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ERROR ESTIMATES FOR AN OPTIMAL CONTROL PROBLEM

GOVERNED BY THE HEAT EQUATION WITH STATE AND

CONTROL CONSTRAINTS

GENGSHENG WANG AND XIN YU∗

Abstract. In this work, we study priori error estimates for the numerical ap-

proximation of an optimal control problem governed by the heat equation with

certain control constraint and ending point state constraint. By making use of

the classical space-time discretization scheme, namely, finite element method

with the space variable and backward Euler discretization for the time vari-

able, we first project the original optimal control problem into a semi-discrete

control and state constrained optimal control problem governed by an ordi-

nary differential equation, and then project the aforementioned semi-discrete

problem into a fully discrete optimization problem with constraints. With the

help of Pontryagin’s maximum principle, we obtain, under a certain reason-

able condition of Slater style, not only an error estimate between the optimal

controls for the original problem and the semi-discrete problem, but also an

error estimate between the solutions of the semi-discrete problem and the fully

discrete problem, which leads to an error estimate between the solutions of the

original problem and the fully discrete problem. By making use of the afore-

mentioned result, we also establish an numerical approximation for the exactly

null controllability of the internally controlled heat equation.

Key Words. Finite element approximation, optimal control problem, the heat

equation, ending point state constraint, error estimate.

1. Introduction

In this paper, we shall study error analysis for the discretization of an optimal
control problem governed by the heat equation with certain control constraint and
ending point (in time) state constraint, which will be introduced as follows. Let

Ω be a bounded domain in lRd(d ≤ 3) with a smooth boundary ∂Ω, ω be an open
subset of Ω and T be a positive number. We denote by Q the product set Ω×(0, T )
and by χω the characteristic function of the subset ω. Write

K = {v ∈ L2(0, T ;L2(Ω)) ; ‖v(t)‖ ≤ 1, for a.e. t ∈ [0, T ]}

and

K = {w ∈ L2(Ω) ; ‖w‖ ≤ 1}.
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Here and in what follows, we shall use ‖ · ‖ and (·, ·) to denote the usual norm and
the inner product of the space L2(Ω). The optimal control problem which we shall
study reads

(P ) min
u∈K

{
1

2

∫ T

0

∫

Ω

(y − yd)
2dxdt+

1

2

∫ T

0

∫

Ω

u2dxdt

}

subject to

(1.1)






∂ty −△y = χωu in Ω× (0, T ),
y = 0 on ∂Ω× (0, T ),
y(0) = y0 in Ω,

and the ending point state constraint

y(T ) ∈ K.

Here, yd ∈ L2(Q) is a given target function and y0 ∈ H1
0 (Ω) is a given initial

data. Throughout the paper, the notation y(t) stands for the value of the function
y : [0, T ] → L2(Ω) at the time t. As a matter of convenience, we shall often omit
the notation t in functions of t and the notation (x, t) in functions of (x, t) whenever
no confusion is possible.

We are going first set up a semi-discrete optimal control problem (Ph) projected
by the original problem (P ) in the sense of finite element, which is an optimal control
problem governed by a system of linear ordinary differential equations with the
ending point state constraint and a certain control constraint, and then establish a
fully discrete optimal control problem (Phτ ) projected by the aforementioned semi-
discrete problem according to the classical backward Euler discretization scheme for
the time variable. The problem (Phτ ) is an optimal control problem governed by a
system of linear algebraic equations with certain state and control constraints, and
can be viewed as a problem of minimization of a quadratic function with convex
constraints in a finite dimensional space, which, we assume and believe, can be
solved numerically.

The purpose of this work is to obtain a convergence order for L2(Q)−error
between the optimal control for the original problem (P ) and the solution of the
fully discrete problem (Phτ ). There should be several ways to reach such an aim.
We shall make use of Pontryagin’s maximum principle of the original problem (P ),
the semi-discrete problem (Ph) and the fully discrete problem (Ph) to establish
first an error estimate between the solutions of the problems (P ) and (Ph), and
then an error estimate between the solutions for the problems (Ph) and (Phτ ). The
Pontryagin maximum principle of the problem (P ) ( also for the problems (Ph) and
(Ph) ) consists in a state equation, an adjoint equation, a transversality condition
and a connection between the optimal control and the adjoint state, namely, the
solution of the adjoint equation, through a variational inequality. The advantage
that can be taken from the Pontryaginmaximum principle in dealing with such error
estimates is that one can expect quantitative expressions of the optimal controls
via the adjoint states. Such relationships are helpful for us to get the desired error
estimates in many cases.

However, due to the involvement of ending point state constraint, there will
be a pair of multipliers in the space lR × L2(Ω) and appeared in the Pontryagin
maximum principle for each problem among the problems (P ), (Ph) and (Phτ ). We
denote them by (λ, µ), (λh, µh) and (λhτ , µhτ ) for the problems (P ), (Ph) and (Phτ ),
respectively. The multipliers λ, λh and λhτ appear in both variational inequalities
and adjoint state equations, while the multipliers µ, µh and µhτ arise in the initial



32 G. WANG AND X. YU

data of adjoint state equations. These multipliers are big trouble makers in dealing
with such problems. First, we must make sure that the multipliers λ, λh and λhτ are
not zero such that the corresponding Potryagin maximum principle are qualified,
only which could give us valuable information for the optimal controls from the
adjoint states. Secondly, after we guarantee that the qualified Pontryagin maximum
principles hold for the aforementioned three problems, namely, the multipliers λ,
λh and λhτ can be taken as number 1 and the multipliers −µ̄, −µ̄h and −µ̄hτ are
exactly the initial values for the adjoint equations corresponding to the problems
(P ), (Ph) and (Phτ ), respectively, we still lack enough quantitative information
for the multipliers −µ̄,−µ̄h and −µ̄hτ to get error estimates among them, but
only know that they stay in certain given subsets. Thus, we shall face with a
real challenge in getting the error estimates among the solutions of the adjoint
state equations, which plays an important role in dealing with the error estimate
between the optimal controls of the problems (P ) and (Phτ ).

