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NUMERICAL DYNAMIC MODELING AND DATA DRIVEN

CONTROL VIA LEAST SQUARE TECHNIQUES AND HEBBIAN

LEARNING ALGORITHM
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Abstract. The modelling and controlling for complex dynamic systems which

are too complicated to establish conventionally mathematical mechanism mod-

els require new methodology that can utilize the existing knowledge, human

experience and historical data. Fuzzy cognitive maps (FCMs) are a very con-

venient, simple, and powerful tool for simulation and analysis of dynamic sys-

tems. Since human experts are subjective and can handle only relatively simple

FCMs, there is an urgent need to develop methods for automated generation

of FCM models using historical data. In this paper, a novel FCM, which is

automatically generated from data and can be applied to on-line control, is de-

veloped by improving its constitution, introducing Least Square methods and

using Hebbian Learning techniques. As an illustrative example, the simula-

tions results of truck backer-upper control problem quantifies the performance

of the proposed constructions of FCM and emphasizes its effectiveness and

advantageous characteristics of the learning techniques and control ability.

Key Words. Least Square Learning, Fuzzy cognitive map, Takagi Sugeno

model, Complex dynamic system, Hebbian learning algorithm

1. Introduction

Many conventional methods were used, successfully, to model and control sys-
tems but their contribution is often limited in the representation, analysis and
solution of the systems with well established mathematically analyzable models.
Unfortunately, it is impossible or costly to build the mathematical analyzable model
for most of complex nonlinear systems. Currently the advanced digital technology
has made the digitized data easy to capture and cheap to store. So there is a great
demand for the development of intelligence and data based, autonomous systems
that can be achieved taking advantage of human like reasoning and the available
data from the systems and their circumstance. Human reasoning process for any
procedure includes uncertain descriptions and can have subtle variations in relation
to time and space. For such situations, Fuzzy Cognitive Maps(FCMs)[6] seems to
be capable to deal with. Fuzzy cognitive maps (FCMs) is a soft computing tech-
nique for modeling complex systems, which follows an approach similar to human
reasoning and the human decision-making process. FCMs can successfully represent
knowledge and human experience, introducing concepts to represent the essential
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elements and the cause and effect relationships among the concepts to model the
behavior of any system.

In [7], Kosko pointed out that it is very difficult to build FCMs for large scale
intelligent systems just relying on human experts who can observe and know the
operation of the systems. The large amount of temporal knowledge discovered from
the database is important information which objectively and truthfully reflects
the nature of dynamic complex systems. Applying this temporal knowledge to
construct FCMs has two significant benefits: One is that large amount of knowledge
discovered from huge databases can be integrated into a model which not only can
be systematically studied by many powerful mathematical tools, but also can be
very expediently understood and utilized by users. The other is that large-scale
intelligent systems, which are beyond human expert’s capability to observe and
understand, can be represented and control via constructing large dimensional data
and human knowledge based FCMs. Therefore, the investigation of constructing
FCMs by the temporal data from the complex dynamic systems is very important
and is one main objective of this paper.

Kosko proposed a new model by using simple Differential Hebbian Learning law
(DHL) in 1994, but he used this model to learning FCMs without any applications[2].
This learning process modified weights of edges existing in a FCM in order to
find the desired connection weights. In general, when the values of corresponding
concept changes, the value of the related edges for that nodes will be modified
too. In 2002, Vazquez introduced a new extension to DHL algorithm presented
by Kosko. He used a new idea to update edge values in a new formula [22]. This
method was applied only to FCMs with binary concept values, which significantly
restricts its application areas. Another method of learning FCM based on the
first approach(Hebbian algorithm), was introduced in 2003 by Papageorgiou et al.
He developed another extension to Hebbian algorithm, called Nonlinear Hebbian
Learning (NHL)[23]. The main idea behind this method is to update weights asso-
ciated only with edges that are initially suggested by experts. The NHL algorithm
requires human intervention before the learning process starts, which is a substan-
tial disadvantage. Active Hebbian Algorithm (AHL) introduced by Papageorgiu et
al. in 2004[13]. Nevertheless it still requires some initial human intervention. In
the recent method, experts not only determined the desired set of concepts, ini-
tial structure and the interconnections of the FCM structure, but also identified
the sequence of activation concepts[13]. Another category in learning connection
weights of the FCM is application of genetic algorithms or evolutionary algorithms.
Koulouriotis et al. applied the Genetic Strategy (GS) to learn FCM structure in
2001[24]. In mentioned model, they focused on the development of an GS-based
procedure that determines the values of the cause-effect relationships (causality).
Parsopoulos et al. also published other related papers in 2003. They tried to apply
Particle Swarm Optimization (PSO) method, which belongs to the class of Swarm
Intelligence algorithms, to learn FCM structure[11]. Khan and Chong worked on
learning initial state vector of FCM in 2003. They performed a goal-oriented anal-
ysis of FCM and their learning method did not aim to compute the connection
weights, and their model focused on finding initial state vector for FCMs [26]. In
2005, Stach et al. applied real-coded genetic algorithm (RCGA) to develop FCMs
model from a set of historical data in 2005[25]. In most case, the performance of
genetic programming depends crucially on the choice of representation and on the
choice of fitness function and must search in the huge hypothesis space, hence they
have the issue of the potential convergence and heavy calculation burden.
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The previous researches of FCMs such as the forementioned ones were often
undertaken by the assumption that the connection weights of an FCM are invariant
for a given system. However a real world application system may have such high
degree of nonlinearity that it is difficult or impossible to properly represent its
complex dynamic behavior using the invariant weights. In this paper, the time-
varying connection weights of a FCM are introduced via the aggregation of the
local invariant connection weights in the IF-THEN rules, like Takagi-Sugeno (T-
S) fuzzy models. Thus the FCMs with time-varying connection weights can more
properly and accurately represent complex dynamic systems than the conventional
FCMs.

The learning algorithms for constructing FCMs in the existing literatures such
as the forementioned ones often need iterative calculation which leads to a heavy
calculation burden, as well as convergence problem and iterative stopping crite-
ria have to be taken into consideration. This paper introduces the Least Square
technique in the procedures of learning the local connection weights of the FCMs
based on the historical data, briefly called LS-FCMs. Then the local LS-FCMs are
integrated into a FCM for the whole domain via the fuzzy IF-THEN rules, briefly
named TS-LS-FCM. TS-LS-FCMs not only can overcome the above mentioned is-
sues in the previous algorithms, but also greatly improve their capability to describe
the dynamic nonlinear systems.

