
INTERNATIONAL JOURNAL OF c© 2010 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 7, Number 1, Pages 87–107

DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD WITH
INTERIOR PENALTIES FOR CONVECTION DIFFUSION OPTIMAL

CONTROL PROBLEM

TONGJUN SUN

(Communicated by Wenbin Liu)

Abstract. In this paper, a discontinuous Galerkin finite element method with interior

penalties for convection-diffusion optimal control problem is studied. A semi-discrete

time DG scheme for this problem is presented. We analyze the stability of this scheme,

and derive a priori and a posteriori error estimates for both the state and the control

approximation.
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1. Introduction

Finite element approximation of optimal control problems has been an important topic
in engineering design work. There has been extensive theoretical and numerical stud-
ies for standard finite element approximation of various optimal control problems. For
instance, for the optimal control problems governed by some linear elliptic or parabolic
state equations, a priori error estimates of the finite element approximation were estab-
lished long ago, see [1, 2, 3, 4, 5]. Furthermore, a priori error estimates were established
for the finite element approximation of some important flow control problems in [6]. Some
recent progress in a priori error estimates can be found in [7, 8] and in [9, 10, 11, 12],
for a posteriori error estimates. Systematic introduction of the finite element method for
PDEs and optimal control problems can be found in, for example, [13], [14] and [15].

In recent years, the discontinuous Galerkin methods have been proved very useful in
solving a large range of computational fluid problems ([16, 17, 18]). They are preferred
over standard continuous Galerkin methods because of their flexibility in approximat-
ing globally rough solutions, their local mass conservation, their possible definition on
unstructured meshes, their potential for error control and mesh adaptation.

The idea of using penalty terms in a finite element method is not new. Baker [19] was
the first one who used interior penalty with nonconforming elements for elliptic equa-
tions. Douglas and Dupont [20] analyzed a method which used interior penalties on the
derivatives with conforming elements for linear elliptic and parabolic problems. Inspired
by [19], Wheeler [21] presented an interior penalty method for second order linear el-
liptic equations. Closest to [21], Arnold [22] formulated a semi-discrete discontinuous
Galerkin method with interior penalty for second order nonlinear parabolic equations.

Received by the editors September 9, 2008 and, in revised form, July 5, 2009.
2000 Mathematics Subject Classification. 65N30, 49J20 .
This research was supported by the NSF of China( No.10571108) and SRF for ROCS, SEM .

87



88 T. SUN

These methods [20, 21, 22] generalized a method by Nitsche [23] for treating Dirichlet
boundary condition by the introduction of penalty terms on the boundary of the do-
main. Applications of these methods to flow in porous media were presented by Douglas,
Wheeler, Darlow and Kendall in [24]. These methods frequently referred to as interior
penalty Galerkin schemes.

In general, penalty terms are weighted L2 inner products of the jumps in the function
values across element edges. The primary motivation of including interior penalties is
to impose approximate continuity. These terms enable closer approximation of solutions
which varies in character from one element to another and allow the incorporation of
partial knowledge of the solution into the scheme. Numerical experiments have clearly
demonstrated the value of penalties for solving certain problems (see, e.g., [20]). New
applications of discontinuous Galerkin method with interior penalties to nonlinear para-
bolic equations were introduced and analyzed by Rivière and Wheeler ([17, 25, 26]). It
was shown that the method in ([17, 25, 26]) was elementwise conservative, and a priori
and a posteriori error estimates in higher dimensions were derived.

Optimal control for convection-diffusion equation is widely met in practical applica-
tions. For example, in Environmental Sciences, some phenomena modelled by linear
convection-diffusion partial differential equations are often studied to investigate the dis-
tribution forecast of pollutants in water or in atmosphere. In this context it might be
of interest to regulate the source term of the convection-diffusion equation so that the
solution is as near as possible to a desired one, e.g., to operate the emission rates of
industrial plants to keep the concentration of pollutants near (or below) a desired level.
This problem can be conveniently accommodated in the optimal control framework for
convection-diffusion equation. Some existing works ([27, 28, 29, 30]) focus on the sta-
tionary convection dominated optimal control problem. They used several stabilization
methods to improve the approximation properties of the pure Galerkin discretization
and to reduce the oscillatory behavior, e.g SUPG method in [27], stabilization on the
Lagrangian functional method in [28], reduced basis (RB) technique in [29]. However to
our best knowledge, there has been a lack of proper study for general time-dependent
convection-diffusion optimal control problem.

The purpose of this paper is to extend the discontinuous Galerkin method with interior
penalties in [17, 22] to time-dependent convection-diffusion optimal control problem. A
semi-discrete time DG scheme for this problem is presented. The first difficulty for
our problem is to derive the discretization of the co-state equation and the optimality
conditions. We first establish the semi-discrete time DG scheme for the state equation,
prove the stability and the existence of this scheme, then apply the theory of optimal
control problem (see, [31]) to this scheme for deriving the discretization of the co-state
equation and the optimality conditions. The DG scheme of state equation is complicated
so that it is much more difficult to derive the discretized co-state equation, which is
quite complicated. The complexity of the DG schemes of the state and the co-state
equation also leads to the difficulties in deriving a priori error estimates and a posteriori
error estimates later. To our knowledge, this paper appears to be the first trial to
approximate convection-diffusion optimal control problem by using the Discontinuous
Galerkin method with interior penalties.

The outline of the paper is as follows. In Section 2, we first briefly introduce convection-
diffusion optimal control problem and optimality conditions. In Section 3, we give some
definitions, then use discontinuous Galerkin method with interior penalties to construct
a semi-discrete approximate scheme for convection-diffusion optimal control problem.
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For this scheme, we prove the stability and the existence of the approximate solution.
Then by the theory of optimal control problem, we present the semi-discrete optimality
conditions. A priori error estimates are derived for both the state and the control approx-
imation in Section 4. In Section 5, a posteriori error estimates are discussed for the case
of an obstacle constraint under an assumption the velocity vector is incompressible. This
assumption is needed to give stability bounds for the corresponding dual problem (see,
Lemma 5.4) and not be satisfied by general convection dominated problems. Hence, we
point out that the theoretical analysis of a posteriori error estimates here is not valid for
general convection dominated problems. We will research on a posteriori error estimates
for general convection dominated problems later.

2. Convection-diffusion Optimal Control Problem

Let Ω and ΩU be bounded convex polygon domains in Rn (n ≤ 3) with Lipchitz
boundary Γ = ∂Ω and ∂ΩU . In this paper, we adopt the standard notations for Sobolev
spaces on Ω and its norms. In addition, c or C denotes a general positive constant
independent of the mesh size h.

We shall take the space W = L2(0, T ; V ) with V = H1(Ω), the control space X =
L2(0, T ;U) with U = L2(ΩU ). The state space will be specified later. Let B be a
bounded linear continuous operator from L2(0, T ;U) to L2(0, T ;L2(Ω)). Let K be a
closed convex set in U = L2(ΩU ). Let g(·) be a convex functional which is continuously
differential on L2(Ω), and h(·) be a strictly convex continuously differential functional on
U . We further assume that h(u) → +∞ as ‖u‖U →∞ and that g(·) is bounded below.

