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Abstract. This paper describes an algorithm for ”direct numerical integra-

tion” of the initial value Differential-Algebraic Inequalities (DAI) in a time step-

ping fashion using a sequential quadratic programming (SQP) method solver for

detecting and satisfying active path constraints at each time step. The activa-

tion of a path constraint generally increases the condition number of the active

discretized differential algebraic equation’s (DAE) Jacobian and this difficulty

is addressed by a regularization property of the α method. The algorithm is

locally stable when index 1 and index 2 active path constraints and bounds are

active. Subject to available regularization it is seen to be stable for active index

3 active path constraints in the numerical examples. For the high index active

path constraints, the algorithm uses a user-selectable parameter to perturb the

smaller singular values of the Jacobian with a view to reducing the condition

number so that the simulation can proceed. The algorithm can be used as a

relatively cheaper estimation tool for trajectory and control planning and in the

context of model predictive control solutions. It can also be used to generate

initial guess values of optimization variables used as input to inequality path

constrained dynamic optimization problems. The method is illustrated with

examples from space vehicle trajectory and robot path planning.

Key Words. Differential-algebraic equations, Trajectory planning, Numerical

optimization, Inequality path constraints

1. Background

Many engineering control problems, especially those with inequality path con-
straints yield Differential-Algebraic Inequalities (DAI) models. The need for solving
a DAI system arises in robotic path planning [19], safety envelope [10] and trajectory
[7] generation, in model predictive control approaches [8], and in voltage control
of electrical equipments [11]. Traditionally, a DAI is handled, almost always, in
the context of optimal control problems where the inequality path constraints in
the discretized optimal control problem are handled by the optimizer as inequal-
ity constraints at each mesh point (e.g., in Direct Transcription and collocation
schemes) or as a sub-interval wise cumulative error integral that is minimized (e.g.,
in multiple shooting schemes).

However, in certain situations the direct simulation of a DAI does arise. For
example, when interior point methods are used for dynamic optimization problems,
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the initial guess of a feasible solution involving the satisfaction of the DAI system
is needed. Intermediate level trajectory planning through constraint programming
also entails the necessity of a DAI solver [19].

Available Differential-Algebraic Equation (DAE) solvers are limited to address-
ing inequalities only in the form of positivity constraints on the states and controls
(e.g., DASPK [3]). Some DAE solvers can detect whether a constraint has become
active with root-finding techniques (e.g., DASRT [3], DASPKE [13]) and mainly
concern with DAE systems with discontinuities.

Examples of DAI integrators are few. A solver with constraint smoothing and
local planning has been described in [19]. This algorithm checks for weakly ap-
proximate safety condition of using the control values from the previous time step
and proceeds with activating a buffer zone as a path inequality constraint becomes
nearly active. A barrier function minimization is used if the safety was violated to
obtain a new set of initial guesses for the controls at that time step. Then the dy-
namics is integrated provided the states obtained satisfy the bounds and inequality
path constraints.

1.1. Introduction to the present work. At every time step a DAI integrator
must

• detect active path constraints
• determine which algebraic variables control on to the active path constraints
• handle the possible numerical row rank deficiency in the active constraints
Jacobian in the SQP method. The numerical rank deficiency may occur
due to activation of high differential index (see definition in [3] and called
the index hereafter) active path constraints and due to abrupt changes in
the active path constraint set.

The present algorithm addresses the above requirements as follows.

• A standard sequential quadratic programming (SQP) method that is used
as a solver at each time step detects the active path constraints.

• The SQP method also determines which algebraic variables control on to
the active path constraints by constructing a square basis matrix (defined
in section 3.1) which has the least condition number over available column
permutations in the active constraints Jacobian in the SQP method.

• The numerical row rank deficiency is addressed by varying a parameter
in the DAI discretization which leads to increase in the smallest singular
values (i.e., regularization) of the basis matrix.

The DAI solver finds a feasible solution locally in contrast to the Multiple Shoot-
ing method or the Direct Transcription method where the dynamic optimization
problem discretized over the entire simulation interval enters the QP iterations of
an SQP solver. The trade-off for a DAI solver is cheaper computational cost in
finding a feasible solution one time step at a time involving much smaller matrices
than the dynamic optimization.

The method is intended to be either a cheap tool for generating feasible initial
guess for the dynamic optimization problem solved by Multiple Shooting or Direct
Transcription with an interior point method, or to be a solver for rapid trajectory
planning via constraint programming at an intermediate specification level. It is
not meant to replace methods that find solutions over the entire simulation interval,
such as the Multiple Shooting or Direct Transcription methods.

The regularization property of the present algorithm is different from the exist-
ing approaches of path constraint perturbation and/or modification (such as the
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buffer zone in [19]) which add additional computational effort including automatic
differentiation of the path constraints and/or affect inconsistent activation of path
constraints (in case of constraint perturbation).

2. The initial value differential-algebraic inequality (DAI) problem

The initial value differential-algebraic inequality (DAI) problem that this paper
addresses may be generally stated as

ẋ = f(x, u, w(t), t) (dynamics)(1a)

0 ≥ φ(x, u, t) (path constraints)(1b)

subject to

bupper ≥

(

x
u

)

≥ blower (bounds) and(1c)

x(t0) = x0 (consistent initial conditions)(1d)

where x ∈ Rm denotes the differential state variables; f : Rm × Rqc(t) × R → Rm

u ∈ Rqc(t), qc(t) ≤ m is the vector of controls and algebraic state variables (i.e., in
general, all the algebraic variables and hereafter referred to as only algebraic vari-
ables); and φ : Rm×Rqc(t)×R → Rq is the vector of scleronomic and path inequality
constraints, hereafter referred to as path constraints only and t ∈ [t0, tf ] ⊂ R. Also,
we assume that ractive(t) ≤ qc independent path constraints are active (hereafter,
in the analysis, active path constraints would be used to mean only independent
active path constraints) at a t ∈ [t0, tf ]. Also assumed is ractive(t) ≤ m. Obvi-
ously, ractive(t) ≤ q since the active constraints are a subset of the given inequality
constraints. The vector w(t) is a finite dimensional real vector of the algebraic
variables which are specified by the user as input functions of time as part of the
intermediate level specification of the constraint programming. Over subintervals
of [t0, tf ] depending on the user input, individual algebraic variables may be either
a component of w(t) when specified as a function of t or is a component of u when
available to the DAI solver as an unknown corresponding to an active constraint in
φ. Thus the dimension qc of u may vary in time.

