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Abstract. Simulations of the localization of certain small electromagnetic

inhomogeneities, in a three-dimensional bounded domain, are performed by

making use of a framework recently introduced by the author and of a non-

standard discretization process of this domain. This framework is based on

a limit model in electric field and on the combination of a limit perturbation

model in the tangential boundary trace of the curl of the electric field, with

a Current Projection method or an Inverse Fourier method. As opposed to

our recent paper relating to this framework and to experiments requiring the

usual discretization process of the domain, inhomogeneities that are one order

of magnitude smaller are numerically localized here.
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1. Introduction

Several recent works, related to Electrical Impedance Tomography, deal with
the localization of inhomogeneities that are of small diameters. These works (see
e.g. [1, 2, 3, 4, 5, 10, 12, 18]) present tools and numerical methods for solving the
localization problem in diverse settings (conductivity inhomogeneities, elastic inho-
mogeneities, ...). For the localization of a finite number of small electromagnetic
inhomogeneities contained in a three-dimensional bounded domain, from a finite
number of boundary measurements, H. Ammari, M. Vogelius & D. Volkov propose
in [6] a practical tool. The inverse problem underlying the localization is based in
[6] on the time-harmonic Maxwell equations, and the proposed tool is an asymptotic
formula for perturbations in the electromagnetic fields, due to the presence of such
inhomogeneities. It allows one in particular to evaluate boundary measurements
of “voltage” type that are then used as data of the inversion algorithm — aimed
at locating the inhomogeneities. This tool has been recently considered by M.
Asch & S.M. Mefire [8, 9] for numerically performing the localization of such inho-
mogeneities in various experimental contexts (consideration of diverse frequencies,
consideration of inhomogeneities of different smallness, experiments with diverse
inversion algorithms).
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In the numerical investigations of [8], where the time-harmonic Maxwell equa-
tions and the formula for perturbations are considered in electric field, it is however
observed that such inhomogeneities cannot be localized from this formula in the
context of very low frequencies. This observation led to an essential question, that
of knowing whether these inhomogeneities can be localized from the limit model of
equations and the limit perturbation model obtained by letting the frequency van-
ish in the time-harmonic Maxwell equations in electric field and in the formula for
perturbations in the tangential trace of the curl of the electric field allowing one to
evaluate boundary measurements. This question has been recently answered by the
author in [15]. The numerical investigations performed in [15] indicate that these
limit models lead to the localization of inhomogeneities that are not purely electric.
However, the inhomogeneities considered in [15] are not sufficiently small in such a
way that we can assimilate the geometric configurations of numerical experiments
of [15] to concrete configurations from a physical point of view. Typically, these
experiments required, in particular, for the numerical evaluation of measurements,
a finite element method based on “full” conforming meshes of the domain whereas,
when the domain contains very small inhomogeneities, such meshes (that take into
account implicitly the conforming discretization of each imperfection) prohibit sim-
ulations of the localization as far as memory storage and CPU time are concerned.
In fact, in presence of such inhomogeneities, such a mesh, deriving from the usual
triangulation process of the domain, leads to a too large number of unknowns of
the discrete system (associated with the discrete formulation in electric field) that
must be solved for each evaluation of measurement; especially as the domain is
three-dimensional and as mixed finite elements are used.

As opposed to [15], where we were limited in numerical investigations by the
smallness of the inhomogeneities, configurations of much smaller inhomogeneities
will be treated here.

In this work, the simulations of the localization will be based on the afore-
mentioned limit perturbation model, and on finite element meshes called, as in
[9], the reduced meshes. Such a mesh of the domain, aimed at overcoming the
drawbacks inherent in full meshes, represents a conforming mesh whose size is bigger
than the largest of the diameters of the inhomogeneities present in the domain,
and is (explicitly) combined with integration meshes for taking into account the
characteristics of these small inhomogeneities.

This work is subdivided into five sections. In Section 2, we introduce from [15]
the limit model in electric field and the limit perturbation model that allows us,
in particular, to evaluate boundary measurements. We present in Section 3 the
(direct) computation of the electric field required in the evaluation of each mea-
surement. Typically, this computation is based on a discrete formulation resulting
from the combination of a reduced mesh, with Nédélec’s edge elements and nodal
finite elements. As this formulation provides a rectangular matrix system, we are
concerned with a least squares approach for solving the system and therefore deter-
mining the discrete electric field. Section 4 deals with extensive simulations, making
then use of reduced meshes, and considering two localization procedures: the one
based on a Current Projection method (for the single inhomogeneity context) and
the one deriving from an Inverse Fourier method (for the multiple inhomogeneities
context). We describe localization results obtained, in various contexts, with each
one of these procedures and also compare some results in the single inhomogeneity
context. Some conclusions are reported in Section 5.
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2. The Limit Perturbation Model

Let us consider a bounded open subset Ω of IR3, that is convex. For simplicity we
assume ∂Ω, the boundary of Ω, connected, to be C∞, but this regularity condition
could be considerably weakened. Here, Ω contains a finite number m of inhomo-
geneities, each one of the form zj + αBj , where Bj ⊂ IR3 is a bounded, smooth
(C∞) domain containing the origin. The points zj ∈ Ω, 1 ≤ j ≤ m, that determine
the locations of the inhomogeneities are assumed to satisfy:

(1)







0 < d0 ≤ |zj − zk| ∀ j 6= k,

d0 ≤ dist(zj , ∂Ω) ∀ j .

The parameter α > 0, the common order of magnitude of the diameters of the
inhomogeneities, is sufficiently small in such a way that these inhomogeneities are
disjoint and their distance to IR3 \Ω is larger than d0/2. As in [8], we call hereafter,
an imperfection, each one of these small inhomogeneities. The total collection of

imperfections takes the form Iα =
m
⋃

j=1

(zj + αBj).