A TS-LS-FCM, which is learned from the historical data, not only can describe
and predict the dynamic behavior of a given nonlinear system very well, but also
can be applied to control the real system as follows. First the learned TS-LS-FCM
is connected to the physical system via adding some new nodes and edges. Here
the adding nodes may represent the observed states and the input variables of the
physical system, and the adding nodes are connected to the relative nodes in the
learned TS-LS-FCM by adding some edges. Then the physical system is controlled
to a desired goal by just learning the weights of the adding edges connected to the
input variables using Hebbian Learning techniques without any modification to the
learned TS-LS-FCM.

This proposed TS-LS-FCM technique is a promising approach for objectively
extracting information from temporal data and at the same time improving the
effectiveness of the FCM operation mode and thus it broadens the applicability
of FCMs modelling for complex systems. As an illustrative example, the truck
backer-upper control problem demonstrates that the proposed methodology is more
convenient and effective than the previous approaches of FCMs.

The remainder of the paper is organized as follows. Section 2 briefly describes the
formulation of FCMs. Section 3 presents proposed the Least Square Learning FCM
methods based on historical data and the TS-LS-FCM. Section 4 introduces the
control-scheme of dynamic systems by the learned TS-LS-FCM via the Hebbian
Learning. Section 5 applies the proposed framework to the truck backer-upper
control problem to demonstrate its learning capability of the TS-LS-FCM and the
control ability of the proposed control algorithm. Finally, Section 6 provides the
conclusion.

2. Fuzzy Cognitive Maps, Research Objective and Methodology

This section first presents a historical overview of FCMs along with background
information concerning both the underlying model and the ensuing learning meth-
ods. Then we concisely outline this research objective and methodology.

2.1. Fuzzy Cognitive Maps.
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2.1.1. Background. Fuzzy Cognitive Maps have their roots in graph theory. Ax-
elord for the first time used cognitive maps as a formal way to represent social
scientific knowledge and to model decision-making in social and political systems.
The cognitive map model is represented by a simple graph, which consists of nodes
and edges. The nodes represent concepts relevant to a given domain and the casual
relationships between them are depicted by directed edges. Each edge is associated
with only two values, +1 (or simply “+”) and −1(or simply “−”). A positive edge
from a node A to a node B reflects positive influence on B exerted by A. It means
that an increase in the value of the node A will lead to an increase in the value of
the node B. A negative edge from the node A to the node B means that increasing
value of A leads to decreasing value of B.

“Fuzzy Cognitive Maps” was coined by Kosko[6] in order to describe a cognitive
map model with a significant characteristic: Causal relationships between nodes
are fuzzed. Instead of only using signs to indicated positive or negative causality.
Each edge is associated with a number that determines the degree of considered
casual relation.

FCMs describe the behavior of a system in terms of concepts: each concept rep-
resents a state, variable or a character of the system. Values of concepts (nodes)
change over time, and take values in the interval [0,1]. The causal links between
concepts are represented by directed weighted edges that illustrate how much one
concept influences the interconnected concepts. The cause and effect interconnec-
tion between two concepts Cj and Ci is described with the weight wji, taking value
in the range −1 to 1. System with n concepts can be represented by a n×n connec-
tion matrix. An example FCM model signed and weighted arcs is shown in Fig.1.
There are three possible types of causal relationships between concepts:

• wji > 0: which indicates positive causality between concepts Cj and Ci.
That is, an increase (decrease) in the value of Cj leads to an increase(decrease)
in the value of Ci.

• wji < 0: which indicates negative causality between concepts Cj and
Ci. That is, an increase (decrease) in the value of Cj leads to a de-
crease(increase) in the value of Ci.

• wji = 0: which indicates no relationship between Cj and Ci.

Behind the graphical representation of an FCM there is a mathematical formu-
lation which describes the FCM. Values of concepts are fuzzy and arise from the
transformation of the real values of the corresponding variables for each concept,
and there are fuzzy values for the weights of the interconnections among concepts,
then the FCM is free to interact, at every step of interaction every concept has a new
value that is calculated according to the following FCM transformation function:

(1) At
j = f




N∑

i=1,i6=j

At−1
i wij +At−1

j




Where, At
j is the value of concept Cj at step t, which means the activation degrees

of concept Cj at step t, At−1
i is the value of concept Ci at step t − 1, and wij

is the weight of the interconnection from concept Ci to concept Cj , and f is a
squashing function that squashes the result of the multiplication in the interval
[0,1]. Continuous Squashing Functions usually used [23][30] are shown as follows:

1) f = tanh(x) maps the nodes values in [-1,1]
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Fig. 1 An FCM for a public health study

2) f = 1
1+e−cx converts the nodes values in [0,1]. It is also called sigmoid

function.

The second function is the most common function which is used in FCM model.
Where c is a parameter used to determine proper shape of the function.

Eq.(1) describes a functional model of FCM, which is used to perform simulations
of the system dynamical behaviors. Simulation consists of computing the states
of the system, which is described by a state vector, over a number of successive
iterations. The state vector specifies current values of all concepts(nodes) in a
particular iteration. Value of a given node is defined by the result of taking all the
causal event weights pointing into this concept and multiplying each weight by the
value of the concept that causes the event, then the sigmoid function is applied to
the result of the calculations and it is transformed to the interval between 0 and 1.

The FCM model was applied to many different areas to express dynamic be-
havior of a set of related concepts. For example, the public city health issue, heat
changer model[15], supervisor model for heat exchanger performance[16], assess-
ment of human reliability[18],determination of brain tumor grade[19], modelling of
IT project[20], modelling of supply chain[21], E-business models and so on.

2.1.2. Related work. In general, two approaches to development of FCMs are
used: manual and computational. Most, if not all, of the reported models were
developed manually by domain experts based on expert knowledge in the area of
application. The experts design and implement adequate model manually based on
their mental understanding of the model domain. However, the main difficulty is
to accurately establish weights of the defined relationships. The manual procedures
for the development of FCM have a number of drawbacks. They require an expert,
who has knowledge of the model domain, and at the same time knowledge about
the FCM formalism. Also, manual methods imply subjectivity of the developed
model and problems with unbiased assessing of its accuracy.