The Jacobians ∂f
∂x and ∂f

∂u are assumed to exist and to be finite in a suitable
norm everywhere on the range of values taken by x and u over [t0, tf ]. Let the
time interval [t0, tf ] be partitioned with N + 1 ∈ N mesh points t0 < t1 < t2 · · · <
tn < tn+1 · · · < tN = tf . We also assume that x(t0) = x0 is given, and that the
algebraic variables in u(t0) = u0 are either given or are computed with sufficient
accuracy satisfying the prescribed initial bounds if any. The initial condition x0, u0

are consistent with the path constraints active at t0. Further, it is assumed that
ḟ(t0), evaluated as df

dt at t = t0, exists and can be computed with the necessary
accuracy.

We assume that the path constraints and the bounds do not combine to form a
set of infeasible constraints and that a solution (x(t) and u(t)) exists everywhere
on [t0, tf ] satisfying the dynamics, path constraints and the bounds (if any) on
states and controls. The DAI integrator, when possible, generates the solution
sequentially at each mesh point starting from t1 to tN in the fashion of a numerical
integrator.

3. Constraint Jacobian in the SQP solver

A full rank square basis matrix B can be formed by permuting the columns of
the full row rank matrix (called the working set Jacobian) J [15] of active SQP
constraint gradients (rows).
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3.1. Construction of the basis matrix. All the independent active path con-
straint gradients (the row vectors in the constraint Jacobian) that should be binding
at a mesh point are qualified to the working set Jacobian when the linear indepen-
dence constraint qualification (LICQ) is satisfied, i.e., the resulting working set
Jacobian has full numerical row rank with respect to a computationally signifi-
cant tolerance. The path constraints in the working set can be represented as
gi := g(xi, ui, ti) = 0 (a subset of the constraints in φi) at the ith mesh point. We

can partition (in the sense of [17]) each gi into g1i(xi, ui, ti) so that
∂g1i

∂ũi
is invertible

(index 1) at the particular iterate values of xi, ui; g2i(xi, ui, ti) so that ∂g1i

∂vi
is not

invertible but ∂g2i

∂xi

∂fi
∂vi

is invertible (i.e., index 2); and g3i(xi, ui, ti) for index greater
than 2. Corresponding to the active path constraint partitions, the algebraic vari-
ables are been partitioned into ũi (index 1), vi (index 2), ṽi (index greater than
2) and w̃i (rest of the algebraic variables) based on techniques discussed in [17].
For simplicity of analysis, we shall assume that g2i(xi, ui, ti) and g3i(xi, ui, ti) are
in the form of g2i(xi, ti) and g3i(xi, ti) as is common in most trajectory planning
problems. The differential variables xi along with the algebraic variables ũi (index
1), vi (index 2), and ṽi (index greater than 2) constitute the set of basic variables.
The algebraic variables that become basic variables correspond to the permuted
columns of the working set Jacobian J so that the basis matrix has a minimum
condition number over all the available permutations of the columns [15]. The
variables in w̃i make up the set of non-basic and super-basic variables (as in [15]).

We represent







∂g1i

∂xi
∂g2i

∂xi
∂g3i

∂xi






simply as ∂gi

∂xi
. Similarly we represent

(

∂fi
∂ũi

∂fi
∂vi

∂fi
∂ṽi

)

as

∂fi
∂ubi

; and ∂gi
∂ubi

represents the Jacobian of (g1
T
i , g2

T
i , g3

T
i )

T with respect to the basic

variables ubi := (ũT
i , v

T
i , ṽ

T
i )

T . Also, gi := (g2
T
i , g3

T
i )

T is the vector of active path
constraints and active bounds with index 2 or higher that must be satisfied at mesh
point i and vi := (vTi , ṽ

T
i )

T is the vector of all index 2 and higher algebraic variables
computed at mesh point i. For any function ϕ, ϕ(ti) := ϕ(x(ti), u(ti), w(ti), ti)
denotes the analytical value at the mesh point i whereas ϕi is the numerically
computed value at the same mesh point.

4. The α method

The so called generalized-α method which we refer to simply as the α method
was originally formulated for integration of stiff second order systems in [5] and
was applied for solving the stabilized index 2 DAEs of flexible multibody dynamics
in [20]. In this paper, the method (similar to that in [12]) is adopted to the first
order DAI systems with inequality algebraic constraints using the same algorithmic
parameters as in [5].

4.1. Discretization of the DAI. The α method discretization of the DAI prob-
lem with first order differential equations is obtained by trivially setting M = 0
followed by elimination of the velocity level equations in the formulation found in
[5]. Given a feasible solution xn, un and an algorithmic variable an at the nth mesh
point, the DAI solver finds at the nth time step a feasible solution xn+1, un+1 and
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an an+1 using the SQP method such that

xn+1 = xn +

(

1−
β

γ

)

hnf(xn, un, w(tn), tn) +
β

γ
hnf(xn+1, un+1, w(tn+1, tn+1)

+

(

1

2
−

β

γ

)

h2
nan(2a)

an+1 =
1

hnγ
(f(xn+1, un+1, w(tn+1, tn+1)− f(xn, un, w(tn), tn))

+

(

1−
1

γ

)

an,(2b)

0 ≥ φ(xn+1, un+1, w(tn+1), tn+1)(2c)

buppern+1 ≥

(

xn+1

un+1

)

≥ blowern+1(2d)

where

γ =
2

ρ+ 1
−

1

2
(3a)

β =
1

(ρ+ 1)2
(3b)

and ρ ∈ [0, 1) is a user-selectable regularization parameter and hn := tn+1 − tn is
the time step size on the normalized time interval [0, 1] (i.e., t0 = 0 and tf = 1). A
numerically computed solution xn and un at tn approximate an analytical feasible
solution x(tn) and u(tn) which is assumed to exist. It must be remarked that a
DAI step (2a-2c) does not generally have a unique numerical solution unlike a DAE

with index 2 or lower. The initial condition a(t0) is evaluated as ḟ = df
dt at t = 0

with x(t0) = x0 and u(t0) = u0. Thus, we use a0 = a(t0) = ḟ0.

4.2. Continuity assumption. In our analysis u is assumed to be Lipschitz con-
tinuous everywhere on [t0, tf ]. A smoother continuity assumption would not be
realistic for many trajectory planning problems where sharp changes are likely in
u . Following [1] the Lipschitz constant for u may be thought to be very large,
i.e, as large as needed, but finite whenever there are sharp changes in the values of
u. Consistently, we assume that f too is Lipschitz continuous in t everywhere on
[t0, tf ]. We also assume that x is Lipschitz continuous on [t0, tf ].

4.3. Assumption on high index active path constraints. For simplicity of
analysis but without loss of broader applicability and as is common in trajectory
planning problems we assume that the high index active path constraints are only
in the form of gi(xi, ti) = 0 at the ith mesh point.