Let us denote by µ0 > 0 and ε0 the magnetic permeability and the electric
permittivity of the background medium. Let also µj > 0 and εj denote the per-
meability and the permittivity of the j-th imperfection zj + αBj . We assume here
that the conductivity vanishes everywhere in Ω. The permittivities ε0 and εj are
therefore real-valued and considered such that: ε0 > 0, εj > 0. By assuming that
all these parameters are constant, we represent as below the piecewise constant
magnetic permeability and the piecewise constant electric permittivity: ∀ x ∈ Ω,

µα(x) =







µ0, if x ∈ Ω \ Iα ,

µj , if x ∈ zj + αBj ,
εα(x) =







ε0, if x ∈ Ω \ Iα ,

εj, if x ∈ zj + αBj ,

with 1 ≤ j ≤ m. If we allow the degenerate case α = 0, then the function µα equals
the constant µ0 and the function εα equals the constant ε0.

Let {γn}0≤n≤m, with γn > 0, for 0 ≤ n ≤ m, be related to either the set
{µn}0≤n≤m or the set {εn}0≤n≤m. For any fixed 1 ≤ j0 ≤ m, let γ denote the

function defined as: ∀ x ∈ IR3,

γ(x) =







γ0, if x ∈ IR3 \Bj0 ,

γj0 , if x ∈ Bj0 .

For any fixed 1 ≤ l ≤ 3, let us denote by φl the solution to:






div (γ(x) gradφl(x)) = 0 for x ∈ IR3 ,

φl(x) − xl → 0 as |x| → ∞ .

The scalar potential φl depends in fact only on γ0 and γj0 through the ratio c =
γ0
γj0

.

Here, the essential assumption is that the constant c cannot be zero or a negative
real number. With this aspect ratio, we define (as in [6]) the polarization tensor,
M j0(c), of the inhomogeneity Bj0 as follows: ∀ 1 ≤ i, l ≤ 3,

(2) M j0
il (c) = c−1

∫

Bj0

∂φl
∂xi

dx .
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Following [6], the tensor M j0(c) is symmetric, and is furthermore positive definite
if c ∈ IR⋆

+.

As in the framework developed in [15], we are here concerned with the limit model
of equations obtained by letting the frequency vanish in the time-harmonic Maxwell
equations formulated in electric field. In fact, in the presence of imperfections, the
electric field denoted Eα satisfies:

(3)















curl( 1
µα

curlEα) = 0 in Ω ,

div (εαEα) = 0 in Ω ,

Eα × ν = g on ∂Ω ,

where g is a prescribed datum on ∂Ω, and ν represents the outward unit normal to
Ω, defined on ∂Ω.

The electric field denoted E0, in the absence of all the imperfections, is such
that:

(4)















curl( 1
µ0

curlE0) = 0 in Ω ,

div (ε0E0) = 0 in Ω ,

E0 × ν = g on ∂Ω .

Let
H(curl ; Ω) = {u ∈ (L2(Ω))3 ; curlu ∈ (L2(Ω))3 }

be endowed with its usual Hermitian product denoted here by ( . , . )H(curl ; Ω); the
corresponding norm is denoted by ‖ . ‖H(curl ; Ω). The vector fields Eα and E0 shall
be determined in H(curl; Ω). By representing the surface divergence by div∂Ω, let
us consider the space

TH− 1
2 (div ; ∂Ω) = {q ∈ (H− 1

2 (∂Ω))3 ; div∂Ω q ∈ H− 1
2 (∂Ω), q · ν = 0 on ∂Ω},

with its usual norm denoted here by ‖ . ‖
TH

−

1
2 (div ; ∂Ω)

.

Of course, the datum g is taken in TH−1
2 (div ; ∂Ω), and we consider ug ∈

H(curl; Ω) such that (see e.g. [7]):

(5)







ug × ν = g on ∂Ω ,

‖ug‖H(curl; Ω) ≤ CΩ‖g‖
TH

−

1
2 (div ; ∂Ω)

,

where CΩ > 0 is a constant depending only on Ω. With this extension field, the
determination of Eα satisfying (3) is reduced to the problem which consists of
finding Eα such that:

(6)















curl( 1
µα

curlEα) = − curl( 1
µα

curlug) in Ω ,

div (εα Eα + εα ug) = 0 in Ω ,

Eα × ν = 0 on ∂Ω .

Of course, knowing ug, while Eα is in accordance with (6), we determine the electric
field:

(7) Eα := Eα + ug .

Let us set:

Ψ = H1
0 (Ω) ,

H = {u ∈ H(curl; Ω) ; u× ν = 0 on ∂Ω } .
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The vector field Eα is sought in the space H. Let us consider q ∈ Ψ such that

(8) (εα grad q, gradψ)(L2(Ω))3 = (εα ug, gradψ)(L2(Ω))3 ∀ ψ ∈ Ψ ,

and introduce the new unknown

(9) Uα := Eα + grad q ,

as well as the space

V = {v ∈ H(curl; Ω) ; (εα v, gradψ)(L2(Ω))3 = 0 ∀ ψ ∈ Ψ , v × ν = 0 on ∂Ω } .

Here, the notation ( . , . )(L2(Ω))3 denotes the usual Hermitian product of (L2(Ω))3

and the associated norm will be represented by ‖ . ‖(L2(Ω))3 . The space V is endowed
with the norm equivalent to ‖ . ‖H(curl ; Ω) and generated (see e.g. [7]) by the
mapping u ∈ V 7−→ ‖ curlu‖(L2(Ω))3 according to hypotheses on Ω and to the
definition of the real-valued parameter εα. Following [15], we introduce the weak

formulation defined below for g ∈ TH− 1
2 (div ; ∂Ω) and therefore for ug taken as in

(5).
Find Uα ∈ V such that:

(10) (
1

µα

curlUα, curl v)(L2(Ω))3 = −(
1

µα

curlug, curl v)(L2(Ω))3 ∀ v ∈ V .

Let us recall the following result proved in [15].

Theorem 2.1. For any g ∈ TH− 1
2 (div ; ∂Ω), and therefore any ug defined as

in (5), the formulation (10) has one and only one solution Uα ∈ V. Further-

more, there exists a constant C > 0 independent of α such that: ‖Uα‖H(curl ; Ω) ≤
C ‖g‖

TH
−

1
2 (div ; ∂Ω)

.

The existence and the uniqueness of such a vector field Uα lead to the determina-
tion of a unique vector field Eα in accordance with (6), due to the definition of the
scalar potential q in (9). Thus, the existence and the uniqueness of Eα satisfying
(3) are ensured by taking into account (7).