To overcome the first difficulty, we shall first make the following assumption on
the problem (P ) throughout the paper.

(A) : There exists a control function u0 ∈ K such that the corresponding solution
y(·) of the equation (1.1) with u = u0 reaches the interior of the set K at the time
T, namely, y(T ) ∈ intK.

Then, we prove that such kind of property holds for the projected problems (Ph)
and (Phτ ) provided that (A) is assumed. Based on these, we establish the qualified
Pontryagin maximum principle for the problems (P ), (Ph) and (Phτ ).

The condition (A) is called Slater condition, which ont only helps us to get
the qualified Pontryagin maximum principle for the problems (P ), (Ph) and (Phτ ),
but also guarantees the existence of the optimal controls for the original problem
and projected problems. Moreover, it plays an important role when we prove that
the families {µh} and {µhτ} are bounded in certain norms for sufficiently small
h and τ. We would like explain the reasonableness of the assumption (A) for the
problem (P ) by the following fact. Since the state equation of the problem (P )
is the internally controlled heat equation, the condition (A) holds automatically
provided that either the initial data y0 has a smaller L2(Ω)−norm or the ending
time T is bigger enough.

To surmount the second difficulty, we first establish explicit expressions for the
optimal controls via the adjoint states for the problems (P ), (Ph) and (Phτ ), respec-
tively, which are new to our best knowledge, and then we obtain theH1(0, T ;L2(Ω))−
regularity for the optimal controls ū and ūh of the problems (P ) and (Ph), respec-
tively, which is not trivial in the optimal control problems involving both state
and control constraints. After these, we show that both families {µ̄h}0<h≤h̄ and

{µ̄hτ}0<h≤h0,0<τ≤τ̄ are bounded in the space H1
0 (Ω), where h̄ and τ̄ are two given

positive numbers. Based on the above results, we prove that the optimal controls for
the problems (Ph) and (Phτ ) are uniformly bounded in certain sense with respect to
sufficiently small h and τ . Finally, by making use of all aforementioned results and
according to all information, in particular, the transversality conditions, provided
by the Pontryagin maximum principle, we establish an error estimate between op-
timal controls for the problems (P ) and (Phτ ) in the absence of error estimates
among the quantities −µ̄,−µ̄h and −µ̄hτ .

We would like to mention that the Pontryagin maximum principle for the prob-
lem (P ) provides us a necessary and sufficient condition for the optimal control.
However, because of the involvement of unclear quantity µ̄ in the maximum prin-
ciple, we can not expect to compute the solution by projecting the necessary and
sufficient condition into a discrete form. Instead of it, we project the problem (P )
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into a discrete problem, which, as we mentioned earlier, can be viewed as a prob-
lem of minimization of a quadratic function with certain convex constraints in a
finite dimensional space. On the other hand, when we deal with the error estimate
between the solutions of the problem (P ) and (Ph), weaker conditions will be put
on the optimal controls, the initial data y0 and the target function yd, and lower
regularity for the multipliers µ̄ and µ̄h are called for, while as we study the error
estimate between the solutions of the problems (Ph) and (Phτ ), stronger conditions
on the above quantities and higher regularity on the multipliers µ̄h and µ̄hτ are
required. This is why we make two steps to project the problem (P ).

Next, we shall roughly state the main result obtained in this paper. Let h
be the mesh size of a given finite element triangulation of Ω associated with the
problem (Ph) and let τ be the uniform time step of the partition of the interval [0, T ]
associated with the problem (Phτ ). If we denote by ū and Ūhτ = (Ū1

h , Ū
2
h , · · · , Ū

N
h )

the optimal controls of the problems (P ) and (Phτ ), respectively, then it holds that

N∑

i=1

∫ ti

ti−1

‖ū− Ū i
h‖

2dt ≤ C(h2 + τ)

for all numbers h and τ with 0 < h ≤ h̄ and 0 < τ ≤ τ̄ , where h̄ and τ̄ are two
given positive numbers.