4.4. Local error estimate for differential variables. Let T be the set of mesh
points {t1, · · · , tN}. For any ϕ(x, u, t) we represent ϕ(xn, un, tn) as ϕn when xn, un

are numerically computed at tn and represent ϕ(x(tn), u(tn), tn) as ϕ(tn) when
x(tn), u(tn) are analytically evaluated at tn. For 0 < hi < Ch where Ch is some
finite constant and any function ϕ(t), we define

‖ϕ‖S := max
ti∈{T\tN}∪t0

‖ϕ(ti+1)− ϕ(ti)‖∞
hi

(4)

and ∆f(tn) := f(tn+1)−f(tn). Let h := maxi∈{0,··· ,N−1} hi = maxti∈t0∪{T \tN} |ti+1−
ti| be the maximum step size.
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Lemma 1. For f being Lipschitz continuous, the local error in x, εLx, of the
α-method discretization (2a-2b) is O(h2) and that of the algorithmic variable a is
O(1).

Proof. After solving the recurrence

a(tn+1) =
1

hnγ
(f(tn+1)− f(tn)) +

(

1−
1

γ

)

a(tn),(5)

the analytical value (at nth mesh point) of the algorithmic variable a, denoted as
a(tn), can be written as

a(tn) = a0

(

γ − 1

γ

)n

+
n
∑

j=1

(γ − 1)j−1γ−j(f(tn+1−j)− f(tn−j))

hn−j
,(6)

from which it may be seen that
(

a(tn)−
∆f(tn)

hn

)

=

(

1−
1

γ

)n

a0 +
1

γ

n
∑

j=1

(

1−
1

γ

)j−1
∆f(tn−j)

hn−j
−

∆f(tn)

hn

(7)

Since
∣

∣

∣1− 1
γ

∣

∣

∣ < 1 and 0 ≤
(

1
2 − β

γ

)

| 1γ |
|1− 1

γ |−1
≤ 1

6 and f is assumed to be Lipschitz

continuous in t on [0, 1], the expansion in equation (7) leads us to the estimate that

∣

∣

∣

∣

1

2
−

β

γ

∣

∣

∣

∣

‖∆f(tn)− a(tn)h‖∞ ≤

∣

∣

∣

∣

1

2
−

β

γ

∣

∣

∣

∣

∣

∣

∣

1
γ

∣

∣

∣

1−
∣

∣

∣1− 1
γ

∣

∣

∣

(

1−

∣

∣

∣

∣

1−
1

γ

∣

∣

∣

∣

n)

‖f‖Sh

+

∣

∣

∣

∣

1

2
−

β

γ

∣

∣

∣

∣

(∣

∣

∣

∣

1−
1

γ

∣

∣

∣

∣

n

(‖f‖S + ‖a0‖∞)h+ ‖f‖Sh

)

≤ (‖f‖S + ‖a0‖∞)h(8a)

= O(h).(8b)

The local error in x, εLx, can be written from considering the error for trapezoidal
rule for integration applied to Lipschitz continuous functions [6]:

εLxn+1 =

∫ tn+1

tn

f(s)ds−

(

f(tn) + f(tn+1)

2

)

hn

+

(

1

2
−

β

γ

)

hn (∆f(tn)− a(tn)hn)(9)

and then estimating

‖εLxn+1‖∞ ≤
h2

4
‖f‖S + (‖f‖S + ‖a0‖∞)h2(10a)

= O(h2).(10b)

The local error in computing a at a mesh point t = tn+1 is obtained from getting
an+1 − a(tn) from (2b) and then substituting appropriate terms in (2a).

‖εLan+1‖∞ ≤
‖εLxn+1‖∞

βh2
n

+O(h) = O(1).(11)

�
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4.4.1. Remark 1. The larger error in a is computationally acceptable as long as
x convergences to a feasible solution since a is only an algorithmic variable and
does not approximate any physical quantity.

4.4.2. Remark 2 (A-stability). The one dimensional test equation ẏ = λy (with
λ ∈ C) when discretized with the α-method equations (2a-2b) yields the amplifica-

tion matrix Â so that
(

yn+1 h2an+1

)T
= Â

(

yn h2an
)T

holds at the nth time step.
It may be verified that

Â =

(

− 2Ω2

2Ω+(ρ−3)(ρ+1) +Ω+ 1 (ρ−1)2

2(2Ω+(ρ−3)(ρ+1))

− 2Ω2(ρ+1)2

2Ω+(ρ−3)(ρ+1)
−(Ω−3)ρ2−2(Ω−1)ρ+Ω−1

2Ω+(ρ−3)(ρ+1)

)

(12)

where Ω := λh. The magnitude of the eigenvalues of Â is given by

∣

∣

∣

∣

∣

−
2(Ω− ρ)ρ±

√

−(2Ω(ρ− 1)− ρ− 1)(ρ+ 1)3 + 2

2Ω + (ρ− 3)(ρ+ 1)

∣

∣

∣

∣

∣

≤ 1

for all Ω ∈ C−. This can be seen by taking limits as Ω → 0 and as ℜΩ →
−∞, |ℑΩ| → ∞ and observing that the magnitude of the eigenvalues grows smoothly
in [0, 1] on C

− for ρ ∈ [0, 1). The amplification matrix is then strictly contractive for
ρ ∈ [0, 1) and Ω ∈ C− (by Theorem IV.11.2 in [9]). Hence the discretization (2a-2b)
is A-stable. When a feasible solution can be found such that no path and bounds
constraints become active, the α-method acts as an A-stable ODE integrator over
successive time steps.

4.5. Active DAE. Let there be ractive(tn+1) = ra independent path and bounds
constraints gn+1 = 0 active at the nth time step. The equations gn+1(xn+1, un+1, tn+1) =
0 must be satisfied at the n + 1th mesh point along with the corresponding alge-
braic basic variables ubn+1. The SQP method must satisfy the following discretized
DAE.

xn+1 = xn +

(

1−
β

γ

)

hnf(xn, un, tn) +
β

γ
hnf(xn+1, un+1, tn+1)

+

(

1

2
−

β

γ

)

h2
nan(13a)

an+1 =
1

hnγ
(f(xn+1, un+1, w(tn+1), tn+1)− f(xn, un, w(tn), tn))

+

(

1−
1

γ

)

an(13b)

0 = g(xn+1, un+1, tn+1)(13c)

at the nth time step. Any active bounds in (2d) are included in (13c).
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As described in section 3.1, the basis matrix B for the discretized DAI problem
as in (13) can be constructed as follows.