As explained in [15], the interest of considering the extension field without the
requirement, div(εα ug) = 0 in Ω, allows in fact an easy determination of its an-
alytic expression — necessary in the numerical approximations. Let us already
mention that, in the section dealing with numerical discretizations (see Section 3),
we will be concerned with a discrete formulation that requires ug for numerically
approximating Eα (and hence Eα), but where the scalar potential q is not required.

Remark 2.1. Under the assumption (1) and following [15], the formula below

expresses an approximation of the boundary perturbation in the curl of the electric

field associated with the present model:

(11)

∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × (Eα × ν)) dσ ≈

α3

m
∑

j=1

(
µ0
µj

− 1)
[

M j(
µ0
µj

) curlE0(zj)
]

· curlw(zj) ,

where Eα and E0 are subject respectively to (3) and (4) with the datum g in

TH−1
2 (div ; ∂Ω). In (11), w is any smooth vector-valued function satisfying

(12)







curl( 1
µ0

curlw) = 0 in W ,

div (ε0 w) = 0 in W ,
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with W an open neighborhood of Ω. Of course, it is here considered 0 < α < α0

with the constant α0 > 0 independent of the points zj, 1 ≤ j ≤ m, and of the

function w.

The numerical experiments achieved in [15] show that the formula (11) allows
us to effectively localize imperfections from a combination with a suitable inversion
algorithm. As opposed to [15], we will numerically inspect here the localization
of imperfections that are one order of magnitude smaller. This aim requires a
numerical discretization approach different from the one of [15].

Remark 2.2. Since only explicit information on the parameter µα appears in (11),
as long as the imperfections are purely electric, let us also mention as in [15] that
their localization cannot be based on this formula.

3. Numerical Discretization

We introduce here the discrete formulation associated with (10), and obtained
from a finite element discretization requiring a non-standard triangulation process
of the domain Ω. Finally, we present the numerical approximation of the field Eα

satisfying (3), necessary in the stage where we evaluate the boundary measurements.

3.1. With Reduced Meshes. By assuming here that Ω contains only one im-
perfection that is very small, and that Ω as well as the imperfection are polyhedral,
let us briefly recall, following [9], the triangulation process aimed at generating
meshes that allow us to overcome the drawbacks inherent in the use of full finite
element meshes. This is a process that starts by the construction of one tetra-
hedron surrounding the imperfection, called the inhomogeneous tetrahedron, and
performs next a conforming discretization of the rest of the domain Ω with tetrahe-
dra. The collection T formed by the inhomogeneous tetrahedron and by the other
tetrahedra constitutes a conforming mesh of Ω, called the reduced mesh, and must
correspond to a regular discretization in the sense that there exists a constant c > 0

such that supK∈T
hK
̺K ≤ c, where hK denotes the diameter of the tetrahedron K

and ̺K is the diameter of the largest sphere included in K. The mesh size h of
Ω, h = supK∈T hK , depends in particular on the diameter of the inhomogeneous
tetrahedron that can be reduced until a limiting value depending on α⋆, the diam-
eter of the imperfection; h > α⋆. Since α⋆ is very small, h can of course be taken
as small as the size of a “fine” mesh of Ω that could be considered in the absence
of the imperfection.

The discrete formulation associated with (10) can then be introduced by using
finite element spaces based on the reduced mesh of Ω and by requiring a composite
integration method for taking into account the characteristics of the imperfection.
This integration method is of course based on an integration mesh of the inhomoge-
neous tetrahedron and on a composite integration formula for the calculation of any
integral term (of the formulation) supported by this tetrahedron. The integration
mesh is also constructed with tetrahedra, for suppleness of the implementation.
As explained in [9], different reduced mesh “levels” of Ω can be built, and in the
presence of multiple (polyhedral) imperfections, the same triangulation process is
also performed.

Figure 1 illustrates, in the context where Ω has the shape of the unit disk and
contains one disk-like shaped imperfection of center (0.5, 0)T and of ’radius’ 0.02,
a reduced mesh level and an integration mesh associated with the inhomogeneous
geometric element whose edges are represented in bold in this reduced mesh. The
superscript “T ” denotes, here and in the next sections, the transpose.
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Figure 1. Representations of a reduced mesh level and of an in-
tegration mesh associated with the corresponding inhomogeneous
geometric element.

3.2. Discrete Formulation in Electric Field. We denote by Thl
the collection

of tetrahedra associated with a reduced mesh of Ω, of level l; hl denoting the
corresponding mesh size. Let us assume that an integration mesh is systematically
associated with each inhomogeneous tetrahedron of Thl

, and is combined with a
second-order accurate numerical integration formula.

We discretize (10) in particular with the help of the edge elements (see Nédélec
[16]) of the first order. By denoting by K a tetrahedron of Thl

, let us consider then

R1(K) = {u : K −→ IC3 ; ∃ a, b ∈ IC3, u(x) = a+ b × x, x = (x1, x2, x3)
T ∈ K} .

Let us set

Rhl
= {uhl

∈ H(curl; Ω) ; uhl
|K ∈ R1(K) ∀K ∈ Thl

} ,

and associate with H the discrete space

Hhl
= {uhl

∈ Rhl
; uhl

× ν = 0 on ∂Ω} ,

also endowed, as was H, with ( . , . )H(curl; Ω). The expression of any element of
Rhl

in each tetrahedron K ∈ Thl
can be written similarly as was done in [14] with

IR3-valued fields, for a practical implementation.
Let us next associate with Ψ the discrete space

Ψhl
= {ψhl

∈ H1(Ω) ; Re(ψhl
)|K , Im(ψhl

)|K ∈ P1 ∀K ∈ Thl
, ψhl

= 0 on ∂Ω} ,

where P1 is the space of polynomials of degree less than or equal to 1. Finally, we
define

Vhl
= {vhl

∈ Rhl
; (εα vhl

, gradψhl
)(L2(Ω))3 = 0 ∀ψhl

∈ Ψhl
, vhl

× ν = 0 on ∂Ω},

the discrete space associated with V , and endowed with the norm of V .
The discrete formulation associated with (10), and based on this reduced mesh,

consists of finding Uhl
∈ Vhl

such that:

(13) (
1

µα

curlUhl
, curl vhl

)(L2(Ω))3 = −(
1

µα

curlug, curl vhl
)(L2(Ω))3 ∀ vhl

∈ Vhl
.