We are interested in the following convection-diffusion optimal control problem:

(2.1) J(u) = min
u(t)∈K

{
∫ T

0

(g(y) + h(u))dt},

subject to

(2.2)





∂y
∂t −∇ · (a∇y) + β · ∇y + αy = f + Bu, x ∈ Ω, t ∈ (0, T ],

y(x, 0) = y0(x), x ∈ Ω,

y|Γ− = 0, t ∈ (0, T ],

(
a(x)∇y

) · ν = 0, x ∈ Γ+, t ∈ (0, T ],

where f(x, t) ∈ L2(0, T ;L2(Ω)), y0(x) ∈ H1(Ω), and a(x) = (aij(x))n×n ∈ (C∞(Ω̄)) n×n

such that there is a constant a0 > 0 satisfying

(2.3) ξT a(x)ξ ≥ a0|ξ|2, ∀ ξ ∈ Rn,

and β(x) = (β1(x), β2(x), · · · , βn(x))T , ν is the outer normal vector to Γ = Γ− ∪ Γ+,

Γ− = {x ∈ Γ : β(x) · ν(x) < 0}, Γ+ = {x ∈ Γ : β(x) · ν(x) > 0}.
Assuming that βi(x) ∈ C1(Ω̄), i = 1, 2, · · · , n , α(x) ∈ C(Ω̄) and a constant c0 > 0
satisfying

(2.4) α(x)− 1
2
divβ(x) = c0(x) > c0.
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Let a(v, w) =
∫

Ω

(a(x)∇v) · ∇w, ∀ v, w ∈ H1(Ω); (v, w)U =
∫

ΩU

vw, ∀ v, w ∈ L2(ΩU );

(f1, f2) =
∫

Ω

f1f2, ∀ f1, f2 ∈ L2(Ω).

It follows from the assumption on a(x) that there are constants c and C > 0 such that

a(v, v) ≥ c‖v‖21,Ω, |a(v, w)| ≤ C|v|1,Ω |w|1,Ω, ∀ v, w ∈ H1(Ω).

The weak form of the convex optimal control problem reads:

J(u) = min
u(t)∈K

{
∫ T

0

(g(y) + h(u))dt},

where y ∈ H1(0, T ; L2(Ω)) ∩W, u ∈ L2(0, T ; L2(ΩU )), u(t) ∈ K subject to

(2.5)





(
∂y

∂t
, w) + a(y, w) + (β · ∇y + αy, w) = (f + Bu, w), t ∈ (0, T ],

y(x, 0) = y0(x), x ∈ Ω,

y|Γ− = 0, t ∈ (0, T ],

(
a(x)∇y

) · ν = 0, x ∈ Γ+, t ∈ (0, T ],

for w ∈ H1(Ω). It is well known (see e.g., [32]) that the above problem admits a unique
solution y.

By the theory of optimal control problem (see, [31]), we can deduce that: the control
problem (2.5) has a unique solution (y, u), and that a pair (y, u) is the solution iff there is
a co-state p ∈ H1(0, T ;L2(Ω))∩W such that the triplet (y, p, u) satisfies the following
optimality conditions:
(2.6)




(a) (∂y
∂t , w) + a(y, w) + (β · ∇y + αy, w) = (f + Bu, w), ∀ w ∈ H1(Ω),

(b) y(x, 0) = y0(x), y|Γ− = 0,
(
a(x)∇y

) · ν|Γ+ = 0,

(c) −(∂p
∂t , q) + a(q, p) + (−∇ · (βp) + αp, q) = (g′(y), q), ∀ q ∈ H1(Ω),

(d) p(x, T ) = 0, p|Γ+ = 0,
(
a(x)∇p

) · ν|Γ− = 0,

(e)
∫ T

0
(h′(u) + B∗p, v − u)U dt ≥ 0, u(t) ∈ K, ∀ v ∈ K,

where B∗ is the adjoint operator of B, g′ and h′ are the derivatives of g and h, which
have been viewed as functions in L2(Ω) and L2(0, T ; L2(ΩU )), respectively.

3. Semi-discrete DG approximation

3.1. Preliminaries. Let us consider the discontinuous Galerkin finite element approxi-
mation of the control problem (2.5). Define Th = {τ1, τ2, · · · , τNh

} be a non-degenerate
quasi-uniform subdivision of Ω. Each element has at most one face on Γ, and two neigh-
boring elements have either only one common vertex or a whole edge (n = 2) or face
(n = 3). Let hj = diam(τj) and hτ = max{hj}, j = 1, · · · , Nh. Here, the non-degeneracy
requirement is that there exists a constant ρ > 0 such that each τj contains a ball of
radius ρhj . And the quasi-uniformity requirement is that there is a constant γ > 0 such
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that h/hj ≤ γ for all j ∈ 1, · · · , Nh. For an element τ ∈ Th, we denote ∂τ is the union
of open faces of τ . Let x ∈ ∂τ and suppose that nτ (x) denote the unit outward normal
vector to ∂τ at x. With these conventions, we define the inflow and outflow parts of ∂τ ,
respectively, by

∂τ− = {x ∈ ∂τ : β(x) · nτ (x) < 0}, ∂τ+ = {x ∈ ∂τ : β(x) · nτ (x) > 0}.
For an element τ ∈ Th and v ∈ H1(τ), we denote by v+ the interior trace of v on

∂τ , i.e. the trace taken from within τ . Now considering an element τ such that the set
of ∂τ \ Γ− is nonempty; then for each x ∈ ∂τ \ Γ− there exists a unique element τ ′,
depending on the choice of x, such that x ∈ ∂τ ′+.

Now suppose that v ∈ H1(τ) for each τ ∈ Th. If ∂τ \Γ− is nonempty for some τ ∈ Th,
then we can also define the outer trace v− of v on ∂τ \Γ− relative to τ as the inner trace
v+ relative to those elements τ ′ for which ∂τ ′+ has intersection with ∂τ \ Γ− of positive
(d − 1)-dimensional measure. We also introduce the average and jump of such v across
∂τ \ Γ−

{v} =
1
2
(v+ + v−), [v] = v+ − v−.

Let r ≥ 1 be a positive integer. The finite element space associated with Th is taken
to be

(3.1) V h = {v ∈ L2(Ω) : v|τ ∈ Pr(τ), ∀ τ ∈ Th},
where Pr(τ) denotes the set of polynomials of degree less than or equal to r on τ . With
each edge (or face) ek, we associate a unit normal vector νk. For k > Ph, νk is taken to
be the unit outward vector normal to ∂Ω. The norms associated with this space are the
following ”broken” norms for positive integer m ([33]):

|||φ|||2 =
Nh∑

j=1

‖φ‖20, τj
, |||φ|||2L2((α, β); L2(Ω)) =

∫ β

α

|||φ(·, t)|||2dt,

|||φ|||2m =
Nh∑

j=1

‖φ‖2m, τj
, |||φ|||2L2((α, β); Hm(Ω)) =

∫ β

α

|||φ(·, t)|||2mdt.