These problems led to the development of computational methods for learn-
ing FCM connection matrix i.e. causal relationships(edges), and their strength
(weights) based on historical data. In this way, the expert knowledge is substi-
tuted by a set of historical data and a computational procedure that is able to
automatically compute the connection matrix.
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At present, weight learning based on the Hebbian algorithm, which is a kind of
artificial neural network learning algorithms, has been presented[8]. The Hebbian
algorithm changes the weights gradually toward reducing the differences between
the state vectors predicted by FCM and actual state vectors. Also Papageorgiou
and Groumpos presented a two-step weight learning methodology where differential
evolution algorithm decides the ending point of the learning and a nonlinear Heb-
bian learning algorithm executes the weight learning during the learning interval.
Besides this Parsopoulos, Papageorgiou, Grumpos, and Vrahatis (2003)performed
a research on the weight learning using particle swarm method, a heuristic algo-
rithm for seeking optimal solutions. Recently, in 2005, Stach, Kurgan, Pedrycz et
al. applied genetic learning method to learning FCM connection matrix. Afore-
mentioned methodologies used for constructing FCM model from historical data
have the following limitations that can be overcome by employing the TS-LS-FCM
methodology presented in this paper.

i Most of previous learning algorithms need iterative calculation which leads
to a heavy calculation load , as well as convergence problem and iterative
stopping criteria have to be taken into consideration.

ii The range of At
j calculated by the transformation function in Eq.(1) is too

limited to represent the real world applications. For example, if for any
i, wij ≥ 0, then At

j is always larger than 0.5. It is clear that most real
systems do not observe this rule. Thus the applicability of the existing
FCMs is limited.

iii The FCM model with an invariant connection matrix is difficult to work
effectively in the high degree nonlinearity and wide operating range of some
real world application systems. Therefore the FCMs with time-varying
connection weights have to be developed.

2.2. Research Objective and Methodology. The first goal of this research
is to develop a new FCM technique to overcome the aforementioned three issues.
Utilization of the Least Square methodology can significantly overcome the most
weakness of the existing FCMs, namely the heavy calculation burden, convergence
and iterative stopping criteria. In the proposed LS-FCMs, the squashing function
function is improved by adding a tuning coefficient to make it more applicable.
Thus the forementioned issue ii) can be overcome. We decompose the domains of
concepts to several local regions and construct a local LS-FCM for each region,
then by the integration of local connection weights and the tuning coefficients in
the fuzzy IF-THEN rules via the T-S fuzzy model, then a TS-LS- FCM with time-
varying connection weights and the tuning coefficients is constructed.

The second objective of the research is to provide on-line control using the TS-
LS-FCM learned from the historical data. For a desired goal, apply the learned
TS-LS-FCM and Hebbian learning to find the control law.

We note that the proposed method is a natural continuation of the research
performed in the domain of learning and applying FCMs. It draws conclusions
from the methods proposed in the past, and provides substantial advancement.
Next section provides detailed description of the proposed method.

3. Least Squares Learning FCMs

The proposed LS-FCM extracts the knowledge(FCM model) by learning the
connection weights and the tuning coefficients from historical data. The whole
scheme is outlined as the following points:
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1. Normalization of data: In order to keep the comparability among concepts,
the original data x = (x1, x2, ..., xn) ∈ Rn is formalized to x = (x1, x2, ..., xn), xi ∈
[0, 1], where

(2) xi =
1

1 + e−cti(xi−mi)
, i = 1, 2, ..., n.

2. FCM operation function: A tuning coefficient w0j is added into the afore-
mentioned FCM operation function Eq.(1).

(3) At
j = f




n∑

i=1,i6=j

At−1
i wij + w0j +At−1

j


 , f =

1

1 + e−cx

3. Learning connection weights and the tuning coefficients: For a FCM
with concepts Cj , j = 1, 2, ..., n, let Cj1 , Cj2 , .., Cjlj

are all concepts connected

to Cj , {j1, j2, ..., jlj} ⊆ {1, 2, ..., n}. Let Xt = (xj1t, xj2t, ..., xjlj t
)′ and xjt be

the historical data of the values of concepts connected to Cjk and Cj at time t,
k = 1, 2, ..., lj, t = 1, 2, ..., T . The connection weights wj1j , wj2j , ..., wjlj j

and w0j

are learned via Least Square technique according to the data< Xt, xjt >.
4. Domain partition: The domain of system states and variables is parted into

a proper number of regions respecting with a given error limitation of the prediction
of the LS-FCM in each region.

5. Fuzzy integration: The connection weights and the tuning coefficients of
the LS-FCMs learned by the above procedures 1, 2, 3 in the local regions are merged
into a single fuzzy cognitive map TS-LS-FCM with time-varying connection weights
and the tuning coefficients in the whole domain.

In what follows, we present, illustrate and analyze each of the procedures 1 to 5
in detail.

3.1. Normalization of Data. In the framework of FCMs, values of concepts(nodes)
change with time, and have to take them in the interval [0,1]. But the values of
the concepts in real systems derived from different measurements may take a wide
range, sometimes take negative. So, we need normalize dynamic data within differ-
ent range into the interval [0,1]. Ranges of the values of different states and variables
of a physical system may be greatly different. In this situation, a simplified method
to normalize the real value to [0,1] and avoid weakening comparability among con-
cepts is necessarily. Eq.(2) transforming data to the range [0,1] is adopted in this
paper. We achieve two objectives by using the formula, it normalizes the range of
all features of the original data into [0,1] and makes each node having the similar
range size in order to strengthen comparability among nodes. In Eq.(2), mi is the
middle value of ith concept domain, ti > 0 is the proportion where ti =

Smax

Si
, Smax

= the max span of all concepts in system, Si is the span of ith concept in system.
c > 0 is the parameter used to tune the mapped domain in [0,1].

For example, let an FCM have two concepts named x, y, x ∈ [−1, 3], y ∈ [−100, 100].
If they are normalized in [0,1] by f = 1

1+e−cx and c = 0.1, then x→ [0.4750, 0.5744],

y → [0, 1]. But if Eq.(2) is applied, then mx = −1+3
2 = 1, tx = 100−(−100)

3−(−1) =

50,my = 0, ty = 100−(−100)
100−(−100) = 1 and x→ [0, 1], y → [0, 1].