B :=







−I + β
γ

∂fi
∂xi

hi−1 0 β
γ

∂fi
∂ubi

hi−1

1
γhi−1

∂fi
∂xi

−I 1
γhi−1

∂fi
∂ubi

∂gi
∂xi

0 ∂gi
∂ubi







:=



















−I + β
γ

∂fi
∂xi

hi−1 0 β
γ

∂fi
∂ubi

hi−1

1
γhi−1

∂fi
∂xi

−I 1
γhi−1

∂fi
∂ubi

∂g1i

∂xi
0

(

∂g1i

∂ũi

∂g1i

∂vi

∂g1i

∂ṽi

)

∂g2i

∂xi
0

(

∂g2i

∂ũi

∂g2i

∂vi

∂g2i

∂ṽi

)

∂g3i

∂xi
0

(

∂g3i

∂ũi

∂g3i

∂vi

∂g3i

∂ṽi

)



















=

















−I + β
γ

∂fi
∂xi

hi−1 0 β
γ

∂fi
∂ubi

hi−1

1
γhi−1

∂fi
∂xi

−I 1
γhi−1

∂fi
∂ubi

∂g1i

∂xi
0

(

∂g1i

∂ũi

∂g1i

∂vi

∂g1i

∂ṽi

)

∂g2i

∂xi
0

(

0 0 0
)

∂g3i

∂xi
0

(

0 0 0
)

















(14)

corresponding to an ordering (xT
i , a

T
i , ub

T
i )

T of the differential, algorithmic and
algebraic variables at the ith mesh point. The basis matrix B in (14) is essentially
the Jacobian of the active DAE system discretized with the α method. The working
set Jacobian is then J :=

(

B NS

)

in the column-block partitioned representation
and NS represents the columns corresponding to all the super-basic and non-basic
variables.

4.6. Local error of index 1 algebraic basic variables.

Lemma 2. If f is Lipschitz continuous, then the local error in index 1 algebraic
basic variables for the discretization (13) is Kv‖εLvn+1‖∞+Kṽ‖εLṽn+1‖∞+O(h2).

Proof. Let the active index 1 path and bounds constraints g1n+1(xn+1, un+1, tn+1) =
0 be solved for ũn+1 with at most O(h3) error at the nth time step, where O(h2)

is the local error in updating x. Since
∂g1n+1

∂ũn+1
is invertible, then by the implicit

function theorem, one can introduce a unique linear function G1(x, v, ṽ, t) for index
1 ũ variables such that

ũ = G1(x(t), v(t), ṽ(t), t) +O(‖δx‖2) +O(‖δv‖2) +O(‖δṽ‖2) +O(hp+1)(15)

over [tn, tn+1]. The errors in linearization ‖δx‖, ‖δv‖ and ‖δṽ‖ are O(h) because
of Lipschitz continuity assumption. The local error in index 1 algebraic variables
is estimated as ‖εLũn+1‖∞ ≤ Kx‖εLxn+1‖∞ + Kv‖εLvn+1‖∞ + Kṽ‖εLṽn+1‖∞ +
K1h

2+K2h
3by Lemma 1, where the K’s are suitable constants independent of h. In

case of the index 1 constraints of the form g1(xn+1, ũn+1, tn+1) = 0, ‖εLũi+1‖∞ ≤
Kũh

2 since by Lemma 1 the local error in x is O(h2). �

4.7. Numerical rank of B and the need for regularization. In the analysis
that follows we assume B as in (14) to be invertible at every time step. If the local
index of the active DAE is less than or equal to 2, B would be well-conditioned
enough to be inverted. For index greater than 2, B’s condition number increases
as h−ν , ν being the local index of the active DAE (see section 5.4.2 in [3]). This
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leads to numerical rank deficiency of B and to failure of the SQP convergence.
Jumps and sharp changes in the active path and bounds constraints set also causes
ill-conditioning. When an ill-conditioned basis matrix is detected, the present DAI
solver tries to regularize B by varying ρ in (2). Under certain conditions, a regu-
larized and invertible B can be obtained. We discuss the regularization property in
section 6.

4.8. Local error of the higher index algebraic basic variables.

Lemma 3. If B in (14) is full rank and f, x are Lipschitz continuous in t, then
the local error of the index > 1 the suitably scaled algebraic basic variables for the
discretization (13) is O(h).

Proof. Let vn :=
(

vTn ṽTn
)T

and gn := (g2
T
n , g3

T
n )

T . We introduce the following
matrices:

An :=

(

∂f

∂x

)

n

(16a)

Mn :=

(

I −
β

γ
hnAn

)−1

(16b)

Ln := I +

(

1−
β

γ

)

hnAn(16c)

Dn :=

(

∂f

∂v

)

n

(16d)

Cn :=

(

∂g

∂x

)

n

(16e)

Qn := (CnMnDn)
−1 CnMn(16f)

Pn := I −DnQn (projection)(16g)

where f is redefined as f := f(x,G1(x, v, t), v, w(t), t) after eliminating the index 1
algebraic variables as in the proof of Lemma 2. Let total r ≤ ractive path and bounds
constraints be active with index greater than 1 at the nth time step. Then Dn ∈
Rm×r is formed by permuting r appropriate columns of ∂f

∂u (cf. the construction in

section 3.1). The matrix Cn is formed by selecting the r rows of ∂φ
∂u corresponding

to the active high index path and bounds constraints gn+1 = 0. Accordingly,
vn corresponds to the columns of Dn and are those algebraic basic variables that
control onto the active path and bounds constraints (At every time step algebraic
variables constituting v may change according to active path constraints.). Since B
is assumed to be full rank CnMnDn is invertible too. This allows us to construct the
projection Pn. It may be remarked that if the active path and bounds constraints
are only index 2, then Pn = I −Dn(CnDn)

−1Cn +O(h) since CnDn is invertible for
index 2 active DAE. For index 1 and 0 active DAE, obviously Pn = I;Qn = 0.

From (13), a perturbation δxn+1 to the solution evaluated at the n+ 1th mesh

point yields δxn+1 = β
γhnδfn+1 subject to gn+1(xn+1 + δxn+1, tn+1) = 0, from

which with proper projections we obtain

δfn+1 =

(

Pn+1An+1 +
γ

βhn−1
(I − Pn+1)

)

δxn+1 +O(‖δxn+1‖
2)(17a)

leading to

Dn+1δvn+1 =

(

γ

βhn
Dn+1Qn+1 −Dn+1Qn+1An+1

)

δxn+1 +O(‖δxn+1‖
2)(17b)
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where ‖δxn+1‖2 = O(h2) because of Lipschitz continuity of x. Letting δxn+1 =
εLxn+1, and taking norms, we get the estimate that

‖Dn+1εLvn+1‖∞ ≤ K‖Dn+1εLxn+1‖∞/hn +O(h2) ≤ K1h(18)

using Lemma 1. �

5. Stability of the DAI solver

Definition 1 (Stability of the (linearized) DAI solver). We define a (linearized)
DAI solver to be stable if the error (with respect to the closest feasible analytical so-
lution) in differential and algebraic variables, εyn, at the nth (even as n → ∞, n <
∞) mesh point does not grow over the nth time step, i.e., the map εyn → εyn+1 is
contractive when the locally active DAE is stable.