It is easy to see that V h 6⊂ V . For later use, we define the space Y h = H1(0, T, V h).
We denote the edges (or faces) of the elements by {e1, e2, · · · , ePh

, ePh+1 , · · · , eMh
},

where ek ⊂ Ω, 1 ≤ k ≤ Ph, and ek ⊂ ∂Ω, Ph+1 ≤ k ≤ Mh. The interior penalty term is
defined as

(3.2) Jσ
0 (φ, ψ) =

Ph∑

k=1

σk

|hek
|
∫

ek

[φ][ψ],

where |hek
| denotes the measure of ek and σk is a real nonnegative constant associated

to the interior edge ek, which is bounded below by σ0 > 0, above by σ∗.
For each τj ∈ Th, we denote ∂τj is an edge (or a face) of τj . By regular subdivision

Th of Ω, we hold the following approximation properties([22]). There exists a constant
C depending on r, ρ, γ such that the local inverse inequalities

(3.3) ‖φ‖20,∂τj
≤ Ch−1

j ‖φ‖20,τj
, ‖ ∂φ

∂νk
‖20,∂τj

≤ Ch−1
j ‖∇φ‖20,τj

,
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are valid for φ ∈ Pr(τ). Directly from the above inverse inequalities, there exists a
constant C depending only on ρ, γ such that

(3.4)
Ph∑

k=1

|hek
|‖{ ∂φ

∂νk
}‖20,ek

≤ C1|||∇φ|||20, ∀φ ∈ V h.

This inequality will be used often later.
Let Th

U be a partition of Ω into disjoint regular n-simplices τU . Each element has at
most one face on Γ, and two neighbor elements have either only one common vertex or
a whole edge or face. Let hτU

denote the maximum diameter of the element τU in Th
U .

Associated with Th
U is another finite element space

(3.5) Uh = {v ∈ L2(ΩU ) : v|τU
∈ Pm(τU ), ∀ τU ∈ Th

U},
where Pm(τU ) denotes the set of polynomials of degree less than or equal to m ≥ 0
on τU . The definitions of ”broken” norms for Uh are similar to that of V h. Let Xh =
L2(0, T ; Uh). It is easy to see that Uh ⊂ U, Xh ⊂ X. Let Kh be an approximation of K.
For ease of exposition, we assume that Kh is a closed convex set in Uh and Kh ⊂ Uh∩K.
More complicated cases can be considered following the approach in [10].

Note that in general the sizes of the elements in Th
U are smaller than those in Th in

computations. Therefore, we assume that hτU /hτ ≤ C in this paper.

3.2. DG Scheme for the state equation. Using the above notations and defini-
tions, we present the following: semi-discrete DG method of convection-diffusion optimal
control problem is (QCP )h

(3.6) min
uh(t)∈Kh

{
∫ T

0

(g(yh) + h(uh)) dt},

with yh ∈ Y h = H1(0, T ;V h) subject to

(3.7)





(a) (∂yh

∂t , wh) +
Nh∑
j=1

∫
τj

a(x)∇yh · ∇wh −
Ph∑

k=1

∫
ek
{a(x)∇yh · νk}[wh]

+
Ph∑

k=1

∫
ek
{a(x)∇wh · νk}[yh] + Jσ

0 (yh, wh) + (β · ∇yh + αyh, wh)

−∑
τ

∫
∂τ−\Γ− β · nτ [yh]w+

h −
∑
τ

∫
∂τ−∩Γ−

β · nτy+
h w+

h

= (f + Buh, wh), ∀ wh ∈ V h,

(b) yh(x, 0) = yh
0 (x), yh|Γ− = 0,

(
a(x)∇yh

) · ν|Γ+ = 0,

where yh
0 ∈ V h is an approximation of y0(x).

Then, we introduce a nonsymmetric bilinear form: ∀ φ, ψ ∈ V h,

(3.8)

A(a(x); φ, ψ) =
Nh∑
j=1

∫
τj

a(x)∇φ · ∇ψ −
Ph∑

k=1

∫
ek
{a(x)∇φ · νk}[ψ]

+
Ph∑

k=1

∫
ek
{a(x)∇ψ · νk}[φ].
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Suppose that yh, vh ∈ V h and ∀ τ ∈ Th, we define two bilinear forms as follow

(3.9a) l(yh, vh) = (β · ∇yh + αyh, vh)τ −
∫

∂τ−\Γ−
β · nτ [yh]v+

h −
∫

∂τ−∩Γ−
β · nτy+

h v+
h ,

(3.9b) L(yh, vh) =
∑

τ

l(yh, vh).

For ease of exposition, in this paper we introduce an inner product and a corresponding
norm on edge (or face) e of an element τ as follow

(w, v)e =
∫

e

|β · ν|w v ds, ‖v‖2e =
∫

e

|β · ν|v2 ds.

Now we turn to prove a stability lemma for the state equation, which is useful in the
rest of the paper.

Lemma 3.1. Suppose that there exits a positive constant c0 such that (2.4) holds.
Then yh of (3.7) obeys the following bound ∀ t ∈ (0, T ]

(3.10)

|||yh(t)|||2 + 2a0

∫ t

0

|||∇yh|||2 dt + 2
∫ t

0

Jσ
0 (yh, yh)dt

+
∫ t

0

∑
τ

{
c0‖yh‖2τ + ‖y+

h ‖2∂τ−∩Γ− + ‖[yh]‖2∂τ−\Γ− + ‖y+
h ‖2∂τ+∩Γ+

}
dt

≤ |||yh
0 (x)|||2 +

1
c0

∫ t

0

{|||f |||2 + |||Buh|||2
}

dt.

Proof. The proof is similar to that of Lemma 2.4 in [34]. Taking wh = yh in (3.7a),
this gives

(3.11) (
∂yh

∂t
, yh) + A(a(x); yh, yh) + Jσ

0 (yh, yh) + L(yh, yh) = (f + Buh, yh).

Upon partial integration, we have
(3.12)

the left-hand side of (3.11)

=
d

2dt
|||yh|||2 +

Nh∑

j=1

∫

τj

(a(x)∇yh, ∇yh)τj + Jσ
0 (yh, yh) +

∑
τ

{
∫

τ

(α− 1
2
divβ)|yh|2

+
1
2

∫

∂τ

(β · nτ )|y+
h |2 ds−

∫

∂τ−\Γ−
(β · nτ )[yh]y+

h ds−
∫

∂τ−∩Γ−
(β · nτ )|y+

h |2 ds}.