Although this formulation is well-posed, according to properties (see e.g. Theo-
rem 1. in [17]) of the used finite elements, to the definitions of µα, εα, as well to
the assumptions on the geometry of Ω, it is not suitable for a practical implemen-
tation because of the implicit divergence-free constraint.

In order to take into account explicitly this constraint, we consider from (13) the
following formulation.
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Find Uhl
∈ Hhl

such that:
(14)






( 1
µα

curlUhl
, curl vhl

)(L2(Ω))3 = −( 1
µα

curlug, curl vhl
)(L2(Ω))3 ∀ vhl

∈ Hhl
,

(εα Uhl
, gradψhl

)(L2(Ω))3 = 0 ∀ ψhl
∈ Ψhl

.

Since Uhl
represents an approximation of the vector field Uα satisfying (10), we

introduce, following (9), the vector field Ehl
as being the discrete field associated

with Eα subject to (6),

Uhl
=: Ehl

+ grad q .

Next, by inserting this expression of Uhl
into (14), and taking into account the

definition of the scalar potential q from (8), we now deal with a formulation where
Ehl

is the unknown.
Find Ehl

∈ Hhl
such that:

(15)






( 1
µα

curl Ehl
, curl vhl

)(L2(Ω))3 = −( 1
µα

curlug, curl vhl
)(L2(Ω))3 ∀ vhl

∈ Hhl
,

(εα Ehl
, gradψhl

)(L2(Ω))3 = −(εα ug, gradψhl
)(L2(Ω))3 ∀ ψhl

∈ Ψhl
.

This is a discrete formulation associated with the continuous problem (6) satisfied
by Eα. From the properties of the present finite elements, as well the definitions of
µα, εα and the assumptions on the geometry of Ω, it results that any solution Ehl

of
(15) is unique. In numerical simulations, we will be concerned with the formulation
(15) allowing us to approximate the electric field Eα, through (7), by considering
the vector field

(16) Ehl
:= Ehl

+ ug .

As mentioned earlier, in the numerical approximation of Eα and hence in the com-
putation of the discrete electric field Ehl

, the scalar potential q does not intervene.
The formulation (15) leads to a rectangular matrix system, for which the coeffi-

cients of the matrix as well as those of the right-hand side are evaluated by using
the afore-mentioned numerical integration method. This matrix is of a drastically
reduced size, in contrast with the matrix that would result from a discrete formu-
lation (also associated with (6)) based on a full finite element mesh of Ω (built
with a similar balancing). The discrete electric field is here computed by solving
this rectangular system by a least squares approach based on the normal equations,
associated with the system, and making use of a (complex) conjugate gradient-type
method (see e.g. [13]). In fact, the solution of the rectangular system is precondi-
tioned by an upper banded matrix that corresponds to the triangular matrix in an
Incomplete Modified Gram-Schmidt (IMGS) factorization of the matrix of the sys-
tem, with a row major ordering. The analysis of such a preconditioning technique
is presented in [19].

4. Numerical Localization

We begin by presenting the computational configurations, and then move on to
numerical experiments based on two localization procedures. Each one of these pro-
cedures combines the approximation formula (11) with one of the following inversion
processes: a Current Projection method (for the single imperfection context) or an
Inverse Fourier method (for the multiple imperfections context). Following [15],
four stages define each procedure: illumination of the domain by “application of
boundary currents”, computation of the discrete electric field through the formu-
lation (15) for each applied boundary current, numerical evaluation of boundary
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measurements from the use of both the formula (11) and the discrete electric field
as well as particular test fields, and application of the relevant inversion process.

In contrast with [15] where full finite element meshes were used, only reduced
meshes will be required here. The numerical integration method that we employ
(in the computation of the discrete electric field or in the evaluation of boundary
measurements) does not deteriorate the order of accuracy of the finite element
discretization associated with each considered reduced mesh. Thus, besides the
error inherent in the used inversion process, only this discretization order will have
an influence on the accuracy of the localization.

4.1. Computational Configurations. We distinguish two configurations of the
(polyhedral) domain Ω, that has here the diameter and the shape of the unit ball.
In the first configuration, Ω contains a single imperfection which is a polyhedron
having the shape of a ball of center (p1, p2, p3)

T = (0.23,−0.31, 0.15)T and of radius
α = 0.02. Two reduced meshes of Ω obtained recursively (see also [9]) are retained
for this configuration. We represent thus by

• Th1 the collection of tetrahedra corresponding to the initial reduced mesh
of Ω. This is a mesh built from an inhomogeneous tetrahedron of small
diameter (approximately equal to 11α/2), and identified hereafter as the
reduced mesh of Ω of first level (l = 1);

• Th2 the collection of tetrahedra associated with the reduced mesh of Ω of
second level (l = 2), built from a dilation of the initial inhomogeneous
tetrahedron with a homothetic parameter equal to 1.05.

In the construction of these reduced meshes, of sizes h1, h2 such that h1 < h2,

we have used more or less the same balancing (of the order of 5
2). We present in

the following table some characteristics of these meshes — denoting by NK, NIE,
NIV the number of tetrahedra, internal edges and internal vertices respectively, as
well by nf , ne the number of boundary faces and boundary edges respectively.

NK NIE NIV nf ne hl

Th1 31081 34252 4545 2750 4125 0.19100

Th2 16021 17538 2309 1586 2379 0.22639

The integration mesh of the inhomogeneous tetrahedron of Thl
(l = 1, 2) is not

made up of a large number of elements (only about 1500 tetrahedra constitute such
a mesh here), since large disproportions exist between the volumes of tetrahedra
inside and outside the imperfection.