In the following theorem we show the stability of the present discretization for
a linearized DAI problem.

Theorem 1. For a sufficiently small h, let the DAI discretization (2) at the nth
time step (n = 0, · · · , N − 1) induce an active DAE discretized as in (13) and is
locally linearized at t = tn as in (16). Assume that B as in (14) has full numerical
rank with respect to a computationally suitable cut-off tolerance at every time step
and that the SQP method satisfying the locally linearized discretization (2) converges
to a feasible solution (xn, un) with an equality constraint satisfaction tolerance of
O(h3) or less at every mesh point n = 1, · · · , N .

• (a) Then the α-method DAI solver is stable for ρ ∈ [0, 1) even as N →
∞, N < ∞ given that at every time step n where n = 0, · · · , N , Λ(PnAn) ∈
C−, Λ being the spectrum of PnAn.

• (b) Assume that at least one analytical feasible solution to the mesh point
wise linearized DAI problem (1) exist over the normalized simulation in-
terval [0, 1] such that it satisfies exactly the same active path and bounds
constraints as satisfied by the numerical solutions xn, un at every mesh point
n = 1, · · · , N . Let x(t), u(t) be such an analytical solution. Then for f, x be-
ing Lipschitz continuous in t, ‖xn−x(tn)‖ = O(h2) and ‖un−u(tn)‖ = O(h)
at every mesh point n = 1, · · · , N .

Proof. For h → 0, h > 0, the SQP solver updates x, u at the nth time step as




(

xn+1

ubn+1

)

w̃n+1



 =

(

B−1 −B−1NS

0 I

)





(

xn

ubn

)

w̃n



(19)

leading to the following after some tedious manipulation:

xn+1 = MnPnLnxn +

(

1

2
−

β

γ

)

h2
nMnPnan + Fx(w̃n)(20a)

Dnvn+1 = Dn(−
γ

βhn
QnLnxn +

(

1−
γ

β

)

vn + hn

(

1−
γ

2β

)

Qnan) + Fu(w̃n)(20b)

an+1 =
1

h2
n

(

hn

γ
AnMnPnLn −

1

β
(I − Pn)Ln −

hn

γ
An

)

xn −
1

βhn
Dnvn(20c)

+(
hn

γ

(

1

2
−

β

γ

)

AnMnPn −

(

1

γ
−

1

2β

)

Pn +

(

1−
1

2β

)

I)an

+Fa(w̃n),
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where Fx,Fu,Fa are linear vector functions of super-basic and nonbasic algebraic
variables which do not get updated.

From the updates (20) and using (6) and (17) and after some more tedious
manipulations, the global error in x at n + 1th mesh point, denoted by εxn+1 :=
x(tn+1)− xn+1, can be written as

εxn+1 = MnPnM
−1
n εxn +

(

1−
β

γ
−

βhn

γ2hn−1
+

hn

2γhn−1

)

hnMnPnAnεxn

−

(

1

2
−

β

γ

)

h2
n

γ2

n−1
∑

j=1

(

1−
1

γ

)j−1
(γ − 1)hn−j − γhn−j−1

hn−jhn−j−1

×MnPn

(

Pn−jAn−j +
γ

βhn−j−1
(I − Pn−j)

)

εxn−j

+Ch2
n +O(h3

n)(21)

for an equality constraint satisfaction tolerance of O(h3) in the SQP method and
for a local error in x of O(h2) (as obtained in Lemma 1 and C is a suitable constant
independent of hn). The super-basic and nonbasic variable errors do not enter the
projected equation since they do not control on to any active constraints in the
current time step and the projection of their errors on to x is zero.

At nth time step let exactly r (as in proof of Lemma 3) path and bounds con-
straints with index greater than 1 be active. Therefore Pn ∈ Rm×m can be decom-
posed as UnĨnU

T
n such that UT

n Dn = 0 in which Un ∈ Rm×m is a unitary matrix.

The matrix Ĩn is constructed from an m×m identity matrix by replacing r diagonal
entries in the columns of basic algebraic variables (corresponding to the high index
active path and bounds constraints) with zeros.

In the recurrence (21) the coefficient amplification matrices of the form

R1 := MnPn

(

M−1
n +

(

1−
β

γ
−

βhn

γ2hn−1
+

hn

2γhn−1

)

Anhn

)

,(22a)

R2 :=

(

1

2
−

β

γ

)

h

γ2

(

1−
1

γ

)j−1

MnPnPn−jAn−j and(22b)

R3 :=

(

1

2
−

β

γ

)

1

γ2

(

1−
1

γ

)j−1
γ

β
MnPn(I − Pn−j))(22c)

amplify the error. To show that the DAI solver is stable, R1, R2 and R3 need to
be contractive so that the local errors do not grow with successive time steps.

Let QTAQ
H be the Schur Decomposition of An. Then Mn, by its construction

in (16), has a Schur decomposition of the form QT1Q
H . Similarly

(

M−1
n +

(

1−
β

γ
−

βhn

γ2hn−1
+

hn

2γhn−1

)

Anhn

)

can be written in the form of QT2Q
H . In the above decompositions TA, T1, T2 are

upper triangular matrices. Then, due to the projection Pn, R1 will have the same
spectral radius as that of a matrix that has at most m − r non-zero eigenvalues
whose magnitudes are upper bounded by the maximum magnitude of the diagonal
entries of T2T1. This means, for an eigenvalue λ in the spectrum of PnAn which is
in C−, the spectral radius of R1 expressed as

∣

∣

∣

∣

∣

∣

1 +
(

1− β
γ − β

γ2 + 1
2γ

)

Ω

1− β
γΩ

∣

∣

∣

∣

∣

∣

≤ 1
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for ρ ∈ [0, 1) ∀ λhn =: Ω. The upper bound on the spectral radius can be verified
by observing that there are no poles for the eigenvalues on C− and by taking the
limit ℜΩ → −∞, |ℑΩ| → ∞. Directly making the surface plots over Ω ∈ C

− for
various ρ’s also verifies the bound. Then R1 does not amplify the error it operates
on and is strictly contractive (by Theorem IV.11.2 in [9]).