As the development of the theory of optimal controls for partial differential
equations, the related theoretic results are expected to be used to fields of applied
sciences. Thus, people are getting more and more interesting in problems on the
numerical approximations of optimal controls for partial differential equations. The
error analysis plays an important role in such studies. In most related works, people
do not consider any state constraint. We mention the works [2, 7, 16, 26] and the
works [17, 21, 22] on priori error estimates for elliptic optimal control problems and
parabolic optimal control problems respectively. We also quote the papers [4, 5, 18]
on posteriori error estimates for the optimal control problems of partial differential
equations. Due to the significance of state constraint in views of both mathemati-
cal theory and applied sciences, the numerical approximations of optimal controls
for partial differential equations involving state constraints are very important but
much more difficult to be studied. We would like to mention the works [8], [9] [12]
and [23] on the error estimates and numerical approximations for optimal control
problems governed by elliptic differential equations with certain state constraints.
However, to our best knowledge, the investigations on numerical approximations
for optimal control problems governed by parabolic equations with state constraints
are quite few. In 1996, D. Tiba and F. Tröltzsch [27] investigated error estimates
for the discretization of state constrained convex control problems, where the state
equation is an abstract parabolic-like equation. They successfully proved, by mak-
ing use of Pontryagin’s maximum principle, that the norm of the difference between
the optimal controls of the original problem and the corresponding discrete prob-
lem is governed by the norm of difference of adjoint states. Moreover, they claimed
that the later includes the disretization error for linear parabolic equation. How-
ever, as what we mentioned earlier, due to the involvement of the state constraint,
to get the error estimate between the adjoint states of the original problem and
the discrete problem is not a trivial job. This is one of the main reasons that the
work [27] does not contain any order of the estimates. In [1, 20, 28], the authors
studied error estimates of optimal controls between the optimal control problems of
parabolic equations with certain state constraints and corresponding semi-discrete
problems. They mainly used the properties of optimizations of the cost functions
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and state equations for both original problems and the corresponding semi-discrete
problems. This is a method often used in investigating the numerical approxima-
tions for inverse problems. The weakness to use such a way in dealing with the
error estimates for optimal control problems, compared with the method to make
use of Pontryagin’s maximum principle, is that one may lose certain chances to
gain more valuable information provided by Pontryagin’s maximum principle, such
as the connection between the control and the adjoint state and the relationship
between the adjoint states for original problem and the discrete problem. Conse-
quently, the orders for error estimates obtained by making use of such a way may
be worse than those provided by Pontryagin’s maximum principle. For instance, by
making use of the method provided in [1, 20] to our problem (P ), one can only have

the order h
1
2 for the error estimate between the optimal controls for the problems

(P ) and the problem (Ph).
The rest of the paper is organized as follows. In section 2, we investigate the

original problem (P ) including the Pontryagin maximum principle, an explicit ex-
pression of the optimal control via the adjoint state and the regularity of the optimal
control. In section 3, we set up a semi-discrete finite element approximation prob-
lem (Ph) for the original problem and discuss the similar subjects as those in the
previous section. In section 4, we obtain an error estimate between the solutions
of the problems (P ) and (Ph). In section 5, we establish a fully discrete optimal
control problem (Phτ ) projected by the semi-discrete problem (Ph) and study the
similar projects as those in section 2. In section 6, we derive an error estimate
between the solutions of the problem (Ph) and the problem (Phτ ), which leads to
an error estimate between the solutions of the original problem (P ) and the fully
discrete problem (Phτ ). In the last section, we establish, by making use of the main
result in the paper, a numerical approximation for the exactly null controllability
for the internally controlled heat equation.

2. Optimality conditions for solution of the problem (P )

In this section, we shall discuss certain properties for the optimal control of the
problem (P ). First of all, we quote from [13] the following well known result, which
will be used frequently in this paper.

Lemma 2.1. Let y0 ∈ H1
0 (Ω). Then, for any u ∈ L2(Q), the equation (1.1) has

a unique solution y ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)). Moreover, there

exists a positive constant C independent of y0 and u such that the following estimate
holds:

sup
t∈[0,T ]

‖y(t)‖21 + ‖y‖2L2(0,T ;H2(Ω)) + ‖∂ty‖
2
L2(Q) ≤ C(‖y0‖

2
1 + ‖u‖2L2(Q)).

Here and in what follows, the notation ‖ · ‖1 stands for the usual norm of the
space H1

0 (Ω). Then, we give the following theorem which contains the existence
and uniqueness of the optimal control and the Pontryagin maximum principle for
the problem (P ).

Theorem 2.1. The problem (P ) has a unique optimal control. Moreover, a func-
tion ū ∈ K is the optimal control for the problem (P ) if and only if there exist
functions µ̄ ∈ H1

0 (Ω) and ȳ, ϕ̄ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) enjoy-

ing the following properties:

(2.1) ȳ(T ) ∈ K, (µ̄, z − ȳ(T )) ≤ 0, ∀ z ∈ K,
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(2.2)





∂tȳ −△ȳ = χωū in Ω× (0, T ),
ȳ = 0 on ∂Ω× (0, T ),
ȳ(0) = y0 in Ω,

(2.3)





∂tϕ̄+△ϕ̄ = ȳ − yd in Ω× (0, T ),
ϕ̄ = 0 on ∂Ω× (0, T ),
ϕ̄(x, T ) = −µ̄ in Ω,

(2.4) ū ∈ K,

∫ T

0

∫

Ω

(ū − χωϕ̄)(u − ū)dxdt ≥ 0, ∀ u ∈ K.

Remark 2.1. Theorem 2.1 gives us a qualified Pontryagin maximum principle
for the problem (P ) under the Slater condition (A). We shall further show that
such kind of Slater-type conditions hold for the discrete problems with sufficiently
small mesh sizes if the condition (A) is assumed to be true. Thus we can derive the
qualified Pontryagin maximum principle for the discrete problems under assumption
(A).

Proof of Theorem 2.1. Write y for the solution of the equation (1.1) corre-
sponding to the control u. We define a functional J over L2(Q) by setting

J(u) =

{
1
2

∫ T

0

∫
Ω(y − yd)

2dxdt+ 1
2

∫ T

0

∫
Ω u2dxdt if u ∈ K, y(T ) ∈ K,

+∞ otherwise.

One can check that the functional J is convex and lower semi-continuous. Moreover,
it is strictly convex in its effective domain. Thus, the existence and uniqueness of
the optimal control for the problem (P ) can be obtained easily from the Slater
condition (A).