The last three terms in (3.12) can be rewritten as

(3.13)

1
2

∑
τ

∫

∂τ−∩Γ−
−(β · nτ )|y+

h |2 ds +
1
2

∑
τ

∫

∂τ−\Γ−
−(β · nτ )|y+

h − y−h |2 ds

+
1
2

∑
τ

∫

∂τ+∩Γ+

(β · nτ )|y+
h |2 ds.
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Using (3.13) in (3.12) yields

(3.14)

the left-hand side of (3.11)

≥ d

2dt
|||yh|||2 + a0|||∇yh|||2 + Jσ

0 (yh, yh) + c0

∑
τ

‖yh‖2τ

+
1
2

∑
τ

‖y+
h ‖2∂τ−∩Γ− +

1
2

∑
τ

‖y+
h − y−h ‖2∂τ−\Γ− +

1
2

∑
τ

‖y+
h ‖2∂τ+∩Γ+

.

Now we bound the right-hand side in (3.11):

(3.15) |(f + Buh, yh)| ≤ c0

2

∑
τ

‖yh‖2τ +
1
c0
{|||f |||2 + |||Buh|||2}.

Inserting (3.14),(3.15) into (3.11) and integrating time from 0 to t lead to (3.10). ¤
By Lemma 3.1, we can prove the following existence theorem.
Theorem 3.1. (Existence Theorem) Let J(·) be a continuous functional in U .

Suppose that h(u) → +∞ as ‖u‖U →∞. Then there exists at least one solution for the
minimization problem (3.6).

Proof. Let un
h ∈ Kh be a minimization sequence. Then it is clear that un

h are bounded
in L2(0, T ;L2(ΩU )). Thus there is a subsequence un

h such that un
h converge to u∗h weakly

in L2(0, T ;L2(ΩU )).
For the subsequence un

h, we have

(3.16)
( ∂

∂ty(un
h), wh) + A(a(x); y(un

h), wh) + Jσ
0 (y(un

h), wh) + L(y(un
h), wh)

= (f + Bun
h, wh), ∀ wh ∈ V h.

By Lemma 3.1, we know that |||y(un
h)|||L2(0,T ;H1(Ω)) is bounded. Thus

y(un
h) → y∗h weakly in L2(0, T ;H1(Ω)),

y(un
h) → y∗h strongly in L2(0, T ; L2(Ω)).

By trace theorem: H1(Ω) ↪→ H1/2(Γ), we have

(3.17) ‖u‖H1/2(Γ) ≤ c‖u‖H1(Ω) and ‖∂u

∂ν
‖H−1/2(Γ) ≤ c‖u‖H1(Ω), ∀ u ∈ H1(Ω),

Hence, |||y(un
h)|||L2(0,T ;H1/2(Γ)) and |||∂y(un

h)
∂ν

|||H−1/2(Γ) are bounded. Thus

y(un
h) → y∗h weakly in L2(0, T ;H1/2(Γ)),

∂y(un
h)

∂ν
→ ∂y∗h

∂ν
weakly in L2(0, T ;H−1/2(Γ)).

So, we have

(3.18a) (
∂

∂t
y∗h, wh) + A(a(x); y∗h, wh) + Jσ

0 (y∗h, wh) + L(y∗h), wh) = (f + Bu∗h, wh).

Since g(·) be a convex functional on space L2(Ω) and h(·) be a strictly convex func-
tional on U , we have

(3.18b)
∫ T

0

(g(y∗h) + h(u∗h)) dt ≤ lim{
∫ T

0

(g(yn
h) + h(un

h)) dt}.

Thus (y∗h, u∗h) is a solution of (3.7). ¤
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3.3. Optimality conditions. Supposing that ph, qh ∈ V h and ∀ τ ∈ Th, we define
other two bilinear forms as follow

(3.19a) l∗(ph, qh) = (−∇·(βph)+αph, qh)τ +
∫

∂τ+\Γ+

β ·nτ [ph]q+
h +

∫

∂τ+∩Γ+

β ·nτp+
h q+

h ,

(3.19b) L∗(ph, qh) =
∑

τ

l∗(ph, qh).

By the theory of optimal control problem (see, [31]), we can deduce that the control
problem (QCP )h has a unique solution (yh, uh) and that a pair (yh, uh) ∈ Y h ×Xh is
the solution of (QCP )h iff there is a co-state ph ∈ Y h such that the triplet (yh, ph, uh) ∈
Y h × Y h ×Xh satisfies the following optimality conditions: (QCP −OPT )h

(3.20)





(a) (∂yh

∂t , wh) + A(a(x); yh, wh) + Jσ
0 (yh, wh) + L(yh, wh)

= (f + Buh, wh), ∀ wh ∈ V h,

(b) yh(x, 0) = yh
0 (x), yh|Γ− = 0,

(
a(x)∇yh

) · ν|Γ+ = 0,

(c) −(∂ph

∂t , qh) + A(a(x); qh, ph) + Jσ
0 (ph, qh) + L∗(ph, qh)

= (g′(yh), qh), ∀ qh ∈ V h,

(d) ph(x, T ) = 0, ph|Γ+ = 0,
(
a(x)∇ph

) · ν|Γ− = 0,

(e)
∫ T

0
(h′(uh) + B∗ph, vh − uh)U dt ≥ 0, ∀ vh ∈ Kh.

Similarly to Lemma 3.1, we can get the following stability lemma for the co-state
equation.

Lemma 3.2. Suppose that there exits a positive constant c0 such that (2.4) holds.
Then ph of (3.20c) obeys the following bound

(3.21)

|||ph(t)|||2 + 2a0

∫ T

t

|||∇ph|||2 dt + 2
∫ T

t

Jσ
0 (ph, ph)dt

+
∫ T

t

∑
τ

{
c0‖ph‖2τ + ‖p+

h ‖2∂τ−∩Γ− + ‖[ph]‖2∂τ+\Γ+
+ ‖p+

h ‖2∂τ+∩Γ+

}
dt

≤ 1
c0

∫ T

t

|||g′(yh)|||2 dt.

The proof of (3.21) is analogous to that of (3.10) by using ph(x, T ) = 0.

4. A priori error estimates

In this section, we shall derive a priori error estimates for the semi-discrete DG
schemes (3.20). For ease of exposition, we simply write L2(0, T ;L2(ΩU )) as L2(L2(ΩU )),
L2(0, T ;L2(Ω)) as L2(L2), L2(0, T ; H1(ΩU )) as L2(H1(ΩU )), and L2(0, T ; H1(Ω)) as
L2(H1), etc. in the following contents of the paper.

We shall assume that the following convexity conditions:

(4.1a) (h′(u)− h′(v), u− v) ≥ c‖u− v‖20,ΩU
, ∀u, v ∈ L2(ΩU ),
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that is to say h(·) is uniformly convex.
Noting that g is convex, it is easy to see that

(4.1b) (g′(u)− g′(v), u− v) ≥ 0, ∀u, v ∈ H1(Ω).