Since ‖Pn‖2 = 1, the spectral radius of R2 is same as that of a matrix whose
eigenvalues are upper bounded by the maximum magnitude of the diagonal entries
of TAT1, i.e.,

∣

∣

∣

∣

1

2
−

β

γ

∣

∣

∣

∣

∣

∣

∣

∣

1

γ2

∣

∣

∣

∣

∣

∣

∣

∣

1−
1

γ

∣

∣

∣

∣

j−1
∣

∣

∣

∣

∣

Ω

1− β
γΩ

∣

∣

∣

∣

∣

≤
2

25

(where j ∈ {1, · · · , n− 1}) for all λjh =: Ω ∈ C
−, λj ∈ Λ(Pn−jAn−j) ∈ C

−. (The
upper bound on the spectral radius can be easily checked simply by making surface
plots). Then, R2 too is strictly contractive by Theorem IV.11.2 in [9].

Replacing An−j with I and Pn−j with I − Pn−j in R2 and arguing in a similar
fashion it can be seen that the spectral radius of R3 is upper bounded by 0.06.

In the error recurrence (21) consider the coefficients under the summation sign.
As n+ 1 = N → ∞, N < ∞, the error from each of the mesh points N − 2, · · · , 1
is multiplied by a factor of at most

max















∣

∣

∣

1
2 − β

γ

∣

∣

∣

(

limN→∞
|1− 1

γ |
N
−|1− 1

γ |
|1− 1

γ |−1

)

|γ|2
,

∣

∣

∣

1
2 − β

γ

∣

∣

∣

(

limN→∞
|1− 1

γ |
N
−|1− 1

γ |
|1− 1

γ |−1

)

|γ||β|















‖R3‖.

But,
∣

∣

∣

1
2 − β

γ

∣

∣

∣

(

limN→∞
|1− 1

γ |
N
−|1− 1

γ |
|1− 1

γ |−1

)

|γ|2
≤

1

25

and
∣

∣

∣

1
2 − β

γ

∣

∣

∣

(

limN→∞
|1− 1

γ |
N
−|1− 1

γ |
|1− 1

γ |−1

)

|γ||β|
≤

1

16

for ρ ∈ [0, 1). Then, as N → ∞, N < ∞, the errors from the mesh points N −
2, · · · , 1 does not grow, i.e., are not amplified. But we have already established
that R1 which amplifies error from N −1th mesh point is contractive. Since R2, R3

are strictly contractive too, we have overall strict contractivity for the map εxn →
εxn+1 for ρ ∈ [0, 1) and for all Λ(PiAi) ∈ C−, i = 0, · · · , n at the nth time step
even when n is very large but finite.

Scaling (20b) by Dn we estimate the error in v, εvn+1. We can express εan in
terms of εxn−j , j = 0, · · · , n using (6) and (17). We have already established that at
any mesh point i, εxi does not grow over the time steps. The amplification matrix
of εan, DnQn in the scaled (20b), is a projection matrix while |1− γ/(2β)| ≤ 1/4 for
ρ ∈ [0, 1). The amplification matrix of εvn is strictly contractive since |1−γ/β| < 1
for ρ ∈ [0, 1). Hence the map εvn → εvn+1 is strictly contractive for the same
conditions as for the map εxn → εxn+1.

In (20c), following a similar approach as above the spectral radius of the matrix

(
hn

γ

(

1

2
−

β

γ

)

AnMnPn −

(

1

γ
−

1

2β

)

Pn +

(

1−
1

2β

)

I)
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can be shown to be upper bounded by
∣

∣

∣

∣

∣

1
2 − β

γ

γ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ω

1− β
γΩ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

1

γ
−

1

2β

∣

∣

∣

∣

+

∣

∣

∣

∣

1−
1

2β

∣

∣

∣

∣

< 1 ∀ λhn =: Ω ∈ C
−; λ ∈ Λ(PnAn) ∈ C

−

for ρ ∈ [0, 1). The matrix above is the amplification matrix for εan. We have
already established that εxn → εxn+1 and εvn → εvn+1 are strictly contractive.
Then the map εan → εan+1 is strictly contractive for the same conditions as for
the map εxn → εxn+1.

The DAI solver is then stable as defined in Definition 1. This completes the
proof of item (a).

To establish item (b) we use induction. Let ‖x(tn)− xn‖ = O(h2) and ‖v(tn)−
vn‖ = O(h). From Lemmas 1, 2 and 3, the error at the first mesh point is ‖x(t1)−
x1‖ = O(h2) and ‖u(t1)− u1‖ = O(h). Because of strict contractivity of the maps
εxn → εxn+1 and εvn → εvn+1, we have ‖x(tn+1) − xn+1‖ = O(‖x(tn) − xn‖) +
O(h2) = O(h2) and ‖v(tn+1)− vn+1‖ = O(‖v(tn)− vn‖)+O(h) = O(h) which leads
to the overall estimate ‖u(tn+1)− un+1‖ = O(h). This establishes item (b). �

5.1. Remarks. In Theorem 1 the results are mesh point wise and unlike an es-
timate over the entire simulation interval as is commonly obtained for a DAE or
an optimal control problem, since the DAI solver is local in strategy and there is
generally no unique solution. The theorem establishes that the DAI integration
procedure does not blow up provided the basis matrix is invertible and provided
that the dynamics projected on to the active path and bound constraints is stable.

6. Regularization of the basis matrix

In this section we discuss the regularization property of the α discretization for
improving the condition number of the basis matrix the need for which was stated
in section 4.7. This is an important property since a large class of path constraints
in trajectory planning when active is of index greater than 2 and the basis matrix
tends to have high condition number leading to the failure of the SQP solver.

6.1. Regularization via singular value perturbation. We use a well known
singular value perturbation expansion (Result 4.2 in [18]). Let

B = UBΣBV
T
B = UB

(

diag(σ̃↓
{1,··· ,2m+ra−rs}

) 0

0 diag(σ̄↓
{2m+ra−rs+1,··· ,2m+ra}

)

)

V T
B

be the singular value decomposition of the basis matrix in (14) at any mesh point.

The matrices Us, Vs are square unitary matrices and diag(σ̃↓
{1,··· ,2m+ra−rs}

) is the

diagonal matrix of singular values greater than a small positive real number TOL.
The superscript ↓ denotes sorting in decreasing order of magnitude. Similarly

diag(σ̄↓
{2m+ra−rs+1,··· ,2m+ra}

) is the diagonal of singular values less than or equal

to TOL where ra is the number of active path constraints including some with
index greater than 2 at the ith time step.