Now, we are on the position to prove the Potryagin maximum principle for the
problem (P ). We start from the necessity. Let ū be the optimal control and ȳ
be the optimal trajectory for the problem (P ). Then, by the assumption (A), it
follows directly from Theorem 5.2 in [6] that there exist a function µ̄ ∈ L2(Ω) and
a function ϕ̄ such that (2.1)-(2.4) hold. Obviously, the condition (2.1) is equivalent
to µ̄ ∈ NK(ȳ(T )), where NK(ȳ(T )) is the normal cone of K at ȳ(T ). However,

NK(ȳ(T )) =

{
0 if ‖ȳ(T )‖ < 1,⋃

k≥0 kȳ(T ) if ‖ȳ(T )‖ = 1.

Thus, we must have

(2.5) µ̄ = kȳ(T ),

where

(2.6) k =

{
0 if ‖ȳ(T )‖ < 1,
≥ 0 if ‖ȳ(T )‖ = 1.

On the other hand, it follows from Lemma 2.1 that

ȳ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩H1(0, T ;L2(Ω)) ⊂ C([0, T ], H1

0 (Ω)).

This, together with (2.5), shows µ̄ ∈ H1
0 (Ω) and ϕ̄ ∈ L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) ∩
H1(0, T ;L2(Ω)).

Next, we show the sufficiency. Let functions ū, ȳ, ϕ̄ and µ̄ satisfy (2.1)-(2.4). Let
u ∈ K be a control function such that the corresponding solution y of the equation
(1.1) has the property that y(T ) ∈ K. We first notice the following identity:

J(u)− J(ū) +

∫ T

0

∫

Ω

(ȳ − yd)(ȳ − y)dxdt +

∫ T

0

∫

Ω

ū(ū− u)dxdt
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=
1

2

∫ T

0

∫

Ω

(ȳ − y)2dxdt+
1

2

∫ T

0

∫

Ω

(ū− u)2dxdt ≥ 0.

This, together with (2.1)-(2.4) gives us the following inequality:

J(ū) ≤ J(u) +

∫ T

0

∫

Ω

(ȳ − yd)(ȳ − y)dxdt+

∫ T

0

∫

Ω

ū(ū− u)dxdt

= J(u) + (ϕ̄(T ), ȳ(T )− y(T ))− (ϕ̄(0), ȳ(0)− y(0))

−

∫ T

0

∫

Ω

[ϕ̄∂t(ȳ − y) +∇ϕ̄ · ∇(ȳ − y)]dxdt+

∫ T

0

∫

Ω

ū(ū− u)dxdt

≤ J(u)−

∫ T

0

∫

Ω

ϕ̄χω(ū− u)dxdt+

∫ T

0

∫

Ω

ū(ū − u)dxdt

= J(u) +

∫ T

0

∫

Ω

(ū− χωϕ̄)(ū − u)dxdt

≤ J(u),

which shows that ū is the optimal control for the problem (P ). This completes the
proof. �

Next, we shall give an explicit expression for the optimal control of the problem
(P ) via the adjoint state, which plays an important role in our work.

Proposition 2.1. If ū is the optimal control of the problem (P ), then it holds that
for almost every t ∈ [0, T ],

(2.7) ū(t) =
χωϕ̄(t)

1 + k(t)
,

where

(2.8) k(t) =

{
0, for a.e. t ∈ [0, T ] if ‖χωϕ̄(t)‖ < 1,
‖χωϕ̄(t)‖ − 1, for a.e. t ∈ [0, T ] if ‖χωϕ̄(t)‖ ≥ 1.

Proof. Let E be a measurable subset of the interval [0, T ]. Let v0 be a function
in the space L2(Ω) such that ‖v0‖ ≤ 1. We define a function v(·) : [0, T ] → L2(Ω)
by setting

v(t) =

{
v0, for all t ∈ E,
ū(t), for all t ∈ [0, T ] \ E.

It is clear that v ∈ K. By (2.4), we get

−

∫

E

(ū(t)− χωϕ̄(t), v0 − ū(t))dt ≤ 0.

Since the set E in the above inequality can be taken arbitrarily from the family of
measurable subsets of the interval [0, T ], we can apply Lebesgue’s differentiation
theorem to the aforementioned inequality to get that for any v0 ∈ L2(Ω) with
‖v0‖ ≤ 1,

−(ū(t)− χωϕ̄(t), v0 − ū(t)) ≤ 0, for a.e. t ∈ [0, T ].

Thus, it holds that

−(ū(t)− χωϕ̄(t)) ∈ NK(ū(t)), for a.e. t ∈ [0, T ].

Similar to (2.5) and (2.6), we have the following equation:

(2.9) −(ū(t)− χωϕ̄(t)) = k(t)ū(t), for a.e. t ∈ [0, T ],
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where

(2.10) k(t)

{
= 0 for a.e. t ∈ [0, T ] if ‖ū(t)‖ < 1,
≥ 0 for a.e. t ∈ [0, T ] if ‖ū(t)‖ = 1,

which implies (2.7) with k(t) given by (2.10).
Next, we shall prove that the above function k(t) has the form (2.8). To this

end, we first claim

(2.11) ‖ū(t)‖ < 1 if and only if ‖χωϕ̄(t)‖ < 1.

Indeed, if ‖ū(t)‖ < 1, then it follows from (2.10) that k(t) = 0. This, together with
(2.9), shows χωϕ̄(t) = ū(t), from which it follows that ‖χωϕ̄(t)‖ < 1. Conversely, if
‖χωϕ̄(t)‖ < 1, then, by making use of the equation (2.7) where the function k(t) is
given by (2.10), we get ‖ū(t)‖ < 1. Thus, we have proved (2.11).

Then we claim that

(2.12) ‖ū(t)‖ = 1 if and only if ‖χωϕ̄(t)‖ ≥ 1.