In the second configuration, Ω contains multiple imperfections and each imperfec-
tion is a ball-like or ellipsoid-like shaped polyhedron. The collections of tetrahedra
associated with the reduced meshes of Ω are represented by

• T 3
h when Ω contains three imperfections, one of which has the shape of

a ball of radius 0.016 and of center (0.23,−0.31, 0.15)T . The second one
is ellipsoid-shaped, centered at (−0.17,−0.43,−0.11)T with ’semi-axes’ of
lengths 0.016, 0.016, 0.018 in the directions Ox, Oy, Oz respectively. The
last one is also ellipsoid-shaped, but centered at (−0.5, 0.25, 0.1)T with the
’semi-axes’ (on Oxy) rotated about Oz by an angle of π4 . The lengths

of these ’semi-axes’ are 0.016, 0.017 and 0.019. Here, we denote by α
(α = 0.019) the maximal value of the ’radius’ (of the first imperfection)
and of the semi-axes lengths;
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• T 4
h when Ω contains five imperfections, where each one has the shape

of a ball of radius 0.01. We set here: α = 0.01. These imperfections
are respectively centered at (0, 0, 0)T , (0.25, 0.25, 0.25)T , (0.5, 0.5, 0.5)T ,
(−0.25,−0.25,−0.25)T , and (−0.5,−0.5,−0.5)T .

With the same notation as above, we give in the following table some characteristics
of these two reduced meshes.

NK NIE NIV nf ne h

T 3
h 66347 74349 10085 4168 6252 0.14546

T 4
h 77263 86614 11753 4806 7209 0.13951

Three integration meshes associated with the three inhomogeneous tetrahedra of
T 3
h are here retained, whereas we consider a unique integration mesh in the case

of the inhomogeneous tetrahedra of T 4
h (all the imperfections having then both the

same shape and size, and the same type of tetrahedron being used to surround each
imperfection).

In contrast with the context of full finite element meshes, the mesh size hl or
h resulting from each reduced mesh is such that: hl, h > 2α. We have used more

or less the same balancing (of the order of 5
2 as before) in the construction of

the reduced meshes associated with T 3
h and T 4

h . As indicated in [9], with such a
balancing, the usual discretization process of the domain would result in a full mesh
having an exorbitant number of tetrahedra, in each one of the previous settings (for
example, more than 1 140 000 tetrahedra result from the full mesh of the domain,
with approximately 0.0619 as mesh size, when it contains a single imperfection of
’radius’ 0.08 only!).

We notice in comparison with the imperfections considered in [15] that those of
the present computational configurations are one order of magnitude smaller.

4.2. From the Procedure based on a Current Projection Method. We per-
form here numerical experiments from a localization procedure uniquely devoted to
the context where the domain contains a single imperfection. Aimed at determin-
ing the center of the imperfection, as detailed in [15], this procedure is obtained
by combining the approximation formula (11) and a Current Projection method.
To begin, let us recall briefly how the formula (11) is used. When we denote by
p = (p1, p2, p3)

T the center of the imperfection, by M its “rescaled” polarization

tensor (
µ0
µ1

− 1)M1(
µ0
µ1

), it follows from (11) that:

(17)
Γ :=

∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × g) dσ

≈ α3 (M curlE0(p)) · curlw(p) ,

where g = Eα × ν, and w is any smooth vector-valued function satisfying (12).
We have following (7) that Eα = Eα + ug, where ug is introduced in (5) and Eα
verifies (6). The datum g, that also defines ug, is considered from a physical point
of view as a current prescribed on ∂Ω. The discrete field Eh associated with Eα is
the solution of (15), and the discrete electric field associated with Eα is defined as
in (16): Eh := Eh + ug.

For each current g(i) = E
(i)
0 ×ν, corresponding to the background vector potential

E
(i)
0 , 1 ≤ i ≤ 3, where

E
(1)
0 (x) = (0, 0, x2)

T , E
(2)
0 (x) = (x3, 0, 0)

T , E
(3)
0 (x) = (0, x1, 0)

T ,
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x = (x1, x2, x3), we put g := g(i) in (5) and compute through (15) the associated

discrete electric field denoted E
(i)
h . Next, using the test vector fields w(j),

w(j) := E
(j)
0 ,

we evaluate, with the help of a numerical integration formula of order 2, the bound-
ary measurements Γ(j,i), 1 ≤ j ≤ 3, defined as:

Γ(j,i) :=

∫

∂Ω

curlE
(i)
h × ν · w(j) dσ −

∫

∂Ω

curlw(j) × ν · (ν × g(i)) dσ .

We obtain then from (17) an approximation of the rescaled tensor α3M ,

(18) Γ(j,i) ≈ α3Mji ,

where the terms Mji, 1 ≤ i, j ≤ 3, are the coefficients of M .
Next, the center of the imperfection is located by considering the same back-

ground vector potentials and a new test vector field:

w(4)(x1, x2, x3) = (x2x3,−x1x3, 0)
T .

In fact, we evaluate the boundary measurements Γ(4,i), 1 ≤ i ≤ 3,

Γ(4,i) :=

∫

∂Ω

curlE
(i)
h × ν · w(4) dσ −

∫

∂Ω

curlw(4) × ν · (ν × g(i)) dσ ,

and build from (17) the following “linear system”:

(19)















Γ(4,1) ≈ α3M11p1 + α3M21p2 − 2α3M31p3 ,

Γ(4,2) ≈ α3M12p1 + α3M22p2 − 2α3M32p3 ,

Γ(4,3) ≈ α3M13p1 + α3M23p2 − 2α3M33p3 ,

for locating this center. This will always be possible while µ1 6= µ0 and when
M1(µ0

µ1
) is positive definite, namely when µ0 > 0 and µ1 > 0. Of course, in this

context, the matrix of the “system” (19) is invertible.
In the particular situation where the rescaled polarization tensor M is known,

an approximation of the order of magnitude of the diameter of the imperfection
can be determined from one of the measurements Γ(i,i), 1 ≤ i ≤ 3, while µ1 6= µ0,
with of course µ0 > 0, µ1 > 0. More precisely, the reconstruction of α, representing
here the ’radius’ of the imperfection, is performed in our simulations by evaluating,
without any relation to reduced meshes, the polarization tensor M1(

µ0
µ1

). This

evaluation is done as explained in [8], by calculating numerically the coefficients of
the tensor from (2), (Bj0 being identified here with B1 a polyhedral domain having
the shape and the diameter of the unit ball), and after a finite element computation
of the scalar potential used in (2).

In the purely electric case, namely when µ1 = µ0, and ε1 6= ε0, the measurements
in (18) do not provide any information.