Theorem 2 (Regularization). Suppose the matrix function B(ρ) : (0, 1) ⊂ R →
R(2m+ra)×(2m+ra) is constructed over the ith time step as in section 3.1 and has
a singular value decomposition UBΣBV

T
B ; UB and VB being the unitary matrices

of singular vectors. ΣB is the diagonal matrix of singular values (appearing in
decreasing order of magnitude down the main diagonal). At the given ρ and given
iterate values (xT

i , a
T
i , u

T
i )

T at the ith mesh point, let B(ρ) have rs smallest singular
values that are represented as zero in a given finite precision arithmetic. Further,
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let UB be column-partitioned as (Ul Us) where Us has rs columns. Similarly, VB

is column-partitioned as (Vl Vs) with Vs having rs columns. Assume that UT
s ḂVs

is full rank where Ḃ :=
(

dB(ρ−̺)
d̺

)

̺=0
. Then Ḃ has numerical rank at least equal

to rs with a cut-off tolerance equal to or greater than that used for determining the
numerical rank of B(ρ) and the perturbed basis matrix B(ρ− ̺) has full numerical
rank with the same cut-off tolerance as that used for B(ρ).

Proof. Apply Result 4.2 in [18] to B(ρ− ̺). Then, a decrease ̺ > 0, ̺ → 0 in
the value of ρ perturbs the rs smallest singular values of B as

σ2m+ra−rs+k (B(ρ− ̺)) = σk

(

UT
s ḂVs

)

̺+O(̺2) where k = 1, · · · , rs.(23)

Hence the result. �
Remark. The condition UT

s ḂVs being full rank may seem theoretically restrictive.

However from a computational point of view it is realistic when structure of Ḃ and
the engineering context is considered. Since Us and Vs are more likely to overlap
the column space of D, it is thus practical to make the assumption that for a
significantly useful range of problems we shall obtain a full rank UT

s ḂVs. From an
engineering point of view this is the coupling between dynamics and control and is
physically realistic to be assumed being available.

Theorem 3 (Magnitude of Regularization). Let the matrix AiAT
i + DiDT

i (as
defined in equations (16)) have numerical rank p ≤ m (m being the dimension of
differential variables x) with a suitable cut-off tolerance at the ith mesh point with
hi−1 set to h.

Then, σp(Ḃ) ≥ h 4(1−ρ)
(ρ+1)2(3−ρ)2 σ

1
2
p (AiAT

i +DiDT
i ).

Proof. Differentiating B with respect to ρ and taking ̺ = 0 we find Ḃ. Then
we construct ḂḂT and exploiting the structure we write

ḂḂT = XT
(

AiA
T
i +DiD

T
i

)

X =: XTYX(24)

where X :=
(

d(β/γ)
dρ hIm×m, d(1/γ)

dρ
1
hIm×m, 0

)

. X is clearly rank m. The matrix

Y is real symmetric positive semi-definite. Obviously, XXT is invertible with one
eigenvalue (h d

dρ
β
γ )

2 + ( 1h
d
dρ

1
γ )

2 of algebraic multiplicity m. Thus σ2
{1,··· ,m}(X) =

(h d
dρ

β
γ )

2 + ( 1h
d
dρ

1
γ )

2. Applying Cauchy’s interlacing theorem, we estimate that

σ2
p(Ḃ) = σp(ḂḂT ) ≥ h2σp(AiAT

i +DiDT
i )
(

d
dρ

(

β
γ

))2

= h2
(

4(1−ρ)
(ρ+1)2(3−ρ)2

)2

σp(AiAT
i +

DiDT
i ). �

From its structure σ1(B) ≥ 1 ≫ TOL. Then increase of the smallest singular values
is sufficient for regularization.

Corollary 1. If rs ≤ rank(AiAT
i + DiDT

i , TOL) = p (rs as in Theorem 3), all
the smallest singular values of B are regularized as

σ2m+ra−rs+k(B(ρ− ̺)) ≥ ηrh
4(1− ρ)

(ρ+ 1)2(3 − ρ)2
σ

1
2
p (AiA

T
i +DiD

T
i )̺+O(̺2)(25)

where ηr ∈ (0, 1], 1 ≫ ̺ > 0, ρ ∈ [0, 1), k = 1, · · · , rs.

provided the assumptions made in Theorem 2 holds. Here h is the time step size for
the particular time step at which the solution is being sought and ηr is a function
of ‖UT

s W‖ and ‖ZTVs‖ (Us, Vs as in Theorem 2, W,Z being matrices of left and

right singular vectors of Ḃ).
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Proof. The result follows directly from Theorems 2 and 3 and by rewriting (23).
�

6.1.1. Scaling. A scaling (as in [2]) inside QP iterations can be applied to B by
scaling x as x/h and a as ah. Then obviously X in (24) becomes

(

d(β/γ)
dρ Im×m, d(1/γ)

dρ
1
hIm×m, 0

)

so that the magnitude of regularization is then independent of the time step and the

first term on the right hand side of (25) becomes ηr
4(1−ρ)

(ρ+1)2(3−ρ)2 σ
1
2
p (AiAT

i +DiDT
i )̺.

6.1.2. Remark. The regularization is consistent since the DAI discretization (2)
is stable and consistent for ρ in [0, 1). The regularization results in this section can
be viewed as the time step by time step case of the more general result for a direct
transcription process found in [16].

7. Outline of the DAI integrator algorithm

Step 0. Specify t0, tf , hmax, ERRTOL, TOL,MAXIT,MAXTRY .
Step 1. Check for and compute, if necessary, consistent initialization, i.e., x0, u0

that satisfy the DAI at t0.
Set i = 0.
While ti < tf
If i = 0 then set hi−1 = hmax. End If
Set NTRY = 0.
Step 2. Select ρ ∈ [0, 1) and a non-zero time step size

hi =

√

min{h2
max, h

2
i−1,

ERRTOL

maxj∈[0,i] 2.25‖ai‖∞)
}.

Solve using the SQP method (with constraint satisfaction tolerance TOL and max-
imum number of total minor iterations MAXIT ) for xi+1, ui+1 the following con-
straint satisfaction problem with xg := xi, ug := ui as initial guess values:

min
ui+1,xi+1

J(ui+1, xi+1) = 0 subject to

xi+1 = xi +

(

1−
β

γ

)

hif(xi, ui, ti) +
β

γ
hf(xi+1, ui+1, ti+1) +

(

1

2
−

β

γ

)

h2
i ai

ai+1 =
1

hiγ
(f(xi+1, ui+1, ti+1)− f(xi, ui, ti)) +

(

1−
1

γ

)

ai,

0 ≥ φ(xi+1, ui+1, ti+1)

bupper ≥

(

xi+1

ui+1

)

≥ blower

If SQP has converged then set ti+1 = ti + hi; i = i+ 1 else
Step 2a. If the SQP solver has returned infeasible constraints
then go to Step 2c. End If
Step 2b. If the SQP solver has returned rank deficiency then
if NTRY = MAXTRY or (ρ = 0 and hi = hmax) then go to Step 2c
else if ρ 6= 0 select a new ρ ∈ [0, 1) reduced by 0.1. if ρ = 0, set hi = hmax (Try
regularization)
Set NTRY = NTRY + 1.
Go to Step 2. End If
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End If
Step 2c. If NTRY < MAXTRY then
Choose new xg, ug. Set NTRY = NTRY + 1; go to Step 2
else exit with failure. End If
End If
End While

7.1. Remark. The SQPmethod is used not as an optimizer in the above algorithm
but merely for detecting and satisfying active path constraints. A local objective
function, i.e., non-zero J can be used and this would be similar to trust region
methods [14] in its approach.