Indeed, if ‖ū(t)‖ = 1, then, by taking the L2(Ω)-norm on the both sides of the
equation (2.7), we get that 0 ≤ k(t) = ‖χωϕ(t)‖ − 1. Thus, we have ‖χωϕ(t)‖ ≥ 1.
Conversely, if ‖χωϕ(t)‖ ≥ 1, then it follows from (2.11) that ‖ū(t)‖ ≥ 1. However,
since ū ∈ K, namely, ‖ū(t)‖ ≤ 1, we necessarily have ‖ū(t)‖ = 1. Hence, (2.12)
holds.

Finally, by making use of (2.10), (2.11), and (2.12), and according to the fact
that 0 ≤ k(t) = ‖χωϕ(t)‖ − 1 provided ‖ū(t)‖ = 1, we obtain the equation (2.8).
This completes the proof. �

Now we turn to consider the regularity for the optimal control of the problem
(P ). The following lemma is quoted from [3] and will be used later.

Lemma 2.2. Let X be a reflexive Banach space and f ∈ L2(0, T ;X). Then f ∈
H1(0, T ;X) if and only if there exists a positive constant M such that

∫ T−α

0

‖f(t+ α) − f(t)‖2dt ≤ Mα2, ∀ α ∈ (0, T ).

Proposition 2.2. Let ū be the optimal control for the problem (P ). Then it holds
that ū ∈ H1(0, T ;L2(Ω). Moreover, the control ū enjoys the following property:

‖ū‖H1(0,T ;L2(Ω)) ≤ C(1 + ‖ϕ̄‖C([0,T ],L2(Ω)))‖ϕ̄‖H1(0,T ;L2(Ω)),

where ϕ̄ is the adjoint state given by Theorem 2.1 and C is a positive constant.

Proof. Let k(·) be the function given in Proposition 2.1. We first claim that
the function k(·) is in the space H1(0, T ) and satisfies the estimate:

(2.13) |k′(t)| ≤ |f ′(t)| ≤ ‖∂tϕ̄(t)‖, for a.e. t ∈ [0, T ].

Here is the argument. Let f(t) = ‖χωϕ̄(t)‖ − 1. Then it holds that k(t) = f+(t).
Since ϕ̄ ∈ H1(0, T ;L2(Ω)), it follows from Lemma 2.2 that there exists a positive
constant M independent of α such that

∫ T−α

0

|f(t+ α)− f(t)|2dt =

∫ T−α

0

(‖χωϕ̄(t+ α)‖ − ‖χωϕ̄(t)‖)
2dt

≤

∫ T−α

0

‖χωϕ̄(t+ α)− χωϕ̄(t)‖
2dt

≤

∫ T−α

0

‖ϕ̄(t+ α)− ϕ̄(t)‖2dt
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≤ Mα2.

By making use of Lemma 2.2 again, we obtain that f ∈ H1(0, T ). Thus, it holds
that k ∈ H1(0, T ). Moreover, we can easily derive that for almost every t ∈ [0, T ),

|f ′(t)| = lim
α→0+

|f(t+ α) − f(t)|

α

≤ lim
α→0+

‖χωϕ̄(t+ α)− χωϕ̄(t)‖

α

≤ lim
α→0+

‖
ϕ̄(t+ α)− ϕ̄(t)

α
‖

= ‖∂tϕ̄(t)‖.

Hence, we have proved (2.13).
On the other hand, it follows from (2.7) that ū ∈ H1(0, T ;L2(Ω)) and

∂tū(t) =
χω∂tϕ̄(t)(1 + k(t))− k′(t)χωϕ̄(t)

(1 + k(t))2
for a.e. t ∈ [0, T ].

Thus, we obtain from (2.13) that

∫ T

0

‖∂tū(t)‖
2dt ≤ 2

∫ T

0

‖χω∂tϕ̄(t)‖
2dt+ 2

∫ T

0

|k′(t)|2‖χωϕ̄(t)‖
2dt

≤ 2

∫ T

0

‖∂tϕ̄(t)‖
2dt+ 2‖ϕ̄‖2C([0,T ],L2(Ω))

∫ T

0

|k′(t)|2dt

≤ C(1 + ‖ϕ̄‖2C([0,T ],L2(Ω)))

∫ T

0

‖∂tϕ̄(t)‖
2dt,

from which, it follows that

‖ū‖H1(0,T ;L2(Ω)) ≤ C(1 + ‖ϕ̄‖C([0,T ],L2(Ω)))‖ϕ̄‖H1(0,T ;L2(Ω)).

This completes the proof. �

3. Semi-discrete finite element approximation of the problem (P )

In this section, we shall set up a semi-discrete finite element approximation
problem (Ph) for the problem (P ), and then discuss the similar subjects for the
problem (Ph) as those for the problem (P ) in section 2. We recall that the Salter
condition (A) is assumed to be true in the whole paper.

First of all we introduce certain notations and assumptions, which will be used
in what follows. Associated with a parameter h with h > 0, we take a family of
triangulations {T h} in Ω̄. For every element S ∈ T h, we write ρ(S) and σ(S) for
the diameter of the set S and the diameter of the greatest ball included in S, re-
spectively. Let h = maxS∈T h ρ(S). From now on, we assume that the domain Ω is
convex and the following regularity properties on the triangulations hold:

(i) There exists two positive constants ρ and σ such that

ρ(S)

σ(S)
≤ σ,

h

ρ(S)
≤ ρ

for every element S ∈ T h and all h > 0.
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(ii) Let Ω̄h = ∪S∈T hS be the polygonal approximation of Ω̄. Write Ωh and ∂Ωh

for the interior and boundary of the set Ω̄h, respectively. Then all such
vertices of T h that are on the boundary ∂Ωh stay on the boundary ∂Ω.

