0.1118)
[6] 128 −0.117929 (0.5313, 0.5625) 1.751 × 10−3 (0.8594, 0.1094)

We find it important to understand the behavior of function Φ for different
Reynolds number. Fig. 5 shows the contour of Φ. Pattern of contour lines of Φ are
drawn for several Reynolds numbers, Re = 50, 100, 200, 300, 500, and 1000. The
set of figures is generated on the grid 52× 52 with the parameter ε = 10−6.
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Figure 2. Stream function ψ, vorticity ω, and velocity compo-
nents u and v contours for the lid-driven cavity flow at Re = 100.

5. Conclusion

A finite-difference scheme is developed and validated for the new formulation of
the 2D Navier-Stokes equations proposed in [7]. The feature that qualitatively dis-
tinguishes this formulation from the vorticity-stream function formulation of NSEs
is that the stream function satisfies the evolution equation (the elliptic equation
in case of vorticity-stream function formulation) and the new unknown function

satisfies an elliptic equation (vorticity satisfies the evolution equation in case of
vorticity-stream function formulation). The scheme and algorithm treat the equa-
tions as a coupled system which allows one to satisfy two conditions for stream
function with no condition on the new function. The new numerical algorithm
demonstrated good accuracy and reasonable efficiency for the lid-driven cavity flow
benchmark problem. The results obtained in all test cases are in excellent agree-
ment with other established numerical results, underlining that the new formulation
is a viable approach to the 2D Navier-Stokes and can serve as a basis for the efficient
numerical models.
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Figure 3. Stream function ψ, vorticity ω, and velocity compo-
nents u and v contours for the lid-driven cavity flow at Re = 1000.
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Figure 4. The vertical centerline u−profile and horizontal cen-
terline v−profile for the lid-driven cavity flow at Re = 1000.
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Re = 50 Re=100 Re=100

Re=300 Re=500 Re=1000

Figure 5. Contours of Φ for the lid-driven cavity flow.
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