3.2. FCM Operation Function. Most of previous FCMs, at each step, the value

Aj of a concept is calculated according to Eq.(1) At
j = f

(
n∑

i=1,i6=j

At−1
i wij +At−1

j

)

and sigmoid function f = 1
1+e−cx , where At

j ∈ [0, 1] is the value of concept Cj at
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step t, At−1
i ∈ [0, 1] is the value of concept Ci at step t− 1, and wij is the weight of

the interconnection from concept Ci to concept Cj , and c > 0 is a parameter
used to determine proper shape of the function. Let’s study sigmoid function
y = 1

1+e−cx . It is clear that if x > 0 and c > 0, then y always larger than

0.5. This implies that if for any i, wij > 0, then At
j is always larger than 0.5

for any At−1
j . If At−1

j = 0 and for any i, wij = 0, then At
j = 0.5 for any time

t. The applicability of conventional FCMs is greatly limited by this unpractical
constrain. In this paper, a novel FCM operation function(Eq.(3)) is presented.
Where c > 0 is a parameter used to determine proper shape of the function. w0j ∈
[−1, 1] is the tuning coefficient of concept Cj . If for any i, wij > 0, w0j < 0,

and
n∑

i=1,i6=j

(At−1
i wij + At−1

j ) > −w0j , then At
j is larger than 0.5. If for any i,

n∑
i=1,i6=j

(At−1
i wij + At−1

j ) < −w0j , then At
j is less than 0.5. Assume that for any i,

wij = 0. This implies that the value of concept Cj is not influenced by any other

concepts, i.e.,At
j = f(w0j + At−1

j ). In this situation , the changing of node j is

only determined by w0j . The roles of the parameters c, w0 in Eq.(3) are shown in
Fig.2. Thus the FCMs based on operation function Eq.(3) are more flexible and
applicable.
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Fig. 2 The operation functions f(x) = 1
1+e−c(x+w0) for different parameters c and
w0

3.3. Learning Connection Weights and the Tuning Coefficients. For every
concept Cj , the connection weights wj1j , wj2j , ..., wjlj j

and w0j are learned via Least

Square technique according to the data < Xt, xjt >, Where Cj1 , Cj2 , .., Cjlj
are all

concepts connected to Cj , {j1, j2, ..., jlj} ⊆ {1, 2, ..., n}, andXt = (xj1t, xj2t, ..., xjlj t
)′

and xjt be the values of concepts connected to Cj and Cj at time t, t = 1, 2, ..., T .
In general, T is much larger than lj . For the sake of simplicity, let j1 = 1, j2 =
2, ..., jlj = N ,w0j = w0, wj1j = w1, wj2j = w2, ..., wjlj j

= wN and xjt=yt. Thus by
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Eq.(3), we have

(4) yt =
1

1 + e−c(
∑

N
k=1 wkxk(t−1)+yt−1+w0)

, t = 1, 2, ..., T.

Further

(5)

N∑

k=0

wkxk(t−1) = −c
−1ln(y−1

t − 1)− yt−1, x0t = 1, t = 1, 2, ..., T.

Let −c−1ln(y−1
t − 1) − yt−1 , ct, t = 1, 2, ..., T . Then the best weights wi, i =

0, 1, 2, ..., N fitting the historical data < Xt, yt > are obtained by solving the fol-
lowing Least Square problem,

(6) min
w0,w1,...,wN

T∑

t=1

(ct −

N∑

k=0

wkxk(t−1))
2.

Let

(7)
∂

∂wk

(

T∑

t=1

(ct −

N∑

j=0

wjxj(t−1))
2) = 0, k = 0, 1, ..., N.

One has the following normal equation

(8) AA′w = Ac,

where A = (xji)(N+1)×T , w = (w0, w1, ..., wN )′, c = (c1, c2, ..., cT )
′. By solving

the normal linear equation Eq.(8), one can obtain all weights which describe the
degree of cause and effect of all concepts connected to the concept Cj , j = 1, 2, ..., n.
Thus all connection weights wij and all tuning coefficients w0j can be learned by
applying the above Least Square algorithm to each concept. The FCMs constructed
by this algorithm are called LS-FCMs.

It is clear that LS-FCM algorithm, which is the solutions of n simple linear
equations, does not require iterative calculation and greatly alleviate computation
cost. By introducing the tuning coefficients w0j , LS-FCMs greatly improve the
prediction accuracy of the FCMs learned by Hebbian learning in which the range of
output of each concept is limited either [0, 0.5] (all weights of the concepts connected
to this concept are negative) or [0.5, 1] (all weights of the concepts connected to this
concept are positive). Further more LS-FCMs avoid the complicated issues such
as the convergence, iterative stopping condition and learning rate which the other
FCM learning algorithms have to deal with. All the aforementioned advantages of
LS-FCMs will be demonstrated by the examples in Section V.

3.4. Domain Partition. The range of the states and variables of a real world
application may be too large to be represented by a LS-FCM model. Therefore,
the whole domain of the system should be parted into some local regions, then a
LS-FCM model is constructed for each region. Since the complexity of relationship
among the states and variables may greatly different in different regions, hence the
range could not be uniformly parted. In this paper the domain is parted according
to the error limitation of the LS-FCMs constructed in the local regions. Each local
region gradually enlarges until the error between the LS-FCM and the physical
system exceeds the error limitation.
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3.5. Fuzzy Integration. In 1985, Takagi and Sugeno proposed T-S fuzzy model
to describe nonlinear systems using a set of conditional fuzzy rules or local models,
with each one being valid in a particular operating region determined by the corre-
sponding specification of antecedent membership functions. A conditional part or
antecedent defines each operating region. The consequent part of each rule is an
analytical expression describing the corresponding local model. These collections of
local models together with a merging procedure are the basic ingredients of Takagi-
Sugeno (T-S) model. In general the aggregation procedure consists of a convex
combination of the corresponding local models defined in the corresponding local
region. Standard T-S systems provide a formal method for modelling vagueness of
local regions associated to the input domain and an output merging procedure of
the corresponding fuzzy rules.

After the construction of a sub LS-FCM in each local region, a TS-LS-FCM
with time-vary connection weights and tuning coefficients is constructed based on
the Takagi- Sugeno (T-S) fuzzy model as follows. Consider the following fuzzy
IF-THEN rules:

(9) Rule l : IF x1t is Ãl
1 and x2t is Ãl

2 , ..., and xpt is Ãl
p THEN W = W l.