Also, we have that

(4.2) |(Bv,w)| = |(v, B′w)| ≤ c‖v‖0,ΩU
‖w‖0,Ω, ∀ v ∈ L2(ΩU ), w ∈ H1(Ω),

because that B is a bounded linear operator.
Let

J ′h(u)(v − u) =
∫ T

0

(h′(u) + B∗ph(u), v − u)U dt, ∀ v ∈ K,

where ph(u) ∈ Y h is the solution of the system:

(4.3)





(a) (∂yh(u)
∂t , wh) + A(a(x); yh(u), wh) + Jσ

0 (yh(u), wh) + L(yh(u), wh)

= (f + Bu, wh), ∀ wh ∈ V h,

(b) yh(u)(x, 0) = yh
0 (x), yh(u)|Γ− = 0, {a(x)∇yh(u)} · ν|Γ+ = 0,

(c) −(∂ph(u)
∂t , qh) + A(a(x); qh, ph(u)) + Jσ

0 (ph(u), qh) + L∗(ph(u), qh)

= (g′(yh(u)), qh), ∀ qh ∈ V h,

(d) ph(u)(x, T ) = 0, ph(u)|Γ+ = 0, {a(x)∇ph(u)} · ν|Γ− = 0.

To derive a priori estimates, we need prove the following three lemmas.
Lemma 4.1 If h(·) is uniformly convex, and g(·) is convex, then

(4.4) J ′h(v)(v − u)− J ′h(u)(v − u) ≥ c‖v − u‖2L2(L2(ΩU )).

Proof. Note that

(4.5)

J ′h(v)(v − u)− J ′h(u)(v − u)

=
∫ T

0

(h′(v)− h′(u), v − u)U dt +
∫ T

0

(B∗ph(v)−B∗ph(u), v − u)U dt.

Moreover, it follows from (4.3) that

(4.6)
∫ T

0

(B∗ph(v)−B∗ph(u), v−u)U dt =
∫ T

0

(g′(yh(v))− g′(yh(u)), yh(v)− yh(u)) dt.

Noting that h(·) is uniformly convex and g(·) is convex, (4.5) and (4.6) imply that

J ′h(v)(v − u)− J ′h(u)(v − u) ≥
∫ T

0

(h′(v)− h′(u), v − u)U dt ≥ c‖v − u‖2L2(L2(ΩU )).

This proves (4.4). ¤
Lemma 4.2 Let (y, p, u) and (yh, ph, uh) be the solutions of optimality conditions

(2.6) and semi-discrete DG optimality conditions (3.20), respectively. Assume that u ∈
L2(0, T ;H1(ΩU )), p ∈ L2(0, T ; H1(Ω)), Kh ⊂ Uh ∩ K, h′(·) is Lipschitz continuous,
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uI ∈ Kh, where uI is the standard Lagrange interpolation of u. Moreover, assume that
all conditions of Lemma 4.1 exist. Then

(4.7) |||u−uh|||2L2(L2(ΩU )) ≤ Ch2
U{|||u|||2L2(H1(ΩU ))+|||p|||2L2(H1)}+C|||ph(u)−p|||2L2(L2),

where ph(u) ∈ Y h is the solution of the system (4.3).
Proof. It follows from (2.6), (3.20) and Lemma 4.1 that

(4.8)

c|||u− uh|||2L2(L2(ΩU )) ≤ J ′h(u)(u− uh)− J ′h(uh)(u− uh)

≤
∫ T

0

(B∗p−B∗ph(u), uh − u)U dt +
∫ T

0

(h′(uh) + B∗ph, uI − u)U dt.

Note that

(4.9)

∫ T

0

(h′(uh) + B∗ph, uI − u)U dt

≤
∫ T

0

(h′(u) + B∗p, uI − u)U dt + C(δ)|||uI − u|||2L2(L2(ΩU ))

+Cδ|||h′(uh)− h′(u)|||2L2(L2(ΩU )) + Cδ|||B∗ph −B∗ph(u)|||2L2(L2(ΩU ))

+Cδ|||B∗ph(u)−B∗p|||2L2(L2(ΩU )),

where δ is an arbitrary small positive constant. Moreover, we have

(4.10)
∫ T

0

(h′(u) + B∗p, uI − u)U dt ≤ Ch2
U{|||u|||2L2(H1(ΩU )) + |||p|||2L2(H1)},

and

(4.11) |||uI − u|||L2(L2(ΩU )) ≤ ChU |||u|||L2(H1(ΩU )).

Then it follows from (4.8)-(4.11) that

(4.12)
|||u− uh|||2L2(L2(ΩU )) ≤ Ch2

U (|||u|||2L2(H1(ΩU )) + |||p|||2L2(H1)) + Cδ|||ph(u)− p|||2L2(L2)

+Cδ|||u− uh|||2L2(L2(ΩU )) + Cδ|||ph − ph(u)|||2L2(L2).

Furthermore, from (3.20), (4.3), Lemma 3.1 and Lemma 3.2, we can deduce that

(4.13) |||ph − ph(u)|||L2(L2) ≤ C|||yh − yh(u)|||L2(L2) ≤ C|||u− uh|||L2(L2(ΩU )).

Then (4.12) and (4.13) prove (4.7). ¤
Lemma 4.3. Let (y, p, u) and (yh(u), ph(u)) be the solutions of (2.6) and (4.3), respec-

tively. Assume that g′(·) is Lipschitz continuous, y, p ∈ L2(0, T ; H2(Ω))∩H1(0, T ; H1(Ω)).
Then

(4.14)
|||yh(u)− y|||L2(H1) + |||ph(u)− p|||L2(H1)

≤ Ch{|||y|||L2(H2) + |||yt|||L2(H1) + |||p|||L2(H2) + |||pt|||L2(H1)}.
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Proof. Note that yh(u) is the semi-DG finite element solution of y. Then, from (4.3a)
and (2.6a) we have

(4.15)
(

∂

∂t
(yh(u)− y), wh) + A(a(x); yh(u)− y, wh) + Jσ

0 (yh(u)− y, wh)

+L(yh(u)− y, wh) = 0, ∀ wh ∈ V h.

Let yh(u)−y = θ−ξ, where θ = yh(u)−yI , ξ = y−yI and yI is the standard Lagrange
interpolation of y. Taking wh = θ in (4.15) and noting that [ξ] ≡ 0 on the interior edges
ek

Ph

k=1, we can obtain

(4.16)

(
∂θ

∂t
, θ) + A(a(x); θ, θ) + Jσ

0 (θ, θ) + L(θ, θ)

= (
∂ξ

∂t
, θ) + (a(x)∇ξ,∇θ)−

Ph∑

k=1

∫

ek

{a(x)∇ξ · νk}[θ]

+
∑

τ

{
(β · ∇ξ + αξ, θ)τ −

∫

∂τ−∩Γ−
β · nτ ξ+θ+

}
.

Similar to the inequality (3.14) in the proof of Lemma 3.1, it is easy to see that

(4.17)

the left-hand side of (4.16)

≥ d

2dt
|||θ|||2 + a0|||∇θ|||2 + Jσ

0 (θ, θ) + c0|||θ|||2

+
1
2

∑
τ

‖θ+‖2∂τ−∩Γ− +
1
2

∑
τ

‖[θ]‖2∂τ−\Γ− +
1
2

∑
τ

‖θ+‖2∂τ+∩Γ+
.

Now we bound the terms on the right-hand side of (4.16).
(I)

(4.18) |(∂ξ

∂t
, θ)| ≤ C|||∂ξ

∂t
|||2 +

c0

4
|||θ|||2.