8. Numerical Examples

8.1. Re-entry of an RLV. The simplified re-entry phase equations of a Re-usable
Launch Vehicle(RLV) with stationary earth and zero bank angle is considered from
[3] with data similar to [4]. The RLV re-enters the earth’s atmosphere from orbit
and descends to the terminal area energy management phase. The state variables
are altitude (ha), flight path angle (γ) and the velocity (V ). The control variable
is the angle of attack(α). The dynamics in quasi-equilibrium glide with no banking
and spherical earth is given by

ḣa = V sin(γ)

V̇ = −
D

m
− g sin(γ)

γ̇ =
L

mV
+

cos(γ)

V

(

V 2

r
− g

)

where D = 1
2CD(α,M)SV 2 is drag force, L = 1

2CL(α,M)SV 2 is the lift force, S
is the reference area, ρa(ha) is the density taken from standard atmospheric data.
CL(α,M) is the coefficient of lift, CD(α,M)is the coefficient of drag, M is the Mach
number, m is the mass of the vehicle, g(r) = g(re)(r

2
e/r

2) is the acceleration due
to gravity, r = ha + re is the distance from the Earth’s center, re is the radius of
the Earth. The inequality path constraints are given by
Heat Flux : CHρ0.5a V 3.05 < 18.5W/m2

(CH is determined by Chapman heat rate formula and vehicle’s nose radius [4]. )
Dynamic Pressure : 1

2ρaV
2 < 25KPa and

Load Factor : Lcos(α)+Dsin(α)
mg < 4.0.

The first two of the above path constraints can be of local index greater than 2
when active.

Results. The initial condition vector was taken as [ha(0), γ(0), V (0)]T = [150000, 0, 1500]T

in SI units. The SQP solver used was an implementation of an SQP algorithm simi-
lar to the SNOPT [15]. The control variable α has lower and upper bounds as shown
in the figures. Figures 1 to 3 show the trajectories for different ρ and integration
step sizes. From figure 1 it is clear that ρ → 1.0 provides the least regularization
when the path constraints are active at around 25 km altitude. Note that the path
constraints are activated only for 1 or 2 time steps. The problem does not have a
unique solution and the solutions vary with ρ and the size of the uniform time step.

8.2. Navigation of a Robot Vehicle Around Obstacles. Several simulations
were performed on a simplified model of a wheeled robot. The problem is taken from
[19]. The state variables are planar coordinates (x, y), velocity V , and orientation
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Figure 1. RLV trajectories for stepsize = 0.25s, ρ = 0.99
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Figure 2. RLV trajectories for stepsize = 0.25s, ρ = 0.5

θ. The control variables are steering α and acceleration u. The model takes into



ALPHA METHOD FOR DAI 257

0 50 100 150 200 250 300 350 400
−30

−20

−10

0

10

20

30

Time (s)

D
eg

, K
pa

, W
/c

m
2

Constraints

 

 alpha

heat flux

dyn pres

load factor

0 50 100 150 200 250 300 350 400
0

5

10

15
x 10

4

H
ei

gh
t (

m
)

Time (s)

0 50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

V
el

oc
ity

 (
m

/s
)

Time (s)
0 50 100 150 200 250 300 350 400

−40

−30

−20

−10

0

10

20

G
am

m
a 

(d
eg

)

Time (s)

Figure 3. RLV trajectories for stepsize = 0.25s, ρ = 0

account dynamic friction µd, a constant. The dynamics is given by

ẋ = V cos θ

ẏ = V sin θ

θ̇ = V α

V̇ = u− µdV

Collisions with obstacles are avoided by enforcing inequality constraints (which are
index 3 when active) for each obstacle’s convex hull modeled with its circumcircle

(rv + r
(i)
obs) −

√

(x− x
(i)
obs)

2 + (y − y
(i)
obs)

2 < 0 where (x, y) are the vehicle center

coordinates, (x
(i)
obs, y

(i)
obs) are the coordinates of the centroid of the ith obstacle, rv

is the vehicle radius, and robs circumradius of the convex hull of the ith obstacle.
Forward motion of the vehicle is achieved by means of a traveling wave of speed
W imposing an inequality constraint of the form: Wt − x < 0. The same bounds
on states and controls as in [19] are used in the simulations. It may be seen that
steering α corresponds to the obstacle avoidance constraints and that the forward
motion constraint corresponds to the acceleration u. The problem obviously does
not have a unique solution and trajectory generated varies with ρ and the size of
the uniform time step, h.

Results. The results of the simulation are shown as the trajectories traced out
by the robot on the plane (y as vertical axis and x as horizontal) in the figures 4
to 7. The regularization affected by ρ and step size h influences the trajectory of
the robot. As seen from Corollary 1, as ρ → 1 the least regularization is obtained.
In figure 7, a larger time step size improves the regularization over that in figure
6. However a larger time step may not be desirable since it may miss any path
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Figure 4. Navigation of a robot around obstacles, step size =
0.1s, ρ = 0
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Figure 5. Navigation of a robot around obstacles, step size =
0.5s, ρ = 0

constraints active for short duration. It may be mentioned that the trajectory
shown in figure 4 is comparable to that obtained using the method in [19]. At
ρ = 0 with 0.1s step size a useful regularization is obtained. The steering α and
acceleration u both show sharp changes and low continuity across time steps but
are admissible because of the Lipschitz assumption (with large but finite Lipschitz
constant) made in our analysis.

9. Conclusions

An algorithm for generating a feasible solution to an initial value DAI problem at
a computational cost cheaper than the full scale dynamic optimization algorithms
(e.g., Multiple Shooting, Direct Transcription) has been presented and illustrated
with examples. Usage as initial guess generator and as trajectory planner is in-
tended. If adjoint sensitivity equations to the active DAE at each time step can
be incorporated then time step wise adjoint sensitivities of the DAI system may
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Figure 6. Navigation of a robot around obstacles: Failed Regu-
larization, step size = 0.1s, ρ =0.99
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Figure 7. Navigation of a robot around obstacles: step size =
0.5s, ρ = 0.99

be found. The algorithm can then be used an integrator in a Multiple Shooting
algorithm for better handling of path inequality constraints over integration subin-
tervals.
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