Since the domain Ω is convex, by the inequality (5.2.19) in [25], we have

(3.1) measure(Ω \ Ωh) ≤ Ch2.

Here and in what follows, C stands for several positive constants independent of h,
which may be different in the different contexts.

Associated with every triangulation T h, we define a finite dimensional space as
follows:

V h = {vh ∈ C(Ω̄) ; vh|S ∈ P1(S) for every S ∈ T h, and v|Ω̄\Ωh
= 0},

where P1(S) denotes the space of all polynomials defined on S and of degree less
than or equal to one. It is clear that V h ⊂ H1

0 (Ω). Moreover, under the assumptions
(i) and (ii), the following inverse inequality holds (see [11]):

‖vh‖1 ≤ Ch−1‖vh‖, ∀ vh ∈ V h,

which will be used later.
Let Ph be the L2−projection from L2(Ω) to V h, defined by

(Phv, vh) = (v, vh), ∀ v ∈ L2(Ω), vh ∈ V h.

Then, by (3.1) and by making use of the similar argument as that used in the proof
of (3.5.22) in [24], we see that for m = 0, 1 and for any v ∈ Hm+1(Ω) ∩H1

0 (Ω),

(3.2) ‖v − Phv‖+ h‖v − Phv‖1 ≤ Chm+1‖v‖m+1.

Define a bilinear form a(·, ·) over H1
0 (Ω)×H1

0 (Ω) by setting

a(f, g) =

∫

Ω

(∇f,∇g)lRddx, ∀ f, g ∈ H1
0 (Ω),

where (·, ·)Rd stands for the usual inner product of Rd. Consider the following
equation:

(3.3)

{
(∂tyh(t), vh) + a(yh(t), vh) = (χωu, vh), ∀ vh ∈ V h, for a.e. t ∈ [0, T ],
yh(0) = Phy0.

One can easily verify the following result.

Lemma 3.1. Let y0 ∈ H1
0 (Ω). Then for any u ∈ L2(Q), the equation (3.3) has a

unique solution yh in the space H1(0, T ;Vh) with the following estimate:

sup
t∈[0,T ]

‖yh(t)‖
2
1 + ‖∂tyh‖

2
L2(Q) ≤ C(‖y0‖

2
1 + ‖u‖2L2(Q)).

Moreover, we have the following error estimates for the solutions of equation
(1.1) and the equation (3.3).

Lemma 3.2. Let y and yh be the solutions of the equation (1.1) and the equation
(3.3), respectively. Then (y − yh) enjoys the following properties:

‖y − yh‖L2(Q) + h(‖y − yh‖C([0,T ],L2(Ω)) + ‖y − yh‖L2(0,T ;H1(Ω)))

≤ Ch2(‖y0‖1 + ‖u‖L2(Q)),

provided that y0 ∈ H1
0 (Ω) and u ∈ L2(Q); and

‖y(t)− yh(t)‖ ≤ Ch2(
1

t
‖y0‖+ ‖u‖H1(0,T ;L2(Ω))) for all t ∈ (0, T ]
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provided that y0 ∈ L2(Ω) and u ∈ H1(0, T ;L2(Ω)).

Proof. The first estimate is a direct consequence of Theorem 3.2 and Theorem
3.5 in [10] while the second one can be derived easily from Theorem 2.10 in [14].
Thus, the proof is complete. �

Next, we set

Uh = {w ∈ L2(Ω);w|S is a constant function for each S ∈ T h, w|Ω̄\Ωh
= 0}

and
Kh = {v ∈ L2(0, T ;Uh); ‖v(t)‖ ≤ 1 a.e. t ∈ [0, T ]}.

Then we define a semi-discrete finite element approximation for the problem (P) as
follows:

(Ph) min

{
1

2

∫ T

0

∫

Ω

(yh − yd)
2 +

1

2

∫ T

0

∫

Ω

u2
hdxdt

}

over all such controls uh ∈ Kh that the corresponding solution yh to the equation
(3.3) has the property: yh(T ) ∈ K.

It is clear that the problem (Ph) is an optimal control problem governed by a
system of linear ordinary differential equations. In the following, we will derive the
first order optimality conditions for the problem (Ph). For this purpose, we define
a projection operator Πh from L2(Ω) to Uh by setting

(Πhv, vh) = (v, vh), ∀ v ∈ L2(Ω), vh ∈ Uh.

It follows at once that for any v ∈ L2(Ω) and any S ∈ T h

Πhv|S =

∫
S
vdx

|S|
, Πhv|Ω̄\Ωh

= 0 and ‖Πhv‖ ≤ ‖v‖.

Moreover, according to the well known Poincaré inequality [15] and by making use
of the density of the subspace H1

0 (Ω) in the space L2(Ω), one can easily check that
for any v ∈ L2(Ω),

(3.4) ‖v −Πhv‖ −→ 0 as h −→ 0.

Now, we first deal with the Slater property for the problem (Ph).

Lemma 3.3. There exists a positive number h0 having the following property: For
any h with 0 < h ≤ h0, there is an element u0h ∈ Kh, such that yh(u0h)(T ) ∈
intK, where yh(u0h)(·) denotes the solution of the equation (3.3) with uh = u0h.
Moreover, such an element u0h can be taken as Πhu0, where u0 is an element
satisfying the Slater condition (A).