Where l = 1, ..., r, r is the number of local regions, W l is a matrix with the
connection weights and the tuning coefficients of the LS-FCM in lth local region.
Xt = (x1t, x2t, ..., xpt), xit, i = 1, 2, ..., p, are the state variables of system at time t,

namely the premise variables and measurable. Ãl
1, Ã

l
2, ..., Ã

l
p are the fuzzy sets in

lth local region. Further more the time-varying matrix with the connection weights
and the tuning coefficients are formulated as follows:

(10) W (Xt) =
r∑

l=1

λl(Xt)W
l.

Where λl(Xt) =
µl(Xt)
r∑

l=1

µl(Xt)
. µl(Xt) = µl

1(x1t)× µl
2(x2t)× ...× µl

p(xpt), µ
l
i(xit) is the

membership degree of xit in the fuzzy set Ãl
i. We always assume that

r∑
l=1

µl(Xt) 6=

0, ∀t. It is obvious that
r∑

l=1

λl(Xt) = 1. The FCM with time-varying connection

weight matrix W (Xt) shown as (10) is called TS-LS-FCM.
Let wuv(Xt) be the connection weight from concept Cu to concept Cv and

w0v(Xt) be the tuning coefficient of concept Cv at time t. Then by (10) and
(3), we have

At
j = f




n∑

i=1,i6=j

At−1
i wij(Xt−1) + w0j(Xt−1) +At−1

j


(11)

wuv(Xt) =

r∑

l=1

n∏
j=1

(µl
j(xjt))

r∑
l=1

(
n∏

j=1

µl
j(xjt))

wl
uv =

r∑

l=1

µl(Xt)
r∑

l=1

µl(Xt)
wl

uv(12)
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w0v(Xt) =

r∑

l=1

n∏
j=1

(µl
j(xjt))

r∑
l=1

(
n∏

j=1

µl
j(xjt))

wl
0v =

r∑

l=1

µl(Xt)
r∑

l=1

µl(Xt)
wl

0v(13)

4. Control of Dynamic System by TS-LS-FCM

Let DFCM be the TS-LS-FCM learned according to the historical data of a
physical system and AFCM be the set of the states and input variables of the
physical system. DFCM is connected to the physical system by adding new edges
to connect AFCM (see Figure 3). Each state in AFCM is connected to the concept in
DFCM representing the state and each concept in DFCM is connected to the input
variables in AFCM which have relationship with the concept. Thus a new FCM
included DFCM and AFCM is formed, briefly denoted as DFCM ⇌ AFCM . The
values of current states of the physical system are transferred to DFCM through
the edges from the states to the concepts in DFCM . To implement to the control
of the physical system, first the weights of the edges from the concepts in DFCM to
the input variables in AFCM are learned by Hebbian Learning algorithm according
to the desired goal while all other weights in DFCM ⇌ AFCM remain unchange.
Then the values of the input variables of the physical system at time t are obtained
via the values of the concepts representing the input variables at time t in the new
fuzzy cognitive map DFCM ⇌ AFCM in which the values of concepts in DFCM

are calculated by (11) and the values of concepts representing the input variables
in AFCM are calculated by (1). So for a desired goal, the control law is obtained
by the weights connecting to the concepts representing the input variables which
are timely learned by the Hebbian algorithm while other connection weights in
DFCM ⇌ AFCM remain unchanged.

DFCM AFCM PHYSICAL
SYSTEM

Control actions

Feedback (state data)

FCM

Fig.3 The connection of the learned TS-LS-FCM to the physical system

A generic description of the proposed Control algorithm via the learned

TS-LS-FCM

Let C1, C2, ..., Cn be the concepts in DFCM and Coutput1 , Coutput2 , ..., Coutputk

be the concepts in DFCM ⇌ AFCM representing input variables of the physical
system. Let the desired goal be Ad1 = α1, Ad2 = α2, ..., Adld

= αld , Where Adu
is

the value of concept Cdu
, {d1, d2, ..., dld} ⊆ {1, 2, ..., n} and α1, α2, ..., αld ∈ [0, 1].

For each concept Coutputi , i = 1, 2, ..., k, let Ci1 , Ci2 , ..., Cili
be all concepts in

DFCM connected to Coutputi , Where {i1, i2, ..., ili} ⊆ {d1, d2, ..., dld}. Let each
Cinputi , i = 1, 2, ..., q be the concept in DFCM representing an observable state of
the physical system, Where {input1, input2, ..., inputq} ⊆ {1, 2, ..., n}.
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Table 1 TS-LS-FCM Control Algorithm via Hebbian Learning

Step 1: Arbitrarily set initial weights wiuoutputi , i = 1, 2, ..., k, u = i1, i2, ..., ili ,
which are the weights of the edges from the concepts inDFCM to the input variables
in AFCM .

Step 2: Temp errordu
= αdu

−At
du
, u = 1, 2, ..., ld.

step 3:

• Update the weights wiuoutputi , i = 1, 2, ..., k, u = i1, i2, ..., ili , which are the
weights of the edges from the concepts in DFCM to the input variables in
AFCM .

* For i = 1, 2, ..., k,
wt+1

iuoutputi
= wt

iuoutputi
+△wiuoutputi ,

△wiuoutputi = η ∗ Temp Erroriu ∗ (1− Temp Erroriu ) ∗A
t
iu
,

where η is the learning rate, for u = i1, i2, ..., ili .
* For i = 1, 2, ..., k,

At+1
outputi

←− f

(
li∑

u=1
wt+1

iuoutputi
At

iu
+At

outputi

)
;

* Implement controlling actions by updating the input variables of the
physical system with the values corresponding to At+1

outputi
, i = 1, 2, ..., k

at time t+ 1.
* For i ∈ {input1, input2, ..., inputq, }, A

t
i is updated by the value of the

concept Ci corresponding to the current value of the state represented
by it in the physical system;

* for i = 1, 2, ..., n,

At+1
i ←− f

(
n∑

i=1,i6=j

wjiA
t
j +At

i

)
.

• Until the termination condition is met, Goto step 2.

5. Experiments Study

Control of backing a trailer-truck to loading dock is a difficult problem since
the system is non-linear and unstable. Conventional control algorithms require
large amount of efforts in system analysis and design. Several researches have
suggested using intelligent controllers to solve this problem. Those researches have
mainly focused on implementing neural networks and the methods for network
optimization [4]-[10]. The trailer-truck model is a vital element in optimizing the
neural networks. Nquyen and Widrow [10] used neural emulator to emulate the
dynamic of trailer-truck. However, their algorithm required thousands of backups
to train the emulator that is not feasible in real applications. Neural networks
is usually called a “black-box” for it is difficult to verify what the network has
learned so that the users cannot make a decision, simultaneity, it is not suitable for
expressing rule-based knowledge, such limit its application. In [27, 28] the authors
present a partially fuzzy approach and its analysis of stability. It is true that
this approach is very efficient, but what about the cases when we do not have the
luxury of exact knowledge that is required for the non-fuzzy part of the controller
(e.g. when the knowledge is too expensive or almost impossible to collect). In our
research, the TS-LS-FCM, which models the dynamic of the trailer-truck system,
is just learned by the historical data of the system. The truck can be controlled
to any goal in the domain via the learned TS-LS-FCM. The following experiments
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show that TS-LS-FCM not only can accurately model a complex dynamic system
based on the observed data of the system, but also can be applied to control the
system.

5.1. Statement of Truck Backer-Upper Control Problem. The basic model
of truck and loading zone are shown in Fig. 4. The truck corresponds to the
cab part of the neural truck in the Nguyen-Widrow [10] neural truck backer-upper
system. The truck position is exactly determined by the three state variables φ,
x, and y, where φ is the angle of the truck with respect to the horizontal line.
The coordinate pair (x,y) specifies the rear center position of the truck in the
plane. The desired driving direction is achieved by turning the truck’s wheels (first
pair). Their declination from the truck’s symmetrical axis (i.e. turning angle)
is represented by angel θ. Only reverse driving is considered. The truck moves
backward by a fixed unit distance every stage. For simplicity, we assume enough
clearance between the truck and the loading dock such that y does not have to be
considered as an input. If x and φ have arrived at the final state, y can reach any
state needless changing θ. The task here is to design a control system, whose inputs
are φ ∈ [−90◦, 270◦], x ∈ [0, 20], and output is θ ∈ [−40◦, 40◦], such that the final
states will be (xf , φf ) = (10, 90◦). The controller should produce the appropriate
steering angle θ at every stage to make the truck back up to the loading dock
from any initial position (x0,φ0). In the existing literature [29] there can be found
some the following approximate kinematic that are valid for the truck backer-upper
procedure.

x(t+ 1) = x(t) + cos[φ(t) + θ(t)] + sin[θ(t)] sin[φ(t)](14)

y(t+ 1) = y(t) + sin[φ(t) + θ(t)] − sin[θ(t)] cos[φ(t)](15)

φ(t+ 1) = φ(t) − sin−1[
2 sin(θ(t))

b
](16)

where b is the length of the truck. We assumed b =4 in the simulations of this
paper.

Remark: In practice, the mathematical mechanism model like Eq.(14)-(16)
is unnecessary for the construction of the TS-LS-FCM and the construction just
requires some samples of the states x, y and φ corresponding to the turning angle θ
(i.e., sample (θt, xt, yt, φt) for the input θt and outputs xt, yt, φt of the truck system
at time t). Here Eq.(14)-(16) just take the role of a physical truck to produce the
necessary data for us to construct its TS-LS-FCM and to verify the capability of TS-
LS-FCM to model and control a dynamic system. For the proposed methodology,
the TS-LS-FCM can be well-learned by the data from the physical systems without
any mathematical mechanism model. Observe, from Eq.(14)-(16), that even this
simplified dynamic model of the truck is nonlinear.

5.2. Construction of TS−LS−FCM Based on Data to Model the Truck

Backer-Upper System. In this section, the LS-FCM learning algorithm described
by (6)-(8) is applied to construct a LS-FCM shown as Fig. 5 in each local region
and the fuzzy integration described by (11)-(13) is applied to integrate the local
LS-FCM to be TS-LS-FCM named DFCM to describe the dynamic characteristic
of truck backer-upper system in the whole range.

5.2.1. The graph structure of the local LS-FCM. Each local LS-FCM is
shown as Fig. 5 which is established according to our experiences for the rela-
tionships among the steering angle θ and the angle φ, the truck position x and y.
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x=0 x=20

loading dock x=10     =90

rear

(x,y)

y

x

truck

Fig. 4 Diagram of simulated truck and loading zone

By our experience, we know that ∆φ, the changing of φ ( shown as Fig. 4) with
the steering angle θ is independent of the current φ and the truck position. Thus
there is just one edge w35 connected to the concept C5 which represents ∆φ. Since
both ∆x and ∆y are dependent on θ and φ, hence θ and φ are connected to them.
Similarly, the connections between other concepts can be established as Fig. 5.

C1:xC4:∆x

C2:ϕC5:∆ϕ

C7:∆y

C3:θ

C6:y

w34

w35

w37

w41

w24

w52

w27

w76

Fig. 5 The graph structure of the local LS-FCM for the truck backer-upper
system

5.2.2. Domain partition and learning local LS-FCMs. In this truck backer-
upper system, let the range of x, φ, θ be [0, 20], [−90◦, 270◦], [−40◦, 40◦] respec-
tively. For the construction of each local LS-FCM, intervals [0, 20], [−90◦, 270◦],
[−40◦, 40◦] are normalized into [0,1] by formula (2). Let D = {Xt | t = 1, 2, ..., T }
be the set of historical data of the truck system, Where Xt = (x1t, x2t, ..., x7t)

′ and
xjt be the value of concept Cj corresponding to the value of the states x, y, φ or
the input variable θ of the truck at time t. By Fig. 5., one can observe that as long
as the values of concepts C3 : θ and C2 : φ are given all values of the concepts ∆x,
∆y and ∆φ are determined. Therefore, let θ and φ be the premise variables for the
fuzzy rules shown as (9). Under the condition that in every region the local LS-
FCM learned by (6)-(8) according to the samples in D full into the region has the
maximum errors for ∆x and ∆φ less than 0.1 and 0.2◦ respectively, the domain of



80 X. LIU AND Y. ZHANG

θ and φ, [−40◦, 40◦]× [−90◦, 270◦] is parted into 25 local regions with different sizes
shown as Fig.6. The following Table 1 shows that the number of partition regions
for different error limitations of ∆x and ∆φ. Table 3 in the Appendix shows that
all connection weights and the tuning coefficients of the local LS-FCMs learned by
the learning algorithm described by (6)-(8) in the 25 regions shown as Fig.6. Where
the samples in the set of historical data of the truck system D are evenly drawn
from the domain.

Table 1 Number of partition regions for different error limitations
Error limitation of ∆x(m) 0.05 0.1 0.2 0.4
Error of limitation ∆φ(o) 0.1 0.2 0.8 2
Number of regions 50 25 16 9

−40 −30 −20 −10 0 10 20 30 40
−100

−50

0

50

100

150

200

250

300

θo

φo

Error_∆ x=0.1(m); Error_∆φ=0.2o

Fig. 6 The partition of the domain of θ and φ.

5.2.3. Fuzzy integration. Let x be a premise variable in the fuzzy IF-THEN
rules shown as (9). The projection of the ith region on x is [ai, bi] and the width

of the projection is Wi = bi − ai. The triangle shape membership function Ãi on x

is shown as Fig.7, in which the width of the triangle is 2Wi. Then we have the TS-
LS-FCM with time varying connection weights and the tuning coefficients for the
Truck Backer-Upper System by (11)-(13) in the domain x ∈ [0, 20], φ ∈ [−90◦, 270◦],
θ ∈ [−40◦, 40◦]. Thus the TS-LS-FCM learned from the historical data is formed
by the integration of the local LS-FCMs shown as Fig.5, the domain parted as
Fig. 6 and the local LS-FCMs with the local connection weights and the tuning
coefficients shown as Table 3 in the Appendix via the fuzzy sets on the premise
variables with the membership functions shown as Fig. 7.

5.3. Modeling Dynamic Behavior of the Truck Backer-Upper Using the

Learned TS-LS-FCM. In order to evaluate the capability of TS-LS-FCMs to
model dynamic behavior of the nonlinear systems, we respectively input a sequence
of steering angles θi, i = 1, 2, ..., T to the about learned TS-LS-FCM and the kine-
matic equations Eq.(14,15,16) of the truck at any initial state (x0, y0, φ0). The
TS-LS-FCM and the kinematic equations produce very similar trajectories for any
sequence of steering angles from any initial states in the domain. As an example,
Fig. 8 shows the trajectories of TS-LS-FCM and the kinematic equations (labeled
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0

1.0

value of a premise variable  x

......

membership degree

ai bi

......0.5

wi

wi/2 wi/2

 [ai, bi] is the projection of the ith region on the premise variable x and wi is the projection width.

Fig. 7 The triangle membership function in each dimension of each region

“truck”) for the sequence of steering angles θi: 20
◦, 20◦, 20◦, 20◦, 20◦, 20◦, 20◦, 20◦,

20◦, 20◦, 20◦, 20◦, 20◦, −20◦, −20◦, −20◦, −20◦, −20◦, −20◦, −20◦, −20◦, −20◦,
−20◦, −20◦, −20◦, −20◦ starting form the initial state (10, 0, 180◦). Although the
errors between them are gradually accumulated as the increase of the steps, Fig.
8 shows that the TS-LS-FCM can follows the truck very well. The following ex-
periments will show that the TS-LS-FCM can accurately control the truck to any
desired goal.

1 2 3 4 5 6 7 8 9 10
−2

0
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x(m)

y(
m

)

truck

TS−LS−FCM 

Fig. 8 The trajectories of TS-LS-FCM and the truck

5.4. Truck Back-Upper Online Controlling via the Learned TS-LS-FCM

from the Historical Data. Let DFCM be the TS-LS-FCM learned according to
the historical data of the truck, Where the local LS-FCM is shown as Fig.5, the
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domain is parted as Fig. 6 and the local LS-FCMs with the local connection weights
and the tuning coefficients shown as Table 3 in the Appendix are integrated into
the TS-LS-FCM via the fuzzy sets on the premise variables with the membership
functions shown as Fig. 7. Let AFCM be the set of the observable states x, y, φ and
input variable θ of the truck. DFCM is connected to the truck shown as Fig. 9 by
adding a edge from concept C3 : θ to the input variable θ ∈ AFCM to implement the
control of the truck, and adding edges from the observable states x, y, φ ∈ AFCM

to the concepts C1 : x,C6 : y, C2 : φ respectively to transfer the current states of
the truck. The concepts C1 : x,C6 : y, C2 : φ in DFCM which determined the input
variable θ ∈ AFCM at each time are connected to the concept C3 : θ ∈ DFCM with
the connection weights w13, w23, w63 respectively. Thus a new fuzzy cognitive map
DFCM ⇌ AFCM included DFCM and AFCM is formed (see Fig. 9). To implement
to the control of the physical system, first w13, w23, w63 the connection weights
from the concepts to the steering angle θ are learned by Hebbian Learning algorithm
shown as Table 1 according to the desired goal. While the weights in DFCM remain
the form as (11)-(13). Then the values of the input variable θ of the truck at time t
is obtained via the values of the concepts representing it in the new fuzzy cognitive
map DFCM ⇌ AFCM in which the values of concepts in DFCM are calculated
by (11) and the values of concepts representing θ is calculated by (1). Finally
the current value of θ is applied to control the truck. The current states of the
truck are observed and update the values of the corresponding concepts in DFCM .
The control law of next time can be obtained by repeat the above procedure. The
experiment study shows that the truck can controlled to any desired goal in the
domain by the TS-LS-FCM via the control algorithm described in Table 1.
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Fig. 9 The connection of the learned TS-LS-FCM to the truck.

As examples, Fig.10 shows the trajectories of the truck controlled starting from
the following six randomly selected initial states:(x0, φ0) = (3,−30o), (8, 90o),
(10, 220o), (12,−90o),(13, 10o), (16, 250o) to the desired goal 1(10, 90o), and from
three randomly selected initial states: (10, 220o), (17, 30o), (20, 200o) to the desired
goal 2 (14, 90o). The terminal states of the truck shown in Fig. 10 from the nine ini-
tial states are [9.9153, 88.5747], [9.8967, 88.2261], [9.8924, 88.1445], [10.0754, 91.5612],
[10.0939, 91.8968], [10.096, 91.9351] for the desired goal 1 and [13.9627, 89.0033],
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[14.0588, 91.9681], [14.0506, 91.7341] for the desired goal 2 respectively. The errors
between the terminal state of the truck and the desired goal can be less than any
small positive number, if the procedure could be taken for infinity steps. It is very
clear that the control of the truck by the TS-LS-FCM to any desired goal from any
initial state don’t require any sample data from the initial state to the goal which
is required for the neural network control algorithm.
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(17,300)

   goal_1
(10,900)

   goal_2
(14,900)

(16,250o)

(20,200o)

(12,−90o)

(8,90o)

Fig. 10 Truck Backer-Upper trajectories controlled by the learned TS-LS-FCM

Although the errors between state values of TS-LS-FCM and the truck may
by quit large for many steps due to gradually accumulation of the errors in each
step, shown as Fig. 8, the dynamic errors in the control procedure for the control
algorithm described as Table 1 are usually very small and the TS-LS-FCM can
accurately control the truck to any desired goal. As an example, Table 2 shows
the errors between the states of TS-LS-FCM and the states of the truck in the
procedure to control the truck from initial state (x0, φ0) = (1, 0o) to desired goal
(10, 90o). Fig. 11 shows trajectories of the TS-LS-FCM and the truck.

Table 2 Dynamic errors between the TS-LS-FCM and the truck in the
controlling procedure from initial state (x0, φ0) = (1, 0o) to desired goal (10, 90o)

t 1 2 3 4 5 6 7 8 9

xTRUCK(m) 1.95 2.90 3.80 4.66 5.44 6.14 6.75 7.28 7.74
ϕTRUCK(o) 8.68 17.30 26.19 35.09 43.60 51.17 57.30 62.37 65.88
xFCM -xTRUCK(m) 0.04 0.02 0.02 0.04 0.05 0.06 0.05 0.03 0.03

ϕFCM -ϕTRUCK(o) -0.03 -0.02 -0.04 -0.04 -0.03 -0.01 -0.02 -0.04 -0.06
θstreeing angle(O) -17.57 -17.43 -18.01 -18.03 -17.21 -15.28 -12.34 -10.18 -7.03

10 11 12 13 14 15 16 17 18 19

8.15 8.50 8.83 9.10 9.33 9.53 9.67 9.77 9.84 9.89
69.17 71.00 73.78 76.83 78.55 81.76 84.31 86.10 87.34 88.19
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
-0.06 -0.04 -0.06 -0.06 -0.04 -0.06 -0.05 -0.04 -0.03 -0.02
-6.59 -3.68 -5.56 -6.11 -3.43 -6.41 -5.11 -3.60 -2.47 -1.69
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Fig. 11 The trajectories of TS-LS-FCM and the truck.

6. Conclusions

For large and complex dynamic systems that are common in the process industry,
it is extremely difficult to describe the entire system by a precise mathematical
model. Thus, it is more attractive and useful to represent it, in a graphical abstract
way showing the causal relationships between states-concepts. This study shows
clearly that the complex dynamic nonlinear systems can be modeled and controlled
very well just by the applications of the TS-LS-FCM learned from the historical
data observed from the system.
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Appendix:

Table 3 Weights of the local LS-FCMs shown as Fig.5 in all regions shown as Fig.6

regions w24 w34 w35 w27 w37 w4
0 w5

0 w7
0

[-90,−26]×[−40,−24] 0.42 0.034 -0.18 0.26 -0.055 -0.59 -0.18 -0.60

[-26,42]×[−40,−24] -0.05 0.064 -0.18 0.35 0.01 -0.48 -0.18 -0.63

[42,146]×[−40,−24] -0.29 -0.00 -0.18 -0.02 0.06 -0.38 -0.18 -0.49

[146,214]×[−40,−24] -0.00 -0.06 -0.18 -0.36 0 -0.56 -0.18 -0.27

[214,270]×[−40,−24] 0.44 -0.03 -0.18 -0.25 -0.057 -0.89 -0.18 -0.34

[-90,−26]×[−24,−8] 0.47 0.01 -0.14 0.30 -0.02 -0.60 -0.19 -0.61

[-26,38]×[−24,−8] -0.04 0.02 -0.14 0.40 0.00 -0.48 -0.19 -0.64

[38,154]×[−24,−8] -0.31 -0.00 -0.14 -0.03 0.02 -0.36 -0.19 -0.47

[154,218]×[−24,−8] 0.042 -0.02 -0.14 -0.42 -0.00 -0.59 -0.19 -0.22

[218,270]×[−24,−8] 0.51 -0.01 -0.14 -0.28 -0.02 -0.96 -0.19 -0.33

[-90,−22]×[−8, 9] 0.47 -0.00 -0.13 0.32 0.00 -0.59 -0.20 -0.63

[-22,42]×[−8, 9] -0.07 -0.00 -0.13 0.41 -0.00 -0.45 -0.20 -0.64

[42,158]×[−8, 9] -0.33 0.00 -0.13 -0.06 -0.00 -0.36 -0.20 -0.45

[158,222]×[−8, 9] 0.08 0.00 -0.13 -0.44 0.00 -0.63 -0.20 -0.21

[222,270]×[−8, 9] 0.55 0.00 -0.13 -0.27 0.00 -1 -0.20 -0.35

[-90,−26]×[9, 25] 0.47 -0.01 -0.14 0.30 0.02 -0.58 -0.19 -0.64

[-26,38]×[9, 25] -0.04 -0.03 -0.14 0.40 -0.00 -0.45 -0.19 -0.64

[38,154]×[9, 25] -0.32 0.00 -0.14 -0.03 -0.02 -0.37 -0.19 -0.45

[154,218]×[9, 25] 0.04 0.03 -0.14 -0.42 0.00 -0.62 -0.19 -0.23

[218,270]×[9, 25] 0.51 0.01 -0.14 -0.27 0.02 -0.97 -0.19 -0.36

[-90,−26]×[25, 40] 0.41 -0.04 -0.18 0.26 0.06 -0.55 -0.16 -0.65

[-26,42]×[25, 40] -0.05 -0.07 -0.18 0.35 -0.01 -0.41 -0.16 -0.62

[42,146]×[25, 40] -0.29 0.00 -0.18 -0.02 -0.06 -0.38 -0.16 -0.43

[146,214]×[25, 40] -0.00 0.07 -0.18 -0.36 0 -0.61 -0.16 -0.27

[214,270]×[25, 40] 0.43 0.03 -0.18 -0.25 0.06 -0.93 -0.16 -0.40
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