(II)

(4.19) ‖(a(x)∇ξ,∇θ)−
Ph∑

k=1

∫

ek

{a(x)∇ξ · νk}[θ]| ≤ C|||∇ξ|||2 +
a0

2
|||∇θ|||2 +

1
2
Jσ

0 (θ, θ),

where we used the inequality (3.4).
(III)

(4.20)

|
∑

τ

{
(β · ∇ξ + αξ, θ)τ −

∫

∂τ−∩Γ−
β · nτξ+θ+}|

≤ C{|||∇ξ|||2 + |||ξ|||2}+
c0

4
|||θ|||2 + C

∑
τ

‖ξ+‖2∂τ−∩Γ− +
1
4

∑
τ

‖θ+‖2∂τ−∩Γ− .

Combining (4.17)-(4.20) together, integrating time from 0 to T , taking θ(0) = 0 and
by the trace theorem and Lagrange interpolant approximation property, we can derive

(4.21) |||θ|||L2(H1) ≤ Ch{|||y|||L2(H2) + |||yt|||L2(H1)}.
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Hence, we have

(4.22) |||yh(u)−y|||L2(H1) ≤ |||θ|||L2(H1)+|||ξ|||L2(H1) ≤ Ch{|||y|||L2(H2)+|||yt|||L2(H1)}.
By (4.3c) and (2.6c) and Lemma 3.2, we can deduce similarly

(4.23) |||ph(u)− p|||L2(H1) ≤ Ch{|||p|||L2(H2) + |||pt|||L2(H1)}.
Then (4.14) follows from (4.21) and (4.22). ¤

By Lemma 4.1 and 4.3, we can derive the following theorem for a priori estimates.
Theorem 4.1 Let (y, p, u) and (yh, ph, uh) be the solutions of optimality conditions

(2.6) and semi-discrete DG optimality conditions (3.19), respectively. Assume that all
conditions of Lemmas 4.1-4.3 are valid. Then

(4.24)

|||u− uh|||L2(L2(ΩU )) + |||y − yh|||L2(H1) + |||p− ph|||L2(H1)

≤ ChU{|||u|||L2(H1(ΩU )) + |||p|||L2(H1)}

+Ch{|||y|||L2(H2) + |||yt|||L2(H1) + |||p|||L2(H2) + |||pt|||L2(H1)}.
Proof. It follows from (4.7) and (4.23) that

(4.25)
|||u− uh|||L2(L2(ΩU )) ≤ ChU{|||u|||L2(H1(ΩU )) + |||p|||L2(H1)}

+Ch{|||p|||L2(H2) + |||pt|||L2(H1)}.
Moreover, it follows from (4.13), (4.14) and (4.25) that

(4.26)

|||y − yh|||L2(H1) + |||p− ph|||L2(H1)

≤ ChU{|||u|||L2(H1(ΩU )) + |||p|||L2(H1)}

+Ch{|||y|||L2(H2) + |||yt|||L2(H1) + |||p|||L2(H2) + |||pt|||L2(H1)}.
Then (4.24) follows from (4.25) and (4.26). ¤
5. A Posteriori Error Estimates

In this paper, we consider a posteriori error estimates only for the case of an obstacle
constraint and assumption that the velocity vector β(x) is incompressible i.e. divβ(x) =
0, ∀x ∈ Ω.

Remark 5.1. The assumption of the velocity vector β(x) incompressible is needed
to give stability bounds for the corresponding dual problem (cf. Lemma 5.4). For the
case of compressible β(x), similar stability estimates have been derived for a system of
convection-diffusion problems in [39].

We assume that the constraint on the control is an obstacle such that

(5.1) K = {v ∈ X = L2(0, T ; L2(ΩU )) : v ≥ d, a.e. in ΩU × (0, T ]},
where d is a constant. This obstacle constraint is met most frequently in practical
application. We define the coincidence set (contact set) Ω−U (t) and the non-coincidence
set (non-contact set) Ω+

U (t) as follows:

(5.2) Ω−U (t) := {x ∈ ΩU : u(x, t) = d}, Ω+
U (t) := {x ∈ ΩU : u(x, t) > d}.

The convexity assumptions (4.1) for h(·) and g(·) will still be used.
Let

(5.3) Kh = {v ∈ Uh : v ≥ d in ΩU × (0, T ]}.
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Hence, we have that Kh ⊂ K.
It can be seen that the inequality in (2.6) is now equivalent to the followings:

(5.4) h′(u) + B∗p ≥ 0, u ≥ d, (h′(u) + B∗p)(u− d) = 0, a.e. in ΩU × (0, T ].

In order to derive sharper a posteriori error estimate, we divide ΩU into the following
three subsets:

Ω−d = {x ∈ ΩU : B∗ph(x, t) ≤ −h′(d)},

Ωd = {x ∈ ΩU : B∗ph(x, t) > −h′(d), uh = d},

Ω+
d = {x ∈ ΩU : B∗ph(x, t) > −h′(d), uh > d}.

Then, it is easy to see that above three subsets are not overlapped each other, and

Ω̄U = Ω̄−d ∪ Ω̄d ∪ Ω̄+
d .

Now let us have an intuitive analysis on the approximation error for the control. On
Ωd, asymptotically we can assume that

(5.5) 0 < B∗ph + h′(uh) → B∗p + h′(u).

Hence it follows from the optimality conditions that u = uh = d on Ωd. Thus the error
on Ωd may be negligible. We should only to estimate the error on

ΩU\Ωd = Ω−d ∪ Ω+
d

in order to avoid over-estimate.
Further it is clear that the states and control approximation errors alone cannot con-

trol the approximation errors of numerical coincident sets (see [36] for elliptic obstacle
problems). Thus, the measurement of the coincident set approximation errors in our a
posteriori error estimates should be considered.

Lemma 5.1. Let (y, p, u) and (yh, ph, uh) be the solutions of optimality conditions
(2.6) and semi-discrete DG optimality conditions (3.20), respectively. Assume that h′(·)
and g′(·) are locally Lipschitz continuous. Then we have that

(5.6) |||u− uh|||2L2(0,T ;L2(ΩU )) ≤ Cη2
1 + C|||p(uh)− ph|||2L2(L2),

where

η2
1 =

∫ T

0

∫

Ω−d ∪Ω+
d

(h′(uh) + B∗ph)2,

and y(uh), p(uh) ∈ H1(0, T ; L2(Ω)) ∩W satisfy ∀ w, q ∈ H1(Ω)

(5.7)





(a) (
∂y(uh)

∂t
, w) + A(a(x); y(uh), w) + Jσ

0 (y(uh), w)

+L(y(uh), w) = (f + Buh, w),

(b) y(uh)(x, 0) = yh
0 (x), y(uh)|Γ− = 0, {a(x)∇y(uh)} · ν|Γ+ = 0,

(c) −(
∂p(uh)

∂t
, q) + A(a(x); q, p(uh)) + Jσ

0 (p(uh), q)

+L∗(p(uh), q) = (g′(y(uh)), q),

(d) p(uh)(x, T ) = 0, p(uh)|Γ+ = 0, {a(x)∇p(uh)} · ν|Γ− = 0.
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Proof. From the uniform convexity of h(·), we have

(5.8)

c|||u− uh|||2L2(0,T ;L2(ΩU )) ≤
∫ T

0

(h′(u)− h′(uh), u− uh)U dt

=
∫ T

0

(h′(u) + B∗p, u− uh)U dt +
∫ T

0

(h′(uh) + B∗p(uh), uh − u)U dt

+
∫ T

0

(B∗(ph − p(uh)), u− uh)U dt +
∫ T

0

(B∗(p(uh)− p), u− uh)U dt.