Proof. By the Slater condition (A), there is a control u0 ∈ K such that
y(u0)(T ) ∈ intK, where y(u0)(·) is the solution of the equation (1.1) with u = u0.
Thus, we can find a number γ with 0 ≤ γ < 1 such that ‖y(u0)(T )‖ ≤ γ. Now,
we define a function u0h by u0h(t) = Πhu0(t) for each t ∈ [0, T ]. It can be verified
easily that

‖u0h(t)‖
2 = ‖Πhu0(t)‖

2 ≤ ‖u0(t)‖
2 ≤ 1, for a.e. t ∈ [0, T ],

which shows u0h ∈ Kh for any h > 0.Moreover, it follows from (3.4) that as h −→ 0,

‖u0h(t)− u0(t)‖ −→ 0, for a.e. t ∈ [0, T ].

By making use of Lebesgue’s dominated convergence theorem, we obtain

(3.5) ‖u0h − u0‖L2(Q) −→ 0 as h −→ 0.
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By (3.5) and according to Lemma 2.1 and Lemma 3.2, we can find a positive number
h0 such that the following properties hold: For any number h with 0 < h ≤ h0,

‖y(u0)(T )− y(u0h)(T )‖ ≤ C‖u0 − u0h‖L2(Q) ≤
1− γ

4
,

and

‖y(u0h)(T )− yh(u0h)(T )‖ ≤ Ch ≤
1− γ

4
.

This implies that for any number h with 0 < h ≤ h0,

‖y(u0)(T )− yh(u0h)(T )‖

≤ ‖y(u0)(T )− y(u0h)(T )‖+ ‖y(u0h)(T )− yh(u0h)(T )‖ ≤
1− γ

2
.

Thus, we obtain that for each h with 0 < h ≤ h0,

(3.6) ‖yh(u0h)(T )‖ ≤ ‖yh(u0h)(T )− y(u0)(T )‖+ ‖y(u0)(T )‖ ≤
1 + γ

2
< 1.

This completes the proof. �

Theorem 3.1. There exists a positive number h0 such that for any number h with
0 < h < h0, the optimal control problem (Ph) has a unique solution. Moreover,
a function ūh is an optimal control for the problem (Ph) if and only if there exist
functions µ̄h ∈ V h, ȳh, ϕ̄h ∈ H1(0, T ;Vh) such that for all z ∈ K, vh ∈ V h, uh ∈ Kh

and for almost every t ∈ [0, T ],

(3.7) ȳh(T ) ∈ K, (µ̄h, z − ȳh(T )) ≤ 0,

(3.8)

{
(∂tȳh(t), vh) + a(ȳh(t), vh) = (χωūh(t), vh),
ȳh(0) = Phy0,

(3.9)

{
(∂tϕ̄h(t), vh)− a(ϕ̄h(t), vh) = (ȳh(t)− yd(t), vh),
ϕ̄h(T ) = −µ̄h,

(3.10) ū ∈ Kh,

∫ T

0

∫

Ω

(ūh − χωϕ̄h)(uh − ūh)dxdt ≥ 0.

Proof. By Lemma 3.3, there is a positive number h0 such that the semi-discrete
version of Slater condition for (Ph) holds for each h with 0 < h ≤ h0. Then, by
making use of the very similar argument as that used in the proof of Theorem 2.1,
we can get the desired results. This completes the proof. �

Next, we shall make an explicit expression of the optimal control for the problem
(Ph). To this end, we express each triangulation Th by Th = {S1, S2, · · · , Sl}. Let

Kh = K ∩ Uh.

By the similar argument as that used in the proof of Proposition 2.1, it can be
verified easily that the property (3.10) is equivalent to

∫

Ω

(ūh(t)− χωϕ̄h(t))(vh − ūh(t))dx ≥ 0, for a.e. t ∈ [0, T ], ∀ vh ∈ Kh.

Namely, for all vh ∈ Kh and for a.e. t ∈ [0, T ], it holds that

(3.11)

l∑

i=1

|Si|

∫
Si

(ūh(t)− χωϕ̄h(t))dx

|Si|
(vh|Si

− ūh(t)|Si
) ≥ 0.
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Recall Ω ∈ lRd with d ≤ 3. In the case where d = 2, by the assumption (i) on
the triangulations, we have

1

4

πh2

(σρ)2
≤ |Si| ≤

1

4
πh2, ∀ i = 1, 2, · · · , l.

The similar result holds for the case that either d = 1 or d = 3. Thus, we can define
a new inner product in lRl by setting

(x, y)h =

l∑

i=1

|Si|xiyi, ∀ x, y ∈ lRl,

which induces a norm as follows:

|x|h = (

l∑

k=1

|Si|x
2
i )

1
2 , ∀ x ∈ lRl.

Moreover, if we view a function vh in the set Kh ⊂ Uh, where Uh is a l−dimensional
space, as an element of lRl, namely, vh = (vh|S1

, vh|S2
, · · · , vh|Sl

), then

‖vh‖ =

(∫

Ω

|vh(x)|
2dx

) 1
2

=

(
l∑

i=1

|Si|(vh|Si
)2

) 1
2

= |vh|h.

Let

d̄i(t) =

∫
Si

(ūh(t)− χωϕ̄h(t))dx

|Si|

for i = 1, 2, · · · , l and write d̄h(t) = (d̄1(t), d̄2(t), · · · , d̄l(t)) ∈ lRl. Then, one can
check directly that inequality (3.11) is equivalent to

(3.12) (d̄h(t), vh − ūh(t))h ≥ 0, for a.e. t ∈ [0, T ], ∀ vh with |vh|h ≤ 1.

Now, we are ready to give the following explicit expression of the optimal control
for the problem (Ph).