In our experiments, we consider (18)−(19) by distinguishing therefore the cases:
µ1 6= µ0 with ε1 = ε0, and µ1 6= µ0 with ε1 6= ε0, after fixing µ0 = ε0 = 1. We repre-

sent respectively by
|α− αh|

|α|
and

|p− ph|IR3

|p|IR3
(with | . |IR3 denoting the infinity norm

on IR3), the relative errors on the ’radius’ α and the center p of the imperfection,
when αh, ph are the ’radius’ and the center of the localized imperfection.

The results represented in Figures 2 - 3 concern the reconstruction of the ’radius’
α, from the configurations Th1 and Th2 , by using ε1 = 1, 5, 10, 100. Independently of
the considered configuration, the relative error on the ’radius’ of the imperfection
increases, presenting an asymptotic behavior with respect to µ1 (µ1 > µ0). As
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Figure 2 indicates, for each fixed value of µ1, this relative error is not influenced by
the values used for ε1. We obtained similar results to those of Figure 3 by taking
ε1 = 1, 100 in simulations.
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Figure 2. Semi-log representation of the relative error on the ra-
dius with respect to some values of µ1, for ε1 = 1, 5, 10, 100, from
Th1 .

These results allow us to notice that only a very small difference exists between
the relative errors obtained from Th1 and Th2 for large values of µ1; the relative
error from Th1 is very slightly smaller than the one resulting from Th2 .
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Figure 3. Semi-log representation of the relative error on the ra-
dius with respect to some values of µ1, for ε1 = 5 (at left) and
ε1 = 10 (at right), from Thl

, (l = 1, 2).

The results represented in Figure 4 concern the reconstruction of the center
of the imperfection from Th1 and Th2 , for ε1 = 10. The relative error on the
center resulting from Th1 is asymptotically smaller than the one obtained from Th2 ,
with respect to µ1. The same observation is also noticed from simulations with
ε1 = 1, 5, 100. We observe a constant variation of the relative error on the center
obtained from Th2 , with respect to µ1. However, this is not the case from Th1 since
a slight variation of this relative error with respect to µ1 occurs. These observations
from Th1 and Th2 are also noticed from simulations by taking ε1 = 5, 100.

The cross-sections at x = p1 = 0.23, y = p2 = −0.31, and z = p3 = 0.15
of the original imperfection (with center (p1, p2, p3)

T ) and of the reconstructed
imperfection, resulting from Th1 for µ1 = 3, ε1 = 1, are represented in Figure 5.
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Figure 4. Log-log representation of the relative error on the cen-
ter with respect to some values of µ1, for ε1 = 10, from Thl

(l =
1, 2).
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Figure 5. Respective cross-sections at x = p1, y = p2 and z = p3,
from Th1 and with µ1 = 3, ε1 = 1. Superposition of the original
imperfection (−−−) whose center is marked by “+”, and of the
reconstructed imperfection (−−−) with its center marked by “×”.

For µ1 = 3 and ε1 = 1 again, Figure 6 shows similar representations resulting
now from Th2 .
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Figure 6. Respective cross-sections at x = p1, y = p2 and z = p3,
from Th2 and with µ1 = 3, ε1 = 1. Superposition of the original
imperfection (−−−) whose center is marked by “+”, and of the
reconstructed imperfection (−−−) with its center marked by “×”.
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We notice that the reconstruction of the imperfection from Th1 is better than
the one resulting from Th2 .

Due to the fact that the relative error on the center appears more accurate
with Th1 than with Th2 , we will henceforth uniquely consider Th1 , in this single
imperfection context, for the experiments hereafter and of the next subsection.

Figure 7 concerns also an experiment in the purely magnetic case; µ1 = 10,
ε1 = 1. With this stronger magnetic contrast, the location of the center does
not differ significantly from the one that was already obtained, whereas the recon-
structed radius is less accurate here.
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Figure 7. Same as Figure 5 except with µ1 = 10, ε1 = 1.

Figures 8 - 9 present the results obtained in the electromagnetic case. The
experiment associated with Figure 8 considers a stronger electric contrast whereas
the one associated with Figure 9 considers a stronger magnetic contrast. In each
case, the location of the center is accurate.
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Figure 8. Same as Figure 5 except with µ1 = 5, ε1 = 10.

The reconstruction of the radius is less accurate in the case of the experiment
associated with Figure 9, because of a larger value of µ1 than in the previous
experiments.

As it can now be noticed, the numerical approach of this subsection leads to an
accurate and efficient reconstruction of the center of the imperfection.

4.3. From the Procedure based on an Inverse Fourier Method. This sub-
section deals with the numerical localization of a finite number m (m ≥ 1) of im-
perfections, from a variational approach based on the approximation formula (11)
and on the technique of Calderón [11] that reduces a localization problem to the
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Figure 9. Same as Figure 5 except with µ1 = 50, ε1 = 5.

calculation of an inverse Fourier transform. Let us first recall briefly the principle
of this procedure, detailed in [15], by reconsidering (11) as follows,

(20)

Γ :=

∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × g) dσ

≈ α3

m
∑

j=1

(µ0
µj

− 1)
[

M j(µ0
µj

) curlE0(zj)
]

· curlw(zj) ,

where g = E0 × ν. For an arbitrary η ∈ IR3, let us define β and ζ in IR3 such that:






‖β‖2 = 1, β · η = 0,

‖ζ‖2 = 1, ζ · η = ζ · β = 0 ,

and set

p = η + γβ , q = η − γβ , γ = i‖η‖ ,

where ‖ . ‖ represents the usual norm associated with the Hermitian product on IC3.

The background potential E0(x) = eip·xζ and the test vector field w(x) = eiq·xζ
are in accordance with (12). By taking into account in (20) this choice of test vector
field and the boundary current,

g(x) = (eip·xζ)× ν(x) ,

we can now view the measurement Γ as a function of η:
(21)

Γ(η) ≈ α3
m
∑

j=1

(

−(
µ0

µj

− 1)

[

M j(
µ0

µj

)((η + γβ)× ζ)

]

· ((η − γβ)× ζ)

)

ei2η·zj .

In the context where all the imperfections are balls — the tensors M j(c) being
accordingly of the form mj(c)I3, with I3 the 3 × 3 identity matrix, mj(c) a scalar
depending on c (cf. e.g. [8]), we notice that

(22) Γ(η) ≈ α3
m
∑

j=1

[

−(
µ0

µj

− 1)mj(
µ0

µj

)(2‖η‖2)

]

ei2η·zj ,

and the inverse Fourier transform of Γ(η) is expressed as: Γ̌(x) ≈ α3

m
∑

j=1

Lj(δ−2zj )(x),

where Lj is a second order differential operator with constant coefficients depend-

ing on mj(
µ0
µj

), and δ−2zj is the delta function centered at −2zj. In the situation

where some of the imperfections are not balls, the expression in the right-hand side
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of (21) is of course the Fourier transform of an operator of a more complicated kind
acting on the same delta functions.

The present inversion principle consists of sampling Γ(η) and then evaluating
the discrete inverse Fourier transform of the corresponding sample. Let us now
specify, following [18], a way to choose a step size for sampling with respect to η in
the numerical simulations, by considering, for example, the formula (22) with its
right-hand side simply rewritten as:

(23)

m
∑

j=1

Cj e
2i(η1z

1
j+η2z

2
j+η3z

3
j ) ,

where (z1j , z
2
j , z

3
j )

T =: zj and the complex constants Cj are unknown. For each

η = (η1, η2, η3)
T ∈ [−ηmax, ηmax]

3, taken on a regular grid made up of n3 points,

we consider g(x) = (ei(η+γβ)·xζ)× ν(x) in (3) and compute through (15) the corre-
sponding discrete electric field denoted here Eh. Then, we evaluate, with the aid of

an integration formula of order 2, the measurement Γ(η) by using w(x) = ei(η−γβ)·xζ
and replacing Eα by Eh in the left-hand side of (20). In this way, we are in posses-
sion of the sequence of data:
m
∑

j=1

Cj e
2i((−ηmax+(l1−1)ρ)z1

j+(−ηmax+(l2−1)ρ)z2
j+(−ηmax+(l3−1)ρ)z3

j ) , 1 ≤ l1, l2, l3 ≤ n ,

where ρ =
2ηmax
n . After applying the inverse Fourier transform to this sequence,

we get
(24)

1
n3

m
∑

j=1

Cj

∑

1≤l1,l2,l3≤n

e2i((−ηmax+(l1−1)ρ)z1
j+(−ηmax+(l2−1)ρ)z2

j+(−ηmax+(l3−1)ρ)z3
j )

×e2iπ(
(l1−1)

n
(s1−1)+

(l2−1)
n

(s2−1)+
(l3−1)

n
(s3−1)) ,

with 1 ≤ s1, s2, s3 ≤ n. Let us now reduce the module of the term in (24) as follows:

(25)

∣

∣

∣

∣

∣

∣

m
∑

j=1

1

n3
8Cj

sin(2ηmaxz
1
j ) sin(2ηmaxz

2
j ) sin(2ηmaxz

3
j )

(e2π(
ρz1

j
π

+
s1−1

n
)i − 1)(e2π(

ρz2
j

π
+

s2−1

n
)i − 1)(e2π(

ρz3
j

π
+

s3−1

n
)i − 1)

∣

∣

∣

∣

∣

∣

.

As n becomes large, the quantity in (25) is small unless one of the terms
ρz1j
π +

s1 − 1
n ,

ρz2j
π + s2 − 1

n , and
ρz3j
π + s3 − 1

n is close to an integer. Each one of these
terms shall only approach the integers 0 or 1, when n becomes large, by enforcing

(for example) Kρ
π <

∼
1
3 , in the case where all the centers zj (1 ≤ j ≤ m) lie

in [−K,K]3, with the bound K known. We can then fix ρ ≈ 1
K , and consider

simultaneously increasing values of n and of ηmax for more accuracy. Of course,
this procedure provides a sampling of the “physical” domain, with the centers zj

located (after a rescaling by −1
2) from the sequence of modules of the terms that

approximate those of (24), following the formula for measurements, with at best
(theoretically) a resolution of order π

2ηmax
(see also [8]).

The presentation of our results will consist here of representing, after a rescaling

by −1
2, contour-plots based on the mentioned sequence, additionally enriched by

a usual linear interpolation process. In order to overcome numerical instabilities
that could be induced by the consideration of an arbitrarily large value of ηmax

(the norms of E0 and w for ‖η‖ large used in (20) being able to become too small
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or too large as compared to their norms for ‖η‖ near 0), a cutoff process (see
e.g. [18]) is incorporated. In this process, a threshold η⋆ (independent of the
centers and shapes of imperfections as well as of µα, εα) is introduced such that
for ‖η‖ > ‖(η⋆, η⋆, η⋆)

T ‖, the quantity in (23) is set equal to 0. All our numerical
experiments will be then described with respect to ηmax, n and η⋆, in addition to
the physical parameters µα, εα.

We start by comparing some results obtained in the context of a single imperfec-
tion (m = 1) with those of Subsection 4.2, before describing the localization results
in the context of multiple imperfections (m > 1). Systematically µ0 = ε0 = 1, and
suitable values for η⋆ will result from the simulations. As it was also the case in Sub-
section 4.2, all the computations will be performed in double precision arithmetic
in each experiment considered here.

In Figures 10 - 13, we represent the results obtained from the configuration Th1 .
For each experiment, we fix ηmax = 10 and consider ρ = 2; the expected order of
resolution is then π

2ηmax
≈ 0.157. This fixed value of ηmax appears numerically large

as observed from simulations, and the mentioned cutoff process is hence required.
We are first concerned with the localization in the magnetic case. Figure 10

shows the results obtained by taking µ1 = 3, ε1 = 1.
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Figure 10. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (24). Here, Th1 is used, µ1 = 3, ε1 = 1, ηmax = 10,
n = 10 and η⋆ = 4.5.

Figure 11 presents the results obtained by considering now a stronger magnetic
contrast.
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Figure 11. Same as Figure 10 except with µ1 = 10, ε1 = 1.
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The localization results in the electromagnetic case are represented in Figures
12 - 13. In comparison with the results of Figure 11, it seems that the localization
performed in the experiment associated with Figure 12 is not significantly influenced
by the new value of ε1.
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Figure 12. Same as Figure 10 except with µ1 = 10, ε1 = 5.

The experiment associated with Figure 13 considers a stronger electric contrast.
Here again, the influence of ε1 seems to be insignificant since we obtain from simu-
lations similar results by using the same values of the parameters ηmax, η⋆, n, but
by considering µ1 = 5 and ε1 = 1, 3, 5.
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Figure 13. Same as Figure 10 except with µ1 = 5, ε1 = 10.

According to the expected accuracy, we notice that the localization of the imper-
fection is successfully achieved here in both the magnetic and the electromagnetic
cases. Nevertheless, when we compare the reconstruction of the center of the im-
perfection in each one of Figures 5, 7, 8, respectively with the location of the
imperfection indicated in each one of Figures 10, 11, 13, it follows that the present
procedure is, in this single imperfection configuration, less efficient than the proce-
dure based on the Current Projection method. The results are here less accurate
in spite of the larger number of measurements required.

Let us consider now the multiple imperfections configurations, by fixing ρ = 5
4

and using hence a larger number of measurements than in the previous experiments.
Since the previous value of ηmax is kept here, the same order of resolution as before
is expected. Again, the suited values for η⋆ shall result from simulations. Let us
mention that, in the presentation of our results, when the z−direction, for example,
will be concerned, the software used for the present postprocessing will draw, besides
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contour-plot obtained on the plane Oxy, horizontal and vertical segments whose
intersections correspond to centers of the original imperfections viewed on Oxy.

Figures 14 - 16 present the results of experiments based on T 3
h . In the experiment

associated with Figure 14, we are concerned with the localization of three magnetic
imperfections.
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Figure 14. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that ap-
proximate those of (24). Here, T 3

h is used, µ1 = µ2 = 3, µ3 = 5,
ε1 = ε2 = ε3 = 1, ηmax = 10, n = 16 and η⋆ = 3.5.

In the limit of resolution, we notice that this localization is successfully achieved.
Also in the magnetic context, but where a same physical contrast is now associated
with each imperfection, µj = 3, 10, εj = 1 (1 ≤ j ≤ 3), let us mention that results
as accurate as those of Figure 14 are obtained from simulations.
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Figure 15. Same as Figure 14 except with µ1 = 3, µ2 = µ3 = 5,
ε1 = ε2 = 1, ε3 = 5.

Figure 15 shows the localization of three imperfections, where, now, one is elec-
tromagnetic; µ1 = 3, µ2 = µ3 = 5, ε1 = ε2 = 1, ε3 = 5. Similar localizations derive
from simulations in this situation where one of the imperfections is electromagnetic;
namely when we consider for instance µ1 = µ2 = µ3 = 5, ε1 = ε2 = 1, ε3 = 3, as
well as µ1 = 3, µ2 = 5, µ3 = 3, ε1 = ε2 = 1, ε3 = 5.

The experiment associated with Figure 16 concerns the localization of three
electromagnetic imperfections.

These experiments considering various physical contrasts, and based on T 3
h , show

that pertinent localizations are also obtained in the present multiple imperfections
context.
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Figure 16. Same as Figure 14 except with µ1 = 3, µ2 = 5, µ3 =
10, ε1 = ε2 = ε3 = 5.

Before extending our experiments to the context of the configuration T 4
h , by

expecting the same order of resolution, let us mention that the same number of
measurements as previously (from T 3

h ) is then considered since we are concerned
with the same physical region of interest.

The results represented in Figures 17 - 19 derive from experiments based on the
configuration T 4

h . Figure 17 shows the localization of five magnetic imperfections
having the same contrast: µj = 10, εj = 1, 1 ≤ j ≤ 5. Similar results are also
obtained from simulations when we consider now µj = 3, 1 ≤ j ≤ 5.
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Figure 17. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (24). Here, T 4

h is used, µj = 10, εj = 1 (1 ≤ j ≤ 5),
ηmax = 10, n = 16 and η⋆ = 4.5.

The results of Figure 18 concern the localization of five imperfections two of
which are electromagnetic.

The experiment associated with Figure 19 deals with the localization of five
electromagnetic imperfections.

As indicate Figures 17 - 19, we obtain pertinent numerical localizations also from
the configuration T 4

h .
The improvement of these localization results requires the use of very large val-

ues for ηmax. However, even for a value of ηmax which is not, as in the previous
experiments, very large, we are concerned in the procedure with a number of mea-
surements which, despite the cutoff process of the Fourier domain, remains large;
the stage of evaluation of these, being relatively costly despite an efficient numerical
computation of the solution of (15), amplifies the localization CPU time. In the
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Figure 18. Same as Figure 17 except with µj = 3 (1 ≤ j ≤ 5),
ε1 = ε2 = ε3 = 1, ε4 = ε5 = 5.
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Figure 19. Same as Figure 17 except with µj = 10, εj = 5 (1 ≤
j ≤ 5).

single imperfection context, the localization CPU time with the present procedure
is very expensive when compared with the one required by the previous procedure.
Typically, the localization CPU time is the main disadvantage of the present pro-
cedure, and in order to perform experiments with reasonable CPU time, we have
been thus led to fix an order of resolution which is not very “fine” but appears
pertinent.

5. Conclusions

Simulations of the localization of certain small electromagnetic inhomogeneities
have been performed by making use of reduced meshes and of a framework that
combines a limit perturbation model in the tangential boundary trace of the curl
of the electric field with a suited inversion algorithm. In the simulations, we have
distinguished two inversion algorithms: a Current Projection method and an Inverse
Fourier method. In the multiple imperfections context, only the second algorithm
has been considered. It derives from simulations that the localization in the single
inhomogeneity context is more suitable with the Current Projection method than
with the Inverse Fourier method.

The numerical results obtained allow us to validate the framework, introduced in
[15], in the present situation where the imperfections are of much smaller diameters.
This situation, physically more concrete, according to the context of our modeling,
led us to use reduced meshes in simulations. Of course, the experiments performed
here do not deal with the localization in the purely electric case. In order to localize
also purely electric imperfections from the considered limit model in electric field, we
refer to the suggestion made in [15] and that essentially consists of building directly
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from (3), with the help of test vector fields that are not of constant divergence,
another boundary perturbation formula containing now information with regard to
the electric permittivity.
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