Note that the equation (2.6) and (5.7) imply that
∫ T

0

(B∗(p(uh)− p), u− uh)U dt =
∫ T

0

(
g′(y(uh))− g′(y), y − y(uh)

)
dt ≤ 0.

Moreover, note that uh ∈ Kh ⊂ K. It follows from (2.6) that
∫ T

0

(h′(u) + B∗p, u− uh)U dt ≤ 0.

Therefore

(5.9)

c|||u− uh|||2L2(0,T ;L2(ΩU )) ≤
∫ T

0

(h′(uh) + B∗ph, uh − u)U dt

+
∫ T

0

(B∗(ph − p(uh)), u− uh)U dt

: = I1 + I2.

We first estimate I1. It is clear that for any t ∈ (0, T ]

(5.10)

(h′(uh) + B∗ph, uh − u)U

=
∫

Ω−d ∪Ω+
d

(h′(uh) + B∗ph)(uh − u) +
∫

Ωd

(h′(uh) + B∗ph)(uh − u).

It is easy to see that
(5.11)∫

Ω−d ∪Ω+
d

(h′(uh) + B∗ph)(uh − u) ≤ 1
2δ

∫

Ω−d ∪Ω+
d

(h′(uh) + B∗ph)2 +
δ

2
|||uh − u|||2L2(ΩU ),

where δ is an arbitrary small constant.
It follows from the definition of Ωd that (h′(d) + B∗ph) > 0 on Ωd. Then, we have

(5.12)
∫

Ωd

(h′(uh) + B∗ph)(uh − u) =
∫

Ωd

(h′(d) + B∗ph)(d− u) ≤ 0.

Thus, (5.10)-(5.12) imply that

(5.13) I1 ≤ C(δ)
∫ T

0

∫

Ω−d ∪Ω+
d

(h′(uh) + B∗ph)2 + Cδ|||uh − u|||2L2(L2(ΩU )).

Then for I2, it is easy to show that

(5.14) I2 ≤ C

2δ
|||ph − p(uh)|||2L2(L2) +

δ

2
|||uh − u|||2L2(L2(ΩU )).
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Taking δ small enough, we obtain from (5.9), (5.13) and (5.14) that

|||u− uh|||2L2(0,T ;L2(ΩU )) ≤ Cη2
1 + C|||p(uh)− ph|||2L2(L2).

This proves (5.6). ¤
The following lemmas are important in deriving a posteriori error estimates of residual

type.
Lemma 5.2. [13] Let πh be the standard Lagrange interpolation operator. For m = 0

or 1, q > n
2 and v ∈ W 2,q(Ω),

|v − πhv|W 2,q(Ωh) ≤ Ch2−m|v|W 2,q(Ωh).

Lemma 5.3. [37] For all v ∈ W 1,q(Ωh), 1 ≤ q < ∞,

|v|W 0,q(∂τ) ≤ C(h
− 1

q
τ |v|W 0,q(τ) + h

1− 1
q

τ |v|W 1,q(τ)).

In order to estimate the error |||ph − p(uh)|||2L2(0,T ;L2(Ω)) in (5.6), we shall use the
following dual equations: For given F ∈ L2(0, T ; L2(Ω)),

(5.15)





∂φ

∂t
− div(a(x)∇φ) + β · ∇φ + αφ = F, (x, t) ∈ Ω× (0, T ],

φ(x, 0) = 0, φ|Γ− = 0, {a(x)∇φ} · ν|Γ+ = 0,

and

(5.16)




−∂ψ

∂t
− div(a(x)∇ψ)−∇ · (βψ) + αψ = F, (x, t) ∈ Ω× (0, T ],

ψ(x, T ) = 0, ψ|Γ+ = 0, {a(x)∇ψ} · ν|Γ− = 0.

Under the assumption that divβ(x) = 0, ∀x ∈ Ω, we note that for Ω convex, problem
(5.16) admits a unique solution ψ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω))(see, [38]). There
exists the following well known stability results.

Lemma 5.4. [38] Assume that Ω is a convex domain. Let φ and ψ be the solution of
(5.15) and (5.16), respectively. Then, for v = φ or v = ψ,

‖v‖L∞(0,T ;L2(Ω)) ≤ C‖F‖L2(L2), ‖∇v‖L2(L2) ≤ C‖F‖L2(L2),

‖D2v‖L2(L2) ≤ C‖F‖L2(L2), ‖∂v
∂t ‖L2(L2) ≤ C‖F‖L2(L2),

where D2v = ∂2v/∂xi∂xj , 1 ≤ i, j ≤ n.
Now we can provide a proof for |||ph − p(uh)|||2L2(L2), similar to that in [40].
Lemma 5.5. Assume that Ω is a convex domain. Let (yh, ph, uh) be the solutions of

(3.19), let (y(uh), p(uh)) be defined by (5.7). Then

(5.17) |||yh − y(uh)|||2L2(L2) + |||ph − p(uh)|||2L2(L2) ≤ C

10∑

i=2

η2
i ,



DG FOR CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEM 103

where




η2
2 =

∫ T

0

∑
τ

∫

τ

h4
τ

(
−∂ph

∂t
− div(a(x)∇ph)−∇ · (βph) + αph − g′(yh)

)2

dx dt,

η2
3 =

∫ T

0

Ph∑

k=1

∫

ek

h3
ek
{a(x)∇ph · ν}2 dek dt,

η2
4 =

∫ T

0

Ph∑

k=1

∫

ek

hek
[ph]2 dek dt,

η2
5 =

∫ T

0

∑
τ

∫

∂τ+∩Γ+

h3
ek

((
β · nτ [ph]

)2 +
(
β · nτp+

h

)2
)

dek dt,





η2
6 =

∫ T

0

∑
τ

∫

τ

h4
τ

(∂yh

∂t
− div(a(x)∇yh) + β · ∇yh + αyh −Buh

)2

dx dt,

η2
7 =

∫ T

0

Ph∑

k=1

∫

ek

h3
ek
{a(x)∇yh · ν}2 dek dt,

η2
8 =

∫ T

0

Ph∑

k=1

∫

ek

hek
[yh]2 dek dt,

η2
9 =

∫ T

0

∑
τ

∫

∂τ−∩Γ−
h3

ek

((
β · nτ [yh]

)2 +
(
β · nτy+

h

)2
)

dek dt,

η2
10 = ‖yh(x, 0)− y0(x)‖2L2 ,

where hek
is the size of the face ek = τ̄1∩τ̄2, where τ1 and τ2 are two neighboring elements

in Th, and νk is the unit normal vector on ek outwards τ1.
Proof. Let φ be the solution of (5.15) with F = ph − p(uh). Let φI = πhφ be the

interpolation of φ defined as in Lemma 5.2. Then it follows from (5.7) and (3.20) that

(5.18)

|||ph − p(uh)|||2L2(0,T ;L2(Ω)) =
∫ T

0

(ph − p(uh), F ) dt

=
∫ T

0

(
(− ∂

∂t
ph − div(a(x)ph)−∇ · (βph) + αph − g′(yh), φ− φI)

)
dt

+
∫ T

0

(∑
τ

∫

∂τ

(a(x)∇ph · νk)(φ− φI)
)

dt +
∫ T

0

(
g′(yh)− g′(y(uh)), φ

)
dt

−
∫ T

0

Jσ
0 (ph, φI) dt +

∫ T

0

( Ph∑

k=1

∫

ek

{a(x)∇φI · νk}[ph]−
Ph∑

k=1

∫

ek

{a(x)∇ph · νk}[φI ]
)

dt
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+
∫ T

0

(
−

∑
τ

∫

∂τ+\Γ+

β · nτ [ph]φ+
I −

∑
τ

∫

∂τ+∩Γ+

β · nτp+
h φ+

I

)
dt.

: = D1 + D2 + D3 + D4 + D5 + D6.

Now, we analyze the terms on the right-hand side of (5.18).
(I) It follows from Lemma 5.2 and 5.4 that

(5.19) D1 ≤ C(δ)η2
2 + Cδ|||ph − p(uh)|||2L2(L2).

(II) From Lemma 5.2, 5.3 and 5.4, we see that

(5.20) D2 ≤ C(δ)η2
3 + Cδ|||ph − p(uh)|||2L2(L2),

where we used

‖φ− φI‖L2(ek) ≤ Ch3/2
ek
‖φ‖H3/2(ek) ≤ Ch3/2

ek
‖φ‖2,Ω.

(III) Lemma 5.4 and Schwartz inequality imply that

(5.21) D3 ≤ C(δ)|||yh − y(uh)|||2L2(L2) + Cδ|||ph − p(uh)|||2L2(L2).

(IV) Similarly like D2, we derive

(5.22) D4 ≤ C(δ)η2
4 + Cδ|||ph − p(uh)|||2L2(L2).

(V) Similarly, we get

(5.23)
D5 = | −

∫ T

0

( Ph∑

k=1

∫

ek

{a(x)∇(φ− φI) · νk}[ph] +
Ph∑

k=1

∫

ek

{a(x)∇ph · νk}[φ− φI ]
)

dt|

≤ C(δ)η2
3 + C(δ)η2

4 + Cδ|||ph − p(uh)|||2L2(L2).

(VI) Also, we have

(5.24)
D6 = |

∫ T

0

(∑
τ

∫

∂τ+\Γ+

β · nτ [ph](φ− φ+
I ) +

∑
τ

∫

∂τ+∩Γ+

β · nτp+
h (φ− φ+

I )
)

dt|

≤ C(δ)η2
5 + Cδ|||ph − p(uh)|||2L2(L2).

Then letting δ be small enough, it follows from (5.19)-(5.24) that

(5.25) |||ph − p(uh)|||2L2(L2) ≤ C

5∑

i=2

η2
i + C|||yh − y(uh)|||2L2(L2).
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Let ψ be the solution of (5.16) with F = yh − y(uh). Similarly to the proof of (5.25),
we have that

|||yh − y(uh)|||2L2(L2) =
∫ T

0

(yh − y(uh), F ) dt

≤ C(δ)
∫ T

0

∑
τ

∫

τ

h4
τ

(∂yh

∂t
− div(a(x)∇yh) + β · ∇yh + αyh −Buh

)2

dx dt,

+C(δ)
∫ T

0

Ph∑

k=1

∫

ek

h3
ek
{a(x)∇yh · ν}2 dek dt + C(δ)

∫ T

0

Ph∑

k=1

∫

ek

hek
[yh]2 dek dt

+C(δ)
∫ T

0

∑
τ

∫

∂τ−∩Γ−
h3

ek

((
β · nτ [yh]

)2 +
(
β · nτy+

h

)2
)

dek dt + Cδ‖ψ(x, 0)‖2

+C(δ)‖yh(x, 0)− y0(x)‖2L2 + Cδ

∫ T

0

‖ψ‖22,Ω.

Hence, letting δ be small enough, we have

(5.26) |||yh − y(uh)|||2L2(0,T ;L2(Ω)) ≤ C

10∑

i=6

η2
i .

Then, (5.17) follows from (5.25) and (5.26). ¤
From Lemma 5.1 and Lemma 5.4, we have the following a posteriori error estimates.
Theorem 5.1. Let (y, p, u) and (yh, ph, uh) be the solutions of optimality conditions

(2.6) and semi-discrete DG optimality conditions (3.20), respectively. Assume that all
the conditions in Lemma 5.1 and 5.5 are valid. Then

(5.27) |||yh − y|||2L2(L2) + |||ph − p|||2L2(L2) + |||uh − u|||2L2(L2(ΩU )) ≤ C

10∑

i=2

η2
i ,

where η1 is defined in Lemma 5.1, ηi, i = 2, · · · , 10, are defined in Lemma 5.5.
Proof. By (5.6),(5.25) and (5.26), we can get

(5.28) |||u− uh|||2L2(L2(ΩU )) ≤ Cη2
1 + C|||p(uh)− ph|||2L2(L2) ≤ C

10∑

i=1

η2
i .

Note that
|||y − yh|||L2(L2) ≤ |||y − y(uh)|||L2(L2) + |||y(uh)− yh|||L2(L2),

|||p− ph|||L2(L2) ≤ |||p− p(uh)|||L2(L2) + |||p(uh)− ph|||L2(L2),

and
|||y − yh|||L2(L2) ≤ C|||u− uh|||L2(L2(ΩU )),

|||p− ph|||L2(L2) ≤ C|||y − y(uh)|||L2(L2) ≤ C|||u− uh|||L2(L2(ΩU )).

Then, it follows from Lemma 5.5 and (5.28) that

(5.29) |||y − yh|||L2(L2) + |||p− ph|||L2(L2) ≤ C

10∑

i=1

η2
i .
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Thus, (5.27) follows (5.28) and (5.29). ¤
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[35] P.Houston, CH. Schwab, and E. Süli, Discontinuous hp-finite element methods for advection-

diffusion-reaction, SIAM J. Numer. Anal., 39(6)(2002), 2133-2163.
[36] A. Veeser, Efficient and reliable a posteriori error estimates for elliptic obstacle problems, SIAM J.,

Numer. Anal., 39(6)(2001), 146-167.

[37] A. Kufner, O.John, and S. Fucik, Function spaces. Nordhoff, Leyden, The Netherlands, 1977.
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