Proposition 3.1. Let ūh be the optimal control for the problem (Ph). Then there
exists a non-negative function kh(t) such that for almost every t ∈ [0, T ],

(3.13) ūh(t) =
Πhχωϕ̄h(t)

1 + kh(t)
,

where

(3.14) kh(t) =

{
0, for a.e. t ∈ [0, T ] if ‖Πhχωϕ̄h(t)‖ < 1,
‖Πhχωϕ̄h(t)‖ − 1, for a.e. t ∈ [0, T ] if ‖Πhχωϕ̄h(t)‖ ≥ 1.

Proof. Since ūh is the optimal control for the problem (Ph), we can get (3.12)
from (3.10). By (3.12), we have −d̄h(t) = kh(t)ūh(t) for a.e. t ∈ [0, T ]. Namely, for
all i = 1, 2, · · · , l and for a.e. t ∈ [0, T ], it holds that

(3.15) −

∫
Si

(ūh(t)− χωϕ̄h(t))dx

|Si|
= kh(t)ūh(t)|Si

,

where

kh(t)

{
= 0, for a.e. t ∈ [0, T ] if |ūh(t)|h < 1,
≥ 0, for a.e. t ∈ [0, T ] if |ūh(t)|h = 1,

Since ūh(t)|S is a constant function for any S ∈ T h, (3.13) follows at once from
(3.15). Then, by the similar argument as that used in the proof of Proposition 2.1,
we get the desired result. This completes the proof. �
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According to Proposition 3.1, and by making use of the same argument as that
used in the proof of Proposition 2.2, we can have the following regularity result on
the optimal control for the problem (Ph).

Proposition 3.2. Let ūh be the optimal control for the problem (Ph). Then it holds
that ūh ∈ H1(0, T ;L2(Ω)). Moreover, we have the following estimate:

‖ūh‖H1(0,T ;L2(Ω)) ≤ C(1 + ‖ϕ̄h‖C([0,T ],L2(Ω)))‖ϕ̄h‖H1(0,T ;L2(Ω)).

4. Error estimate between the solutions of (P ) and (Ph)

In this section, we shall establish an error estimate between the optimal controls
of the problem (P ) and the problem (Ph). We make an additional assumption on
ω and T h :

(iii) The subset ω is a polygon. Moreover, for any triangulation T h, there exist
a subset T̄ h ⊂ T h such that ω = ∪S∈T̄ hS.

We would like emphasize that from the point of view of control theory, this
assumption is acceptable. By the above assumption, we see that for any S ∈ T h,
either S ⊂ ω̄ or S ⊂ Ω̄/ω. Moreover, the operator χω and the operator Πh are
commutative.

Lemma 4.1. Let µ̄h ∈ V h, together with ūh ∈ Kh, ȳh ∈ H1(0, T, V h) and ϕ̄h ∈
H1(0, T, V h) satisfy (3.7)-(3.10). Then it holds that

‖µ̄h‖1 ≤ C

for any number h with 0 < h ≤ h0, where h0 is the positive number given in
Theorem 3.1.

Proof. We first prove that the family {µ̄h}0<h≤h0
is bounded in L2(Ω). Let u0h

be the control given in Lemma 3.3. Since u0h, ūh ∈ Kh ⊂ K, it holds that

(4.1) ‖u0h‖L2(Q) ≤ C and ‖ūh‖L2(Q) ≤ C.

Then, by Lemma 3.1, we have

(4.2) ‖yh(u0h)‖ ≤ C and ‖ȳh‖ ≤ C.

On the other hand, by (3.6), there exists a number γ with 0 ≤ γ < 0 such that for

any number h with 0 < h ≤ h0, ‖yh(u0h)(T )‖ ≤ 1+γ
2 . Thus, we can find a positive

number ρ, which is independent of h and satisfies 0 < ρ ≤ 1−γ
2 , such that

‖yh(u0h)(T ) + ρw‖ ≤ ‖yh(u0h)(T )‖+ ρ‖w‖ ≤ 1

for any element w ∈ L2(Ω) with ‖w‖ ≤ 1 and for any number h with 0 < h ≤ h0.
This, combined with (3.7), shows that for any element w ∈ L2(Ω) with ‖w‖ ≤ 1
and for any number h with 0 < h ≤ h0, it holds that

(4.3) (µ̄h, yh(u0h)(T ) + ρw − ȳh(T )) ≤ 0.

Now, by the above inequality (4.3), and by (3.8)-(3.10), we get that for each h with
0 < h ≤ h0,

ρ‖µ̄h‖ ≤ −(µ̄h, yh(u0h)(T )− ȳh(T ))

=

∫ T

0

∫

Ω

∂tϕ̄h(yh(u0h)− ȳh)dxdt +

∫ T

0

∫

Ω

ϕ̄h∂t(yh(u0h)− ȳh)dxdt
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=

∫ T

0

∫

Ω

∇ϕ̄h∇(yh(u0h)− ȳh)dxdt +

∫ T

0

∫

Ω

(ȳh − yd)(yh(u0h)− ȳh)dxdt

+

∫ T

0

∫

Ω

ϕ̄h∂t(yh(u0h)− ȳh)dxdt

=

∫ T

0

∫

Ω

χωϕ̄h(u0h − ūh)dxdt +

∫ T

0

∫

Ω

(ȳh − yd)(yh(u0h)− ȳh)dxdt

= −

∫ T

0

∫

Ω

(ūh − χωϕ̄h)(u0h − ūh)dxdt +

∫ T

0

∫

Ω

ūh(u0h − ūh)dxdt

+

∫ T

0

∫

Ω

(ȳh − yd)(yh(u0h)− ȳh)dxdt

≤

∫ T

0

∫

Ω

ūh(u0h − ūh)dxdt +

∫ T

0

∫

Ω

(ȳh − yd)(yh(u0h)− ȳh)dxdