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NUMERICAL IDENTIFICATION OF MAGNETIC

PERMEABILITY

HUI FENG, DAIJUN JIANG, AND JUN ZOU

Abstract. This work is concerned with the analysis on a numerical reconstruc-

tion of the magnetic permeability. The ill-posed problem is solved through a

stabilized nonlinear minimization system by an appropriately selected Tikhonov

regularization. The existence and stability of the optimization system are

demonstrated. The nonlinear optimization problem is approximated by an

edge element method, whose convergence is established.
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1. Introduction

In this work we are interested in the numerical reconstruction of the distribution
of the magnetic permeability in the following Maxwell system:

ε(x)
∂E

∂t
−∇×H = J in Ω ,(1.1)

ν(x)
∂H

∂t
+∇×E = 0 in Ω ,(1.2)

where E and H represent the electric and magnetic fields of the physical medium
which occupies a domain Ω in R3. The Maxwell system (1.1)-(1.2) is formed by the
Ampere’s law (1.1), and Faraday’s law (1.2), and plays an important role in most
applications that involve electromagnetism. The coefficients ε(x) and ν(x) in (1.1)
and (1.2) are the electric permittivity and magnetic permeability of the medium
in Ω, while J is the applied electric current density. When the physical properties
of the medium involved are known, i.e. ε(x) and ν(x) are given, one can solve the
system (1.1)-(1.2) to find the behaviors of the electric and magnetic field E and H

in Ω. This is usually called a direct Maxwell problem. While in many applications,
the inverse Maxwell problem may be more interesting and practically important,
where the electric or magnetic property of the physical medium occupied by Ω is
unknown. But knowing them is indispensable to some research investigations in Ω
or to a good understanding of the physical medium Ω and how the fields E and H

behave in Ω. In this work we shall consider the case when the electric permittivity
of the physical medium occupied by Ω is available, but the magnetic permeability
of the medium is unknown. In order to recover the magnetic permeability of the
medium, we need to have some extra measurement data from the electric field E
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or magnetic field H. We shall assume the measurement data of E is available in
some small subregion inside Ω. So the inverse problem to be considered can be
formulated as follows:

Inverse Problem I. Let ω be a subregion in Ω. Given the measurement data

(1.3) Eδ(x, t) ≈ E(x, t) , (x, t) ∈ ω × (0, T ) ,

we will reconstruct the distribution profile of the magnetic permeability ν(x) in the
entire domain Ω.

Noting that only the measurement data of the electric field E is available in
Inverse Problem I, but the Maxwell system (1.1)-(1.2) involves both the electric
and magnetic fields. So it is more natural to deal with a system that involves only
the electric field. To do so, taking the time derivative on both sides of equation
(1.1) and applying equation (1.2) gives the following electric field equation

(1.4) ε(x)
∂2E

∂t2
+∇× (ν−1(x)∇×E) =

∂J

∂t
in Ω .

Complementary to this electric field equation we shall consider the boundary con-
dition

(1.5) E× n = 0 on ∂Ω

and the initial conditions

(1.6) E(x, 0) = E0(x) , Et(x, 0) = E1(x) in Ω .

For the known electric permittivity ε(x), we know physically that it should be
always bounded below and above. Hence we will assume that

(1.7) ε0 ≤ ε(x) ≤ ε1 a.e. in Ω ,

where ε0 and ε1 are two positive constants.
Inverse problems of parameter identifications have attracted a great attention

in the recent two decades due to their practically important applications in engi-
neering and scientific computing; see, e.g. [1] [5] and the references therein. The
mathematical and numerical analysis of identifications of parameters in many par-
tial differential equations were available in the literature, see [1] [2] for the elliptic
system; and [5] [6] [8] [11] for parabolic systems. But very little has been done for
the analysis of numerical reconstruction of the parameters in the electromagnetic
Maxwell system. This motivates the central topic of this current investigation.

2. Problem formulation and existence of solutions

In this section we shall formulate the ill-posed Inverse Problem I stated in Sec-
tion 1 as a stabilized minimization system and establish the existence of the solu-
tions and stability of the minimization formulation. For the sake of convenience,
we shall rewrite the electric system (1.4) as

(2.1) ε(x)
∂2E

∂t2
+∇× (µ(x)∇×E) = j in Ω

where j = ∂J
∂t , and µ(x) = ν−1(x) is the magnetic susceptibility. If µ(x) is known,

then the magnetic permeability ν(x) targeted in Inverse Problem I can be obtained
by taking the simple inverse of µ(x). So in the subsequent sections, we shall address
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the reconstruction of the magnetic susceptibility µ(x) under the measurement data
Eδ provided in (1.3). For the purpose, we will need the following Sobolev spaces:

H(curl; Ω) =
{

v ∈ L2(Ω)3; curlv ∈ L2(Ω)3
}

,

H0(curl; Ω) =
{

v ∈ L2(Ω)3; curlv ∈ L2(Ω)3, v × n = 0 on ∂Ω
}

,

Hα(curl; Ω) =
{

v ∈ Hα(Ω)3; curlv ∈ Hα(Ω)3
}

,

for 0 ≤ α ≤ 1, with the norms

‖v‖0,curl =
{

‖v‖2 + ‖∇× v‖2
}

1

2

, ‖v‖α,curl =
{

‖v‖2α + ‖∇× v‖2α

}
1

2

.

Here and in the sequel, ‖ · ‖ will always mean the L2(Ω)3-norm (or L2(Ω)-norm if
only scalar functions are involved). And as usual, we will use ‖ · ‖α to denote the
norm of the Sobolev space Hα(Ω)3 (or Hα(Ω) if only scalar functions are involved).

In general, Inverse Problem I is not solvable. Instead we shall transform it into a
mathematically solvable minimization system. For this we introduce the admissible
set for the recovering parameter µ(x):

K =
{

µ ∈ H1(Ω); µ0 ≤ µ(x) ≤ µ1 a.e. in Ω
}

(2.2)

where µ0 and µ1 are two a priori lower and upper bounds of the parameter µ(x).
Then we formulate the Inverse Problem I as the following minimization process:

(2.3) min
µ∈K

G(µ) =

∫ T

0

∫

ω

|E(µ)−Eδ|2dxdt+
β

2
‖∇µ‖2L2(Ω)

where β is a positive constant, called the regularization parameter, and E = E(µ) ∈
H0(curl; Ω) satisfies the initial conditions

(2.4) E(x, 0) = E0(x) and Et(x, 0) = E1(x) in Ω

and the variational system associated with the electric field equation (2.1):

(2.5)

∫

Ω

ε(x)Ett · vdx+

∫

Ω

µ(x)curlE · curlvdx =

∫

Ω

j · vdx , ∀v ∈ H0(curl; Ω)

for a.e. t ∈ (0, T ).
In the rest of this section, we shall justify the formulation (2.3)-(2.5), and demon-

strate that the nonlinear optimization system always has solutions and its solutions
are stable with respect to the change in the error of the observation data Eδ. The
next theorem establishes the existence of solutions.

Theorem 2.1. There exists at least one minimizer to the optimization problem
(2.3)-(2.5).

Proof. As G(µ) ≥ 0, we know that inf G(µ) is finite over K. Thus there exists a

minimizing sequence
{

µn
}

in K such that

lim
n→∞

G(µn) = inf
µ∈K

G(µ).

Then by the definition ofG(µ), there exists some constant C such that β‖∇µn‖2L2(Ω) ≤

C. This, combining with the fact that µn ∈ K, shows the boundedness of µn in

H1(Ω), thus there exists a subsequence, still denoted as
{

µn
}

, and some µ∗ in

H1(Ω) such that

µn ⇀ µ∗ in H1(Ω) and µn → µ∗ in L2(Ω) as n→ ∞.
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As K is a closed convex subset of H1(Ω), hence K is weakly-closed and we have
µ∗ ∈ K. Next, we will prove that µ∗ is a global minimizer of (2.3)–(2.5). As it is
rather technical, we will divide the whole proof into four steps.

Step 1. Show the convergence of the sequence {E(µn)}.
We shall write En = E(µn). Using the equation (2.5), we knowEn ∈ H0(curl; Ω)

satisfies

(2.6)

∫

Ω

ε(x)En
tt ·vdx+

∫

Ω

µn(x)curlEn ·curlvdx =

∫

Ω

j·vdx , ∀v ∈ H0(curl; Ω) .

Taking v = En
t in (2.6), we obtain

1

2

∫

Ω

ε(x)
d

dt
|En

t |
2dx+

1

2

∫

Ω

µn(x)
d

dt
|curlEn|2dx =

∫

Ω

j · En
t dx .

Integrating over [0,t], we have

1

2

∫

Ω

ε(x)(|En
t (x, t)|

2 − |E1(x)|
2)dx

+
1

2

∫

Ω

µn(x)(|curlEn(x, t)|2 − |curlE0(x)|
2)dx

=

∫ t

0

∫

Ω

j · En
t dxdt.

By the Cauchy-Schwarz inequality and the bounds of ε and K, we further derive

ε0‖E
n
t (t)‖

2
L2(Ω)3 + µ0‖curlE

n(t)‖2L2(Ω)3

≤ ε1

∫

Ω

|E1|
2dx+ µ1‖curlE0‖

2
L2(Ω)3 + ‖j‖2L2(0,T ;L2(Ω)3) +

∫ t

0

‖En
t ‖

2
L2(Ω)3dt,

applying the Gronwall’s inequality yields for all t ∈ (0, T ) that

ε0 sup
0≤t≤T

‖En
t (t)‖

2
L2(Ω)3 + µ0 sup

0≤t≤T
‖curlEn(t)‖2L2(Ω)3

≤ C
(

‖E1‖
2
L2(Ω)3 + ‖curlE0‖

2
L2(Ω)3 + ‖j‖2L2(0,T ;L2(Ω)3)

)

.(2.7)

This, along with the relation

En(x, t) = E0(x) +

∫ t

0

En
t (x, τ)dτ , ∀ t ∈ [0, T ] ,

gives

(2.8) ‖En‖L2(0,T ;L2(Ω)3) ≤ C
(

‖E1‖L2(Ω)3 + ‖E0‖0,curl + ‖j‖L(0,T ;L2(Ω)3)

)

.

On the other hand, it follows from (2.5) that for any v ∈ H0(curl; Ω),

|(ε(x)En
tt,v)| ≤ |

∫

Ω

j · vdx| + |

∫

Ω

µn(x)curlEn · curlvdx|

≤ (‖j‖L2(Ω)3 + µ1‖curlE
n‖L2(Ω)3)‖v‖0,curl ,

hence we obtain from (2.7) that

‖ε(x)En
tt‖L2(0,T ;(H0(curl;Ω))′) ≤ C ,(2.9)

where, and throughout the rest of the work, C will always stand for a generic
constant which depends only on some given data such as E0, E1, j and the bounds
ε0, ε1, µ0 and µ1 in (1.7) and (2.2).

One observes from (2.7) and (2.8) that curlEn, µncurlEn, En and En
t are all

bounded in L2(0, T ;L2(Ω)3), while ε(x)En
tt is bounded in L2(0, T ; (H0(curl; Ω))

′).
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This implies the existence of a subsequence of
{

En
}

, still denoted as
{

En
}

, and

some P, W, Ê,
ˆ̂
E ∈ L2(0, T ;L2(Ω)3) and U ∈ L2(0, T ; (H0(curl; Ω))

′) such that

(2.10)























curlEn ⇀ P in L2(0, T ;L2(Ω)3);
µncurlEn ⇀ W in L2(0, T ;L2(Ω)3);

En ⇀ Ê in L2(0, T ;L2(Ω)3);

En
t ⇀

ˆ̂
E in L2(0, T ;L2(Ω)3);

ε(x)En
tt ⇀ U in L2(0, T ; (H0(curl; Ω))

′).

Step 2. For the limits P, W, Ê,
ˆ̂
E and U in (2.10), we prove that

Ê = E(µ∗), P = curl Ê, W = µ∗curl Ê,
ˆ̂
E = Êt, U = ε(x)Êtt .

Firstly, for any ϕ ∈ L2(0, T ;H0(curl; Ω)), we have by the integration by parts
formula that

∫ T

0

∫

Ω

curlEn · ϕdxdt =

∫ T

0

∫

Ω

En · curlϕdxdt .

Letting n→ ∞ in the above equation and using (2.10), we obtain
∫ T

0

∫

Ω

P · ϕdxdt =

∫ T

0

∫

Ω

Ê · curlϕdxdt =

∫ T

0

∫

Ω

curl Ê · ϕdxdt .(2.11)

Then by the density of L2(0, T ;H0(curl; Ω)) in L2(0, T ;L2(Ω)3), we obtain P =

curlÊ.
Since µncurlEn ⇀W in L2(0, T ;L2(Ω)3), we know

lim
n→∞

∫ T

0

∫

Ω

µncurlEn · ϕdxdt =

∫ T

0

∫

Ω

W · ϕdxdt, ∀ϕ ∈ L2(0, T ;L2(Ω)3).

Now we show W = µ∗curl Ê, namely it holds for any ϕ ∈ L2(0, T ;L2(Ω)3) that

(2.12) lim
n→∞

∫ T

0

∫

Ω

µncurlEn · ϕdxdt =

∫ T

0

∫

Ω

µ∗curlÊ · ϕdxdt .

To see this, we derive by the Cauchy-Schwarz inequality, (2.7) and (2.2) that

∣

∣

∣

∫ T

0

∫

Ω

µncurlEn · ϕdxdt −

∫ T

0

∫

Ω

µ∗curlÊ · ϕdxdt
∣

∣

∣

≤
∣

∣

∣

∫ T

0

∫

Ω

(µn − µ∗)curlEn · ϕdxdt
∣

∣

∣
+
∣

∣

∣

∫ T

0

∫

Ω

µ∗(curlEn − curlÊ) · ϕdxdt
∣

∣

∣

≤
(

∫ T

0

∫

Ω

|µn − µ∗||ϕ|2dxdt
)1/2(

∫ T

0

∫

Ω

|µn − µ∗||curlEn|2dxdt
)1/2

+
∣

∣

∣

∫ T

0

∫

Ω

µ∗(curlEn − curlÊ) · ϕdxdt
∣

∣

∣

≤ C
(

∫ T

0

∫

Ω

|µn − µ∗||ϕ|2dxdt
)1/2

+
∣

∣

∣

∫ T

0

∫

Ω

µ∗(curlEn − curlÊ) · ϕdxdt
∣

∣

∣
,

which converges to zero as n→ ∞ by using the Lebesgue dorminated convergence

theorem, and the weak convergence of curlEn to P in (2.10) and P = curlÊ.
Next, taking ψ(t) ∈ C∞

0 [0, T ], we have for any v ∈ L2(Ω)3,
∫ T

0

∫

Ω

ψ(t)En
t · vdxdt = −

∫ T

0

∫

Ω

ψt(t)E
n · vdxdt .



222 HUI FENG, DAIJUN JIANG, AND JUN ZOU

Letting n→ ∞ in the above equation and using (2.10), we obtain
∫ T

0

∫

Ω

ψ(t)
ˆ̂
E · vdxdt = −

∫ T

0

∫

Ω

ψt(t)Ê · vdxdt =

∫ T

0

∫

Ω

ψ(t)Êt · vdxdt,

that implies
ˆ̂
E = Êt.

Now taking ψ(t) ∈ C1[0, T ] such that ψ(T ) = 0, we obtain by integration by
parts for any v ∈ L2(Ω)3 that

∫ T

0

∫

Ω

ψ(t)En
t · vdxdt = −

∫ T

0

∫

Ω

ψt(t)E
n · vdxdt −

∫

Ω

ψ(0)E0 · vdx.

Letting n→ ∞ in the above equation and using (2.10) and
ˆ̂
E = Êt, we obtain

∫ T

0

∫

Ω

ψ(t)Êt · vdxdt = −

∫ T

0

∫

Ω

ψt(t)Ê · vdxdt −

∫

Ω

ψ(0)E0 · vdx,

namely
∫ T

0

∫

Ω

(Êψ(t))t · vdxdt = −

∫

Ω

ψ(0)E0 · vdx.

This gives that
∫

Ω ψ(0)Ê(x, 0) · vdx =
∫

Ω ψ(0)E0(x) · vdx, and we know

Ê(x, 0) = E0(x).

Next by taking ψ(t) ∈ C∞
0 [0, T ], we derive for any v ∈ H0(curl; Ω) that

∫ T

0

∫

Ω

ε(x)ψ(t)En
tt · vdxdt = −

∫ T

0

∫

Ω

ε(x)ψt(t)E
n
t · vdxdt,

Letting n→ ∞ in the above equation, we obtain
∫ T

0

∫

Ω

ψ(t)U · vdxdt = −

∫ T

0

∫

Ω

ψt(t)ε(x)
ˆ̂
E · vdxdt,

which implies

U = ε(x)ˆ̂Et = ε(x)Êtt.

Furthermore, we take a ψ(t) ∈ C1[0, T ] such that ψ(T ) = 0 to deduce for any
v ∈ H0(curl; Ω) that
∫ T

0

∫

Ω

ψ(t)ε(x)En
tt·vdxdt = −

∫ T

0

∫

Ω

ψt(t)ε(x)E
n
t ·vdxdt−

∫

Ω

ψ(0)ε(x)E1(x)·vdxdt

Letting n→ ∞ in the above equation and using U = ε(x)ˆ̂Et, we obtain
∫ T

0

∫

Ω

ε(x)(
ˆ̂
Eψ(t))t · vdxdt = −

∫

Ω

ψ(0)ε(x)E1(x) · vdx.

Hence we have
ˆ̂
E(x, 0) = Êt(x, 0) = E1(x).

Finally, we multiply both sides of (2.5) by a function ψ(t) ∈ C∞
0 [0, T ], then integrate

with respect to t to obtain
∫ T

0

∫

Ω

ε(x)ψ(t)En
tt·vdxdt+

∫ T

0

∫

Ω

µn(x)ψ(t)curlEn·curlvdxdt =

∫ T

0

∫

Ω

ψ(t)j·vdxdt.

Letting n→ ∞ in the above equation, we obtain
(2.13)
∫ T

0

∫

Ω

ε(x)ψ(t)Êtt ·vdxdt+

∫ T

0

∫

Ω

µ∗ψ(t)curlÊ·curlvdxdt =

∫ T

0

∫

Ω

ψ(t)j·vdxdt ,
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comparing with (2.5) and using the fact that Ê(x, 0) = E0(x) and Êt(x, 0) = E1(x)
and the definition of E(µ∗), we derive

Ê = E(µ∗) ≡ E∗.

Step 3. We prove

(2.14) lim
n→∞

∫ T

0

∫

ω

|E(µn)−Eδ|2dxdt =

∫ T

0

∫

ω

|E(µ∗)−Eδ|2dxdt.

It suffices to show that

(2.15) lim
n→∞

∫ T

0

‖E(µn)−E(µ∗)‖2L2(Ω)3dt = 0.

Indeed, if (2.15) holds, then we obtain by using the Cauchy-Schwarz inequality and
the bounds (2.7)-(2.8) that

∣

∣

∣

∫ T

0

‖En −Eδ‖2L2(ω)3dt−

∫ T

0

‖E∗ −Eδ‖2L2(ω)3dt
∣

∣

∣

=
∣

∣

∣

∫ T

0

∫

ω

(En −E∗) · (En +E∗ − 2Eδ)dxdt
∣

∣

∣

≤ (

∫ T

0

∫

ω

|En −E∗|2dxdt)
1

2 (

∫ T

0

∫

ω

|En +E∗ − 2Eδ|2dxdt)
1

2

≤ C(

∫ T

0

‖E(µn)−E(µ∗)‖2L2(Ω)3dt) → 0 as n→ ∞,

so (2.14) is verified. Next, we prove (2.15). Taking v = En
t in (2.5), we obtain

(2.16)
1

2

∫

Ω

ε(x)
d

dt
|En

t |
2dx+

1

2

∫

Ω

µn(x)
d

dt
|curlEn|2dx =

∫

Ω

j · En
t dx.

Similarly, taking v = E∗
t in (2.13), we obtain

(2.17)
1

2

∫

Ω

ε(x)
d

dt
|E∗

t |
2dx+

1

2

∫

Ω

µ∗(x)
d

dt
|curlE∗|2dx =

∫

Ω

j · E∗
tdx.

Subtracting (2.17) from (2.16), we have

1

2

∫

Ω

ε(x)
d

dt
(|En

t |
2 − |E∗

t |
2)dx+

1

2

∫

Ω

µn(x)
d

dt
(|curlEn|2 − |curlE∗|2)dx

=

∫

Ω

j · (En
t −E∗

t )dx+
1

2

∫

Ω

(µ∗(x)− µn(x))
d

dt
|curlE∗|2dx .(2.18)

One can rewrite (2.18) as

1

2

∫

Ω

ε(x)
d

dt
|En

t −E∗
t |

2dx+
1

2

∫

Ω

µn(x)
d

dt
|curlEn − curlE∗|2dx

=

∫

Ω

j · (En
t −E∗

t )dx +
1

2

∫

Ω

(µ∗(x) − µn(x))
d

dt
|curlE∗|2dx

+

∫

Ω

ε(x)
d

dt
(E∗

t · (E
∗
t −En

t ))dx

+

∫

Ω

µn(x)
d

dt
(curlE∗ · (curlE∗ − curlEn))dx .(2.19)
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By integrating both sides of (2.19) with respect to t we obtain

1

2

∫

Ω

ε(x)|En
t (x, t)−E∗

t (x, t)|
2dx

+
1

2

∫

Ω

µn(x)|curlEn(x, t) − curlE∗(x, t)|2dx

=

∫ t

0

∫

Ω

j · (En
t −E∗

t )dxdt

+
1

2

∫

Ω

(µ∗(x) − µn(x))(|curlE∗(x, t)|2 − |curlE0(x)|
2)dx

+

∫

Ω

ε(x)E∗
t (x, t) · (E

∗
t (x, t)−En

t (x, t))dx

+

∫

Ω

µn(x)curlE∗(x, t) · (curlE∗(x, t)− curlEn(x, t))dx ,(2.20)

then integrating both sides of (2.20) over t ∈ (0, T ), we come to the following
relations

1

2

∫ T

0

∫

Ω

ε(x)|En
t (x, t)−E∗

t (x, t)|
2dxdt

+
1

2

∫ T

0

∫

Ω

µn(x)|curlEn(x, t) − curlE∗(x, t)|2dxdt

=

∫ T

0

∫ t

0

∫

Ω

j · (En
τ (x, τ) −E∗

τ (x, τ))dxdτdt

+
1

2

∫ T

0

∫

Ω

(µ∗(x) − µn(x))(|curlE∗(x, t)|2 − |curlE0(x)|
2)dxdt

+

∫ T

0

∫

Ω

ε(x)E∗
t (x, t) · (E

∗
t (x, t)−En

t (x, t))dxdt

+

∫ T

0

∫

Ω

µn(x)curlE∗(x, t) · (curlE∗(x, t)− curlEn(x, t))dxdt

≡

4
∑

i=1

(I)i .(2.21)

Next we estimate all the terms (I)i’s in (2.21) one by one.
First for the estimation of (I)1, by the Canchy-Schwarz inequality and (2.10) we

know

∫ t

0

∫

Ω

j · (En
τ (x, τ) −E∗

τ (x, τ))dxdτ

is bounded independent of n and t, and tends to zero as n → ∞ for all t ∈ (0, T ).
Hence, by using the Lebesgue dorminated convergence theorem we have (I)1 →
0 as n → ∞.

For (I)2, we know that µn → µ∗ in L2(Ω) from the fact that µn ⇀ µ∗ in H1(Ω).
Then the convergence of (I)2 follows directly from the Lebesgue dorminated con-
vergence theorem. The convergence of (I)3 follows directly from the previously
proved fact that En

t ⇀ E∗
t in L2(0, T ;L2(Ω)3).
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Finally we come to analyse term (I)4. Following the proof of (2.12), we can
deduce

lim
n→∞

∫ T

0

∫

Ω

µncurlEn(x, t) · curlE∗(x, t)dxdt

=

∫ T

0

∫

Ω

µ∗curlE∗(x, t) · curlE∗(x, t)dxdt.(2.22)

Moreover, by using the Lebesgue dorminated convergence theorem we know
∫ T

0

∫

Ω

(µn(x)− µ∗(x))|curlE∗(x, t)|2dxdt → 0 as n→ ∞,

which, along with (2.22) and the triangle inequality, yields

(I)4 ≤ |

∫ T

0

∫

Ω

µncurlEn(x, t) · curlE∗(x, t)dxdt

−

∫ T

0

∫

Ω

µ∗curlE∗(x, t) · curlE∗(x, t)dxdt|

+|

∫ T

0

∫

Ω

(µn(x) − µ∗(x))curlE∗(x, t) · curlE∗(x, t)dxdt| → 0

as n→ ∞. By the previously established convergence for (I)1 up to (I)4, we know
from (2.21) that

‖En
t −E∗

t ‖L2(0,T ;L2(Ω)3) → 0 as n→ ∞ .

Hence we have
∫ T

0

∫

Ω

|En(x, t)−E∗(x, t)|2dxdt

=

∫ T

0

∫

Ω

|

∫ t

0

(En
τ (x, τ) −E∗

τ (x, τ))dτ |
2dxdt

≤ T 2

∫

Ω

∫ T

0

|En
t (x, t)−E∗

t (x, t)|
2dtdx → 0 as n→ ∞,

which leads to (2.15).
Step 4. We prove the limit µ∗ is the minimizer to the system (2.3)–(2.5).
Using the results of Step 3 and the lower semi-continuity of a norm, we have

G(µ∗) =

∫ T

0

‖E(µ∗)−Eδ‖2L2(ω)3dt+
β

2
‖∇µ∗‖2L2(Ω)

= lim
n→∞

∫ T

0

‖E(µn)− Eδ‖2L2(ω)3dt+
β

2
‖∇µ∗‖2L2(Ω)

≤ lim
n→∞

∫ T

0

‖E(µn)− Eδ‖2L2(ω)3dt+
β

2
lim inf
n→∞

‖∇µn‖2L2(Ω)

≤ lim inf
n→∞

G(µn) = inf
µ∈K

G(µ),

so µ∗ is indeed a minimizer to the system (2.3)-(2.5). This completes the proof of
Theorem 2.1. ♯

The next theorem demonstrates that the minimization system (2.3)-(2.5) is in-
deed a stabilization of the ill-posed Inverse Problem I with respect to the changes
of the observation errors, so justifies the regularizing effect of the formulation (2.3)-
(2.5).
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Theorem 2.2. Let
{

Eδ
n

}

be a sequence such that

(2.23) Eδ
n → Eδ in L2(0, T ;L2(ω)3) as n→ ∞ ,

and let
{

µ(n)
}

be the sequence of the minimizers of problem (2.3)-(2.5) with Eδ

replaced by Eδ
n. Then the whole sequence

{

µ(n)
}

converges strongly in H1(Ω) to a

minimizer of (2.3)–(2.5).

Proof. By the definition of
{

µ(n)
}

, for any µ ∈ K we have

∫ T

0

∫

ω

|E(µ(n))−Eδ
n|

2dxdt+
β

2
‖∇µ(n)‖2L2(Ω) ≤

∫ T

0

∫

ω

|E(µ)−Eδ
n|

2dxdt+
β

2
‖∇µ‖2L2(Ω).

This implies {‖∇µ(n)‖} is bounded. Furthermore, {µ(n)} is also bounded in L2(Ω)
by noting that µ(n) ∈ K, so we know {µ(n)} is bounded in H1(Ω). Therefore there
exists a subsequence, still denoted by µ(n), and some µ∗ ∈ K , such that µ(n) ⇀ µ∗

in H1(Ω) as n→ ∞.
Now applying the Cauchy-Schwarz inequality, we can derive

∣

∣

∣

∫ T

0

∫

ω

|E(µ(n))−Eδ
n|

2dxdt−

∫ T

0

∫

ω

|E(µ∗)−Eδ|2dxdt
∣

∣

∣

=
∣

∣

∣

∫ T

0

∫

ω

(Eδ −Eδ
n) · (2E(µ(n))−Eδ

n −Eδ)dxdt

+

∫ T

0

∫

ω

(E(µ(n))−E(µ∗)) · (E(µ(n)) +E(µ∗)− 2Eδ)dxdt
∣

∣

∣

≤ (

∫ T

0

∫

ω

|Eδ − Eδ
n|

2dxdt)
1

2 (

∫ T

0

∫

ω

|2E(µ(n))−Eδ
n −Eδ|2dxdt)

1

2

+(

∫ T

0

∫

ω

|E(µ(n))−E(µ∗)|2dxdt)
1

2 (

∫ T

0

∫

ω

|E(µ(n)) +E(µ∗)− 2Eδ|2dxdt)
1

2

≡ R1 +R2 .

We know that
∫ T

0

∫

ω |Eδ−Eδ
n|

2dxdt → 0 as n→ ∞ by using (2.23), and
∫ T

0

∫

ω |2E(µ(n))−

Eδ
n − Eδ|2dxdt is bounded from the proof of Theorem 2.1. Hence we have R1 →

0 as n → ∞. Similarly to the proof of Step 3 in Theorem 2.1, we can show that
∫ T

0

∫

ω
|E(µ(n))−E(µ∗)|2dxdt → 0, thus R2 → 0 as n→ ∞. This proves

(2.24) lim
n→∞

∫ T

0

∫

ω

|E(µ(n))−Eδ
n|

2dxdt =

∫ T

0

∫

ω

|E(µ∗)−Eδ|2dxdt.
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Now we can show that µ∗ is a minimizer of (2.3)-(2.5). To see this, for any µ ∈ K
we derive from (2.23), (2.24) and the lower semi-continuity of a norm that

G(µ∗) =

∫ T

0

‖E(µ∗)−Eδ‖2L2(ω)3dt+
β

2
‖∇µ∗‖2L2(Ω)

= lim
n→∞

∫ T

0

‖E(µ(n))−Eδ
n‖

2
L2(ω)3dt+

β

2
‖∇µ∗‖2L2(Ω)

≤ lim
n→∞

∫ T

0

‖E(µ(n))−Eδ
n‖

2
L2(ω)3dt+

β

2
lim inf
n→∞

‖∇µ(n)‖2L2(Ω)

≤ lim inf
n→∞

[

∫ T

0

‖E(µ(n))−Eδ
n‖

2
L2(ω)3dt+

β

2
‖∇µ(n)‖2L2(Ω)]

≤ lim inf
n→∞

[

∫ T

0

‖E(µ)−Eδ
n‖

2
L2(ω)3dt+

β

2
‖∇µ‖2L2(Ω)]

=

∫ T

0

‖E(µ)−Eδ‖2L2(ω)3dt+
β

2
‖∇µ‖2L2(Ω)

= G(µ) ,(2.25)

which verifies that µ∗ is a minimizer of (2.3)-(2.5).
It remains to prove that µ(n) → µ∗ in H1(Ω) as n → ∞. First it follows from

the weak convergence of µ(n) to µ∗ in H1(Ω) that µ(n) → µ∗ in L2(Ω) . Next, we
get from (2.25) that

G(µ∗) = min
µ∈K

G(µ) = lim
n→∞

[

∫ T

0

‖E(µ(n))−Eδ
n‖

2
L2(ω)3dt+

β

2
‖∇µ(n)‖2L2(Ω)],

which, along with (2.24), gives

lim
n→∞

‖∇µ(n)‖2L2(Ω) = ‖∇µ∗‖2L2(Ω).

Hence we derive

‖∇µ(n) −∇µ∗‖2L2(Ω) = ‖∇µ(n)‖2L2(Ω) + ‖∇µ∗‖2L2(Ω) − 2(∇µ(n),∇µ∗)

→ 2‖∇µ∗‖2L2(Ω) − 2(∇µ∗,∇µ∗) = 0

as n→ ∞, leading to the desired strong convergence of µ(n) to µ∗ in H1(Ω). ♯

3. Finite element approximation

We now propose a finite element method for solving the continuous nonlinear
minimization problem (2.3)–(2.5). For the purpose, we first triangulate the space
domain Ω and assume that T h is a shape regular triangulation of Ω with a mesh
size h, consisting of tetrahedral elements. We will approximate the electric field E

by the edge element space of second family (cf. [9]):

Vh =
{

vh ∈ H(curl; Ω); vh|A ∈ (P1(A))
3, ∀A ∈ T h

}

,

where P1(A) is the space of linear polynomials on A. It was proved in [10] that
any function in Vh can be uniquely determined by its degrees of freedom in the
moment set Mh(v) given by

Mh(v) =
{

∫

e

(v · τ)qds; ∀ q ∈ P1(e) on any edge e of A ∈ T h
}

.
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To enforce the boundary condition (1.5), we introduce the following subspace of
Vh and H0(curl; Ω):

V0
h =

{

vh ∈ Vh; vh × n = 0 on ∂Ω
}

.

We will approximate the parameter function µ(x) to be recovered by the standard
nodal finite element space of piecewise linear functions (cf. [3]):

Sh =
{

vh ∈ H1(Ω); vh|A ∈ P1(A), ∀A ∈ T h
}

.

Let {xi}
N
i=1 be the set of all the nodal points of the triangulation T h, then the

constrained set K in (2.2) can be approximated by

Kh =
{

vh ∈ Sh; µ0 ≤ vh(xi) ≤ µ1 for i = 1, 2, · · · , N
}

,

To fully discretize the system (2.3)-(2.5), we also need the time discretization. To
do so, we divide the time interval (0, T ) intoM equally-spaced subintervals by using
the nodal points

△h : 0 = t0 < t1 < · · · < tM = T

with tm = mτ, τ =M/T . We will denote the m-th subinterval by Im = (tm−1, tm].
For a given sequence {Em}Mm=0 ⊂ L2(Ω)3, we introduce its first and second order
backward finite differences:

∂τE
m =

Em −Em−1

τ
, ∂2τE

m =
∂τE

m − ∂τE
m−1

τ
.

The differences above may also be applied to a continuous function v(x, t), in which
case we will write vm = v(·, tm) for 0 ≤ m ≤ M . For a vector-valued function v

with some appropriate smoothness, we introduce its edge element interpolation
Πhv such that Πhv ∈ Vh, and Πhv and v have the same moments in Mh(v).
Similarly, for a scalar function v that is continuous, we can introduce its nodal
element interpolation πhv such that πhv ∈ Sh, and πhv and v have the same values
at all the nodal points.

With the above preparations, we are now ready to formulate the finite element
approximation of the nonlinear optimization system (2.3)-(2.5):

(3.1) min
µh∈Kh

Gh,τ (µh) = τ

M
∑

m=0

αm

∫

ω

|Em
h −Eδ|2dx+

β

2
‖∇µh‖

2
L2(Ω)

where Em
h = Em

h (µh) ∈ V0
h satisfies

(3.2) E0
h = ΠhE0 , E0

h −E−1
h = τ ΠhE1

and

(3.3)

∫

Ω

ε(x)∂2τE
m
h · vhdx+

∫

Ω

µh(x)curlE
m
h · curlvhdx =

∫

Ω

∂τJ
m · vhdx

for all vh ∈ V0
h, and m = 1, 2, · · · ,M . Here

{

αm

}

are the coefficients of the

composite trapezoidal rule for the time integration over [0, T ], i.e. α0 = αM = 1
2

and αm = 1 for all m 6= 0,M .
The next theorem shows the existence of the solutions to the discrete system

(3.1)-(3.3).

Theorem 3.1. For each fixed τ > 0 and h > 0, there exists at least a minimizer
to the discrete optimization problem (3.1)-(3.3).
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Proof. We emphasize that the parameters τ > 0 and h > 0 and the integer M can
be viewed to be all fixed constants in this proof. Clearly, as Gh,τ (µh) ≥ 0 we know

inf Gh,τ (µh) is finite. Thus there exists a minimizing sequence
{

µk
h

}

in Kh such

that

lim
k→∞

Gh,τ (µ
k
h) = inf

µh∈Kh

Gh,τ (µh).

Then it is easy to see the boundedness of
{

µk
h

}

in H1(Ω), hence the existence of

a subsequence, still denoted as
{

µk
h

}

, and some µ∗
h ∈ Kh such that µk

h ⇀ µ∗
h in

H1(Ω) as k → ∞.
We now prove that µ∗

h is a minimizer of (3.1)-(3.3). We first show that for
m = 0, 1, · · · ,M ,

Em
h (µk

h) → Em
h (µ∗

h) in L2(Ω)3 as k → ∞ .

To see this, it follows from the definition of Em
h that for any vh ∈ V0

h,

(3.4)

∫

Ω

ε(x)∂2τE
m
h (µk

h)·vhdx+

∫

Ω

µk
h(x)curlE

m
h (µk

h)·curlvhdx =

∫

Ω

∂τJ
m ·vhdx .

(3.5)

∫

Ω

ε(x)∂2τE
m
h (µ∗

h)·vhdx+

∫

Ω

µ∗
h(x)curlE

m
h (µ∗

h)·curlvhdx =

∫

Ω

∂τJ
m ·vhdx .

Taking vh = τ∂τE
m
h (µk

h) in (3.4) and using the fact that (a−b)a ≥ 1
2 (a

2−b2), ∀a, b ∈
R, one gets

∫

Ω

ε(x)(|∂τE
m
h (µk

h)|
2 − |∂τE

m−1
h (µk

h)|
2)dx

+

∫

Ω

µk
h(x)(|curlE

m
h (µk

h)|
2 − |curlEm−1

h (µk
h)|

2)dx

≤ τ

∫

Ω

|∂τJ
m|2dx+ τ

∫

Ω

|∂τE
m
h (µk

h)|
2dx .

Summing up the inequality with respect to m, we derive for m = 1, 2, · · · ,M that

ε0‖∂τE
m
h (µk

h)‖
2
L2(Ω)3 + µ0‖curlE

m
h (µk

h)‖
2
L2(Ω)3

≤ ε1‖ΠhE1‖
2
L2(Ω)3 + µ1‖curlΠhE0‖

2
L2(Ω)3 + τ

m
∑

n=1

‖∂τJ
n‖2L2(Ω)3

+τ
m
∑

n=1

‖∂τE
n
h(µ

k
h)‖

2
L2(Ω)3 .

Then by the discrete Gronwall’s inequality, we deduce that

(3.6) max
1≤m≤M

‖∂τE
m
h (µk

h)‖
2
L2(Ω)3 ≤ C , max

1≤m≤M
‖curlEm

h (µk
h)‖

2
L2(Ω)3 ≤ C

for some constant C independent of k, h and τ .
Similarly, taking vh = τ∂τE

m
h (µ∗

h) in (3.5), we can deduce that

(3.7) max
1≤m≤M

‖∂τE
m
h (µ∗

h)‖
2
L2(Ω)3 ≤ C , max

1≤m≤M
‖curlEm

h (µ∗
h)‖

2
L2(Ω)3 ≤ C .
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Now we set ωm
h (k) = Em

h (µk
h) − Em

h (µ∗
h). Clearly ω0

h(k) = 0. By subtracting (3.5)
from (3.4), we derive

∫

Ω

ε(x)∂2τω
m
h (k) · vhdx +

∫

Ω

µk
h(x)curlω

m
h (k) · curlvhdx

=

∫

Ω

(µ∗
h(x)− µk

h(x))curlE
m
h (µ∗

h) · curlvhdx , ∀vh ∈ V0
h .(3.8)

Taking vh = τ∂τω
m
h (k) in (3.8), we obtain

1

2

∫

Ω

ε(x)[|∂τω
m
h (k)|2 − |∂τω

m−1
h (k)|2]dx

+
1

2

∫

Ω

µk
h(x)[|curlω

m
h (k)|2 − |curlωm−1

h (k)|2]dx

≤

∫

Ω

(µ∗
h(x) − µk

h(x))curlE
m
h (µ∗

h) · curl(ω
m
h (k)− ωm−1

h (k))dx.

Summing up both sides over m, and noting that ω0
h(k) = 0, we derive

1

2
ε0‖∂τω

m
h (k)‖2L2(Ω)3 +

1

2
µ0‖curlω

m
h (k)‖2L2(Ω)3

≤

∫

Ω

|µ∗
h(x) − µk

h(x)|

m
∑

n=1

|curlEn
h(µ

∗
h)|

{

|curlEn
h(µ

∗
h)− curlEn−1

h (µ∗
h)|

+|curlEn
h(µ

k
h)− curlEn−1

h (µk
h)|

}

dx

≤

∫

Ω

|µ∗
h(x) − µk

h(x)|

m
∑

n=1

[Cn(Cn + Cn−1) + Cn(|curlE
n
h|+ |curlEn−1

h |)]dx,

with Cn = maxA∈T h |curlEn
h(µ

∗
h)|. Letting Ĉ = max

{

C0, C1, · · · , CM

}

, then we

deduce

1

2
ε0‖∂τω

m
h (k)‖2L2(Ω)3 +

1

2
µ0‖curlω

m
h (k)‖2L2(Ω)3

≤ 2mĈ2

∫

Ω

|µ∗
h(x)− µk

h(x)|dx + 2Ĉ

m
∑

n=0

∫

Ω

|µ∗
h(x) − µk

h(x)||curlE
n
h(µ

k
h)|dx

≤ 2mĈ2|Ω|
1

2 ‖µ∗
h(x) − µk

h(x)‖L2(Ω)

+2Ĉ

m
∑

n=0

‖µ∗
h(x)− µk

h(x)‖L2(Ω)‖curlE
n
h(µ

k
h)‖L2(Ω)3 .

Noting that µk
h → µ∗

h in L2(Ω) as k → ∞ by means of the convergence of µk
h to

µ∗
h in H1(Ω), and the boundedness of ‖curlEn

h(µ
k
h)‖L2(Ω)3 for all n = 1, 2, · · · ,M

implied by (3.6), we have

ε0‖∂τω
m
h (k)‖2L2(Ω)3 + µ0‖curlω

m
h (k)‖2L2(Ω)3 → 0 as k → ∞.(3.9)

Using (3.9) and the fact that ω0
h(k) = 0 we deduce

‖τ−1ωm
h (k)‖L2(Ω)3 = ‖

m
∑

n=1

∂τω
n
h(k)‖L2(Ω)3 ≤

m
∑

n=1

‖∂τω
n
h(k)‖L2(Ω)3 → 0

as k → ∞, or equivalently we have for m = 1, 2, · · · ,M that

(3.10) ‖Em
h (µk

h)−Em
h (µ∗

h)‖L2(Ω)3 → 0 as k → ∞ .
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Next we show that

(3.11) lim
k→∞

τ
M
∑

m=0

αm

∫

ω

|Em
h (µk

h)−Eδ|2dx = τ
M
∑

m=0

αm

∫

ω

|Em
h (µ∗

h)−Eδ|2dx.

In fact, the strong convergence in (3.11) follows directly from (3.10) and the fol-
lowing derivations:

∣

∣

∣
τ

M
∑

m=0

αm

∫

ω

|Em
h (µk

h)−Eδ|2dx− τ

M
∑

m=0

αm

∫

ω

|Em
h (µ∗

h)−Eδ|2dx
∣

∣

∣

=
∣

∣

∣
τ

M
∑

m=0

αm

∫

ω

(Em
h (µk

h)−Em
h (µ∗

h)) · (E
m
h (µk

h) +Em
h (µ∗

h)− 2Eδ)dx
∣

∣

∣

≤ (τ
M
∑

m=0

‖Em
h (µk

h)−Em
h (µ∗

h)‖
2
L2(ω)3)

1

2 (τ
M
∑

m=0

‖Em
h (µk

h) +Em
h (µ∗

h)− 2Eδ‖2)
1

2

≤ (τ

M
∑

m=0

‖Em
h (µk

h)−Em
h (µ∗

h)‖
2
L2(Ω)3)

1

2 (τ

M
∑

m=0

‖Em
h (µk

h) + Em
h (µ∗

h)− 2Eδ‖2)
1

2

≤ C(τ

M
∑

m=0

‖Em
h (µk

h)−Em
h (µ∗

h)‖
2
L2(Ω)3)

1

2 → 0 as k → ∞ .

Finally we prove that µ∗
h is a minimizer to the optimization problem (3.1)-(3.3).

Using (3.11) and the lower semi-continuity of a norm, we obtain

Gh,τ (µ
∗
h) = τ

M
∑

m=0

αm

∫

ω

|Em
h (µ∗

h)−Eδ|2dx+
β

2
‖∇µ∗

h‖
2
L2(Ω)

= lim
k→∞

τ
M
∑

m=0

αm

∫

ω

|Em
h (µk

h)−Eδ|2dx+
β

2
‖∇µ∗

h‖
2
L2(Ω)

≤ lim
k→∞

τ

M
∑

m=0

αm

∫

ω

|Em
h (µk

h)−Eδ|2dx+
β

2
lim inf
k→∞

‖∇µk
h‖

2
L2(Ω)

≤ lim inf
k→∞

Gh,τ (µ
k
h) = inf

µh∈Kh

Gh,τ (µh).

So µ∗
h is indeed a minimizer of Gh,τ (µh) over Kh. ♯

4. Convergence of the finite element approximation

In this section we are going to show that the finite element approximation (3.1)-
(3.3) converges to the continuous minimization problem (2.3)-(2.5). For the pur-
pose, we first introduce some approximation properties of the edge element inter-
polation Πh (cf. [4] [9] [10]):

Lemma 4.1. The interpolation Πh has the following approximation properties for
1
2 < α ≤ 1:

‖curl(v −Πhv)‖0 ≤ Ch‖curlv‖1 ∀v ∈ H1(curl; Ω) ,(4.12)

‖v−Πhv‖0 ≤ Chα‖v‖α,curl ∀v ∈ Hα(curl; Ω).(4.13)

Also, we need to introduce an important projection operator Ph: H0(curl; Ω) →
V0

h, the energy-norm projection, defined by

(4.14) a(Phu,v) = a(u,v) ∀v ∈ V0
h ,
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where the bilinear form

a(u,v) =

∫

Ω

µ(x)(curlu · curlv + u · v)dx .

It is easy to see by the definition of the projection Ph in (4.14) that

‖v − Phv‖
2
0,curl ≤ µ−1

0 a(v − Phv,v − Phv)

≤ µ−1
0 a(v −Πhv,v −Πhv)

≤ µ1µ
−1
0 ‖v−Πhv‖

2
0,curl(4.15)

for all v ∈ H0(curl; Ω) ∩H
α(curl; Ω) with α > 1

2 .
In our subsequent anaylsis, we will frequently use the following estimates for

B = H1(curl; Ω) or Hα(Ω)3 with α ≥ 0,

(4.16) ‖∂τv
m‖2

B
≤

1

τ

∫ tm

tm−1

‖vt(t)‖
2
B
dt ∀ v ∈ H1(0, T ;B) ,

(4.17) ‖∂2τv
m‖2

B
≤

1

τ

∫ tm

tm−2

‖vtt(t)‖
2
B
dt ∀ v ∈ H2(0, T ;B) ,

(4.18) ‖∂τv
m
t − ∂2τv

m‖2
B
≤ Cτ

∫ tm

tm−2

‖vttt(t)‖
2
B
dt ∀ v ∈ H3(0, T ;B) ,

and the following classical approximation result:

Lemma 4.2. Let X be a Banach space. For a given function f ∈ C([0, T ];X), we
define a step function approximation of f :

S△f(x, t) =

M
∑

m=1

χm(t)f(x, tm),

where χm(t) is the characteristic function on the interval Im. Then we have

lim
τ→0

∫ T

0

‖S△f(·, t)− f(·, t)‖2Xdt = 0.

As usual, it is necessary for the solution E to the forward Maxwell system (2.5)
to have certain regularity in order to establish the convergence of the finite element
approximation (3.1)-(3.3) to the continuous minimization problem (2.3)-(2.5). For
this we will assume that for any γ ∈ K, the solution E(γ) to the system (2.5) has
the following regularity

(4.19) E(γ) ∈ H2(0, T ;H1(curl; Ω)) ∩H3(0, T ;L2(Ω)3) .

Now we start with the following auxiliary estimates which will be needed for the
subsequent convergence of the finite element approximation (3.1)-(3.3).

Lemma 4.3. Let
{

µh

}

be a sequence such that µh ∈ Kh and µh converges to some

µ ∈ K in L2(Ω) as h tends to 0. Let {Em
h (µh)} be the solution of (3.2)-(3.3), and

E(µ) be the solution of (2.4)-(2.5), satisfying that E(µ) ∈ H1(0, T ;H0(curl; Ω) ∩
H1(curl; Ω)). Then the following estimate holds for all sequences {vm

h }Mm=0 ⊂ V0
h
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and 1 ≤ n ≤M ,

τ

n
∑

m=1

∫

Ω

(µ(x) − µh(x)) curlPhE
m(µ) · curl∂τv

m
h dx

≤ µ1‖E
1(µ)‖0,curl‖curlv

0
h‖+ C‖En(µ)‖1,curl(‖µ(x)− µh(x)‖

1

2 + h)‖curlvn
h‖

+ C(h2 + ‖µ(x)− µh(x)‖)

∫ T

0

‖Et(t)‖
2
1,curldt+

1

2
τ

n−1
∑

m=1

‖curlvm
h ‖2 .(4.20)

Proof. We will write Em(µ) = E(µ)(·, tm) (1 ≤ m ≤ M) for the exact solution
E(µ)(x, t). First, using the discrete integration by parts formula for any sequences
{

am
}

and
{

bm
}

,

n
∑

m=1

am ∂τ b
m = −

n
∑

m=2

∂τa
m bm−1 + τ−1anbn − τ−1a1b0 ,

we obtain that

τ

n
∑

m=1

∫

Ω

(µ(x) − µh(x))curlPhE
m(µ) · curl∂τv

m
h dx

= −τ

n
∑

m=2

∫

Ω

(µ(x) − µh(x))curlPh∂τE
m(µ) · curlvm−1

h dx

+

∫

Ω

(µ(x) − µh(x))curlPhE
n(µ) · curlvn

hdx

−

∫

Ω

(µ(x) − µh(x))curlPhE
1(µ) · curlv0

hdx

≡ −F1 + F2 − F3 .(4.21)

We next estimate F1, F2 and F3 one by one. F3 can be estimated directly by

|F3| ≤ ‖(µ(x)− µh(x))curlPhE
1(µ)‖ ‖curlv0

h‖

≤ 2µ1‖curlPhE
1(µ)‖ ‖curlv0

h‖ ≤ 2µ1‖E
1(µ)‖0,curl‖curlv

0
h‖ .

For F2, we can estimate by using the Hölder inequality, Sobolev embedding theorem,
Lemma 4.1 and (4.15) as follows:

|F2| ≤ |

∫

Ω

(µ(x)− µh(x))curlE
n(µ) · curlvn

hdx|

+|

∫

Ω

(µ(x) − µh(x))(curlPhE
n(µ)− curlEn(µ)) · curlvn

hdx|

≤ ‖µ(x)− µh(x)‖L4(Ω)‖curlE
n(µ)‖L4(Ω)‖curlv

n
h‖

+2µ1‖PhE
n(µ)−En(µ)‖0,curl‖curlv

n
h‖

≤ (4µ2
1)

1

4 ‖µ(x)− µh(x)‖
1

2

L2(Ω)‖curlE
n(µ)‖1‖curlv

n
h‖

+C h ‖En(µ)‖1,curl‖curlv
n
h‖

≤ C(‖µ(x) − µh(x)‖
1

2

L2(Ω) + h)‖En(µ)‖1,curl‖curlv
n
h‖ .
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Finally, we come to estimate F1. By the Cauchy-Schwarz inequality we derive

|F1| ≤
1

2
τ

n
∑

m=2

‖(µ(x)− µh(x))curlPh∂τE
m(µ)‖2 +

1

2
τ

n
∑

m=2

‖curlvm−1
h ‖2

≤ τ

n
∑

m=2

‖(µ(x) − µh(x))(curlPh∂τE
m(µ)− curl∂τE

m(µ))‖2

+τ

n
∑

m=2

‖(µ(x)− µh(x))curl∂τE
m(µ)‖2 +

1

2
τ

n
∑

m=2

‖curlvm−1
h ‖2

≤ Cτ

n
∑

m=2

‖Ph∂τE
m(µ)− ∂τE

m(µ)‖20,curl +
1

2
τ

n
∑

m=2

‖curlvm−1
h ‖2

+τ
n
∑

m=2

‖µ(x)− µh(x)‖
2
L4(Ω)‖curl∂τE

m(µ)‖2L4(Ω) ,

then we further deduce using (4.15) and Lemma 4.1 that

|F1| ≤ Cτh2
n
∑

m=2

‖∂τE
m(µ)‖21,curl +

1

2
τ

n
∑

m=2

‖curlvm−1
h ‖2

+Cτ
n
∑

m=2

‖µ(x)− µh(x)‖L2‖∂τE
m(µ)‖21,curl

≤ C(h2 + ‖µ(x)− µh(x)‖)

∫ T

0

‖Et(t)‖
2
1,curldt+

1

2
τ

n
∑

m=2

‖curlvm−1
h ‖2 .

Now the desired estimate (4.20) follows from (4.21) and the previous estimates for
F1, F2 and F3. ♯

The following lemma will be essential to the convergence of the finite element
approximation (3.1)-(3.3) to the continuous minimization problem (2.3)-(2.5).

Lemma 4.4. Let
{

µh

}

be a sequence such that µh ∈ Kh and µh converges to some

µ ∈ K in L2(Ω) as h tends to 0. Let {Em
h (µh)} be the solution of (3.2)-(3.3),

and E(µ) be the solution of (2.4)-(2.5), satisfying the regularity (4.19). Then the
following convergence holds

(4.22) lim
h,τ→0

τ
M
∑

m=0

αm

∫

ω

|Em
h (µh)−Eδ|2dx =

∫ T

0

∫

ω

|E(µ)−Eδ|2dxdt.

Proof. We first show that

(4.23) lim
τ→0

τ

M
∑

m=0

αm

∫

ω

|Em(µ)−Eδ|2dx =

∫ T

0

∫

ω

|E(µ)−Eδ|2dxdt.
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In fact we can derive this convergence as follows:

∣

∣

∣
τ

M
∑

m=0

αm

∫

ω

|Em(µ)−Eδ|2dx −

∫ T

0

∫

ω

|E(µ)−Eδ|2dxdt
∣

∣

∣

=
∣

∣

∣

M
∑

m=1

∫ tm

tm−1

∫

ω

|Em−1(µ)−Eδ|2 + |Em(µ)−Eδ|2

2
dxdt

−
M
∑

m=1

∫ tm

tm−1

∫

ω

|E(µ)−Eδ|2dxdt
∣

∣

∣

=
1

2

∣

∣

∣

M
∑

m=1

∫ tm

tm−1

∫

ω

{

(Em−1(µ)−E(µ)) · ((Em−1(µ) +E(µ)− 2Eδ)

+(Em(µ)−E(µ)) · ((Em(µ) +E(µ)− 2Eδ)
}

dxdt
∣

∣

∣

≤ C(

M
∑

m=1

∫ tm

tm−1

∫

Ω

|Em−1(µ)−E(µ)|2dxdt)
1

2

+C(

M
∑

m=1

∫ tm

tm−1

∫

Ω

|Em(µ)−E(µ)|2dxdt)
1

2 ,

which converges to zero by means of Lemma 4.2.
Using the convergence in (4.23), (4.22) follows immediately if we can derive

(4.24) lim
h,τ→0

τ
M
∑

m=0

αm

∫

ω

|Em
h (µh)−Eδ|2dx = lim

τ→0
τ

M
∑

m=0

αm

∫

ω

|Em(µ)−Eδ|2dx ,

which is to be verified below.
By means of the Cauchy-Schwarz inequality and the a priori estimates of Em

h (µh)
and Em(µ) (similar to the ones in (3.6) and (3.7)), we can deduce

|τ

M
∑

m=0

αm

∫

ω

|Em
h (µh)−Eδ|2dx− τ

M
∑

m=0

αm

∫

ω

|Em(µ)−Eδ|2dx|

= τ |

M
∑

m=0

αm

∫

ω

(Em
h (µh)−Em(µ)) · (Em

h (µh) +Em(µ)− 2Eδ)dx|

≤ (τ

M
∑

m=0

∫

ω

|Em
h (µh)−Em(µ)|2dx)

1

2 (τ

M
∑

m=0

∫

ω

|Em
h (µh) +Em(µ)− 2Eδ|2dx)

1

2

≤ C(τ
M
∑

m=0

∫

Ω

|Em
h (µh)−Em(µ)|2dx)

1

2 .

Now the convergence in (4.24) would follow if we have

(4.25) lim
h,τ→0

{ max
1≤m≤M

‖Em
h (µh)−Em(µ)‖0} = 0.

For the purpose, we first analysis the error function ηmh = Em
h (µh) − PhE

m(µ) for
m = 1, 2, · · · ,M. Taking v = τ−1vh ∈ V0

h in (2.5), then integrating with respect
to t over the interval Im, we obtain
(4.26)
∫

Ω

ε(x)∂τE
m
t (µ) · vhdx+

1

τ

∫

Ω

µ(x)

∫ tm

tm−1

curlEdt · curlvhdx =

∫

Ω

∂τJ
m · vhdx .
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Now subtracting (4.26) from (3.3) and making some rearrangements, we have

∫

Ω

ε(x)∂2τη
m
h · vhdx+

∫

Ω

µh(x)curlη
m
h · curlvhdx

=

∫

Ω

ε(x)∂τ (E
m
t (µ)− ∂τPhE

m(µ)) · vhdx

+
1

τ

∫

Ω

µ(x)

∫ tm

tm−1

curl(E− PhE
m(µ))dt · curlvhdx

+

∫

Ω

(µ(x) − µh(x))curlPhE
m(µ) · curlvhdx ,

letting vh = τ∂τη
m
h = ηmh − ηm−1

h , we further deduce

1

2

∫

Ω

ε(x)(|∂τη
m
h |2 − |∂τη

m−1
h |2)dx(4.27)

+
1

2

∫

Ω

µh(x)(|curlη
m
h |2 − |curlηm−1

h |2)dx

≤ τ

∫

Ω

ε(x)(∂τE
m
t (µ)− ∂2τE

m(µ)) · ∂τη
m
h dx

+τ

∫

Ω

ε(x)(∂2τE
m(µ)− ∂2τPhE

m(µ)) · ∂τη
m
h dx

+

∫

Ω

µ(x)

∫ tm

tm−1

curl(E−Em(µ))dt · curl∂τη
m
h dx

+τ

∫

Ω

µ(x)curl(Em(µ)− PhE
m(µ)) · curl∂τη

m
h dx

+τ

∫

Ω

(µ(x)− µh(x))curlPhE
m(µ) · curl∂τη

m
h dx

≡
5

∑

i=1

Ai .(4.28)

Next, we will estimate the terms Ai’s above one by one. Using the Cauchy-
Schwarz inequality and (4.18), A1 can be estimated by

A1 ≤
1

2
ε1τ‖∂τη

m
h ‖20 +

1

2
ε1τ‖∂τE

m
t (µ)− ∂2τE

m(µ)‖20

≤
1

2
ε1τ‖∂τη

m
h ‖20 + Cε1τ

2

∫ tm

tm−2

‖Ettt‖
2
0dt ,

while A2 can be bounded by using the Cauchy-Schwarz inequality and Lemma 4.1
and the estimates (4.15)-(4.17) as follows:

A2 ≤
1

2
ε1τ‖∂τη

m
h ‖20 +

1

2
ε1τ‖∂

2
τE

m(µ)− Ph∂
2
τE

m(µ)‖20,curl

≤
1

2
ε1τ‖∂τη

m
h ‖20 + Cε1τh

2‖∂2τE
m(µ)‖21,curl

≤
1

2
ε1τ‖∂τη

m
h ‖20 + Cε1h

2

∫ tm

tm−2

‖Ett(t)‖
2
1,curldt.
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For A3, we can use the integration by parts formula to derive

A3 =

∫ tm

tm−1

∫

Ω

curl(µ(x)curl(E−Em(µ))) · ∂τη
m
h dxdt

= −

∫ tm

tm−1

∫ tm

t

∫

Ω

curl(µ(x)curlEt) · ∂τη
m
h dxdsdt

≤

∫ tm

tm−1

∫ tm

t

(
1

2τ
‖∂τη

m
h ‖20 +

τ

2
‖curl(µ(x)curlEt)‖

2
0)dsdt

≤
1

2
τ‖∂τη

m
h ‖20 +

1

2
τ2

∫ tm

tm−1

‖curl(µ(x)curlEt)‖
2
0dt.

For the estimate of A4, we use the definition of Ph in (4.14) and Lemma 4.1 to
derive that

A4 = τ

∫

Ω

µ(x)curl(Em(µ)− PhE
m(µ)) · curl∂τη

m
h dx

= −τ

∫

Ω

µ(x)(Em(µ)− PhE
m(µ)) · ∂τη

m
h dx

≤
1

2
τµ2

1‖∂τη
m
h ‖20 +

τ

2
‖Em(µ)− PhE

m(µ)‖20,curl

≤
1

2
τµ2

1‖∂τη
m
h ‖20 + Cτh2‖Em(µ)‖21,curl .

Summing up both sides of (4.28) from 1 to n (n ≤M) with respect to m, and using
the previous estimates of Ai’s, we obtain

1

2
ε0‖∂τη

n
h‖

2
0 +

1

2
µ0‖curlη

n
h‖

2
0(4.29)

≤
1

2
ε1‖∂τη

0
h‖

2
0 +

1

2
µ1‖curlη

0
h‖

2
0 + Cτ

n
∑

m=1

‖∂τη
m
h ‖20 + C(τ2 + h2) +

n
∑

m=1

A5 .

By the definition of E0
h and Ph and their approximation properties, we have

(4.30) ‖η0h‖0,curl = ‖Ph(ΠhE0−E0)‖0,curl ≤ C‖ΠhE0−E0‖0,curl ≤ Ch‖E0‖1,curl.

And by the definition of η0h , E0
h and E−1

h , we derive

∂τη
0
h = ∂τ (E

0
h − PhE

0) =
1

τ
(E0

h −E−1
h − PhE

0 + PhE
−1)

= Ph(ΠhE1 −E1) +
1

τ
Ph(E(−τ)−E(0) + τEt(0)) ,

which leads to

‖∂τη
0
h‖

2 ≤ C
(

‖ΠhE1 −E1‖
2
0,curl +

1

τ2
‖E(−τ)− E(0) + τEt(0)‖

2
0,curl

)

≤ Ch2‖E1‖
2
1,curl + Cτ

∫ 0

−τ

‖Ett‖
2
0,curldt .(4.31)

With the above estimates, it follows from (4.29) that

1

2
ε0‖∂τη

n
h‖

2
0 +

1

2
µ0‖curlη

n
h‖

2
0 ≤ C(τ + h2) + Cτ

n
∑

m=1

‖∂τη
m
h ‖20 +

n
∑

m=1

A5 .
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Then by making use of the result of Lamma 4.3 with vm
h = ηmh in (4.20), we obtain

that

1

2
ε0‖∂τη

n
h‖

2
0 +

1

2
µ0‖curlη

n
h‖

2
0

≤ µ1‖E
1(µ)‖0,curl‖curlη

0
h‖+ C‖En(µ)‖1,curl(‖µ(x)− µh(x)‖

1

2

0 + h)‖curlηnh‖

+C(h2 + ‖µ(x)− µh(x)‖0)

∫ T

0

‖Et(t)‖
2
1,curldt+ C(τ + h2)

+Cτ

n
∑

m=1

(‖curlηmh ‖20 + ‖∂τη
m
h ‖20) .

Now, using (4.30) and applying the discrete Gronwall’s inequality to the above
estimate we conclude that

(4.32) max
1≤n≤M

‖∂τη
n
h‖

2
0 → 0 as h, τ → 0.

Using this and the following estimate that

‖ηnh‖ ≤ ‖η0h‖+ ‖ηnh − η0h‖ = ‖η0h‖+ τ‖
n
∑

m=1

∂τη
m
h ‖ ≤ ‖η0h‖+ τ

n
∑

m=1

‖∂τη
m
h ‖

≤ ‖η0h‖+ T max
1≤m≤n

‖∂τη
m
h ‖ ,

we derive from (4.32) and (4.30) that

(4.33) max
1≤n≤M

‖ηnh‖
2
0 → 0 as h, τ → 0.

Finally noting that

‖PhE
m(µ)−Em(µ)‖0 ≤ ‖ΠhE

m(µ)−Em(µ)‖0,curl ≤ Ch‖Em(µ)‖1,curl ,

we then have by the triangle inequality that

max
1≤m≤M

‖Em
h (µh)−Em(µ)‖ ≤ max

1≤m≤M
‖ηmh ‖+ max

1≤m≤M
‖PhE

m(µ) −Em(µ)‖ ,

which leads to the desired convergence in (4.25), hence completes the proof Lemma 4.4.
♯

Finally we are ready to demonstrate the convergence of the finite element ap-
proximation (3.1)-(3.3) to the the continuous minimization problem (2.3)-(2.5).

Theorem 4.1. Let
{

µ∗
h

}

h>0
be the minimizers to the discrete minimization prob-

lem (3.1)-(3.3), then there exists a subsequence of
{

µ∗
h

}

h>0
which converges strongly

in L2(Ω) to a minimizer of the continuous problem (2.3)-(2.5) as h and τ tend to
0. If the minimizers of the system (2.3)-(2.5) are unique, then the whole sequence

of
{

µ∗
h

}

h>0
converges to the unique minimizer.

Proof. As we did earlier, it is easy to see the boundedness of
{

µ∗
h

}

in H1(Ω) . Thus

there exists a subsequence, still denoted as
{

µ∗
h

}

, and some µ∗ in K such that

µ∗
h ⇀ µ∗ in H1(Ω), and µ∗

h → µ∗ in L2(Ω). Next we prove that µ∗ is a minimizer
of the continuous problem (2.3)-(2.5). For any µ ∈ K, letting µh = πhµ ∈ Kh, then
we have

(4.34) Gh,τ (µ
∗
h) ≤ Gh,τ (πhµ) and lim

h→0
‖πhµ− µ‖H1(Ω) = 0.
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Now using (4.34), Lemma 4.4 and the lower semi-continuity of a norm, we deduce

G(µ∗) =

∫ T

0

∫

ω

|E(µ∗)−Eδ|2dx+
β

2
‖∇µ∗‖2L2(Ω)

= lim
h,τ→0

τ

M
∑

m=0

αm

∫

ω

|Em
h (µ∗

h)−Eδ|2dx+
β

2
‖∇µ∗‖2L2(Ω)

≤ lim
h,τ→0

τ
M
∑

m=0

αm

∫

ω

|Em
h (µ∗

h)−Eδ|2dx+
β

2
lim inf
h,τ→0

‖∇µ∗
h‖

2
L2(Ω)

≤ lim inf
h,τ→0

Gh,τ (µ
∗
h) ≤ lim inf

h,τ→0
Gh,τ (πhµ)

≤ lim
h,τ→0

(τ

M
∑

m=0

αm

∫

ω

|Em
h (πhµ)−Eδ|2dx+

β

2
‖∇πhµ‖

2
L2(Ω))

=

∫ T

0

∫

ω

|E(µ)−Eδ|2dx+
β

2
‖∇µ‖2L2(Ω)

= G(µ) ,

so µ∗ is indeed a minimizer of the continuous problem (2.3)–(2.5). The second
part of the theorem follows directly from the unique assumption on the minimizers
to the system (2.3)-(2.5) and the previously proved result in the first part of the
theorem. This completes the proof of Theorem 4.1. ♯
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[9] J. Nédélec, Mixed finite elements in R

3, Numer. Math. 35(1980), 315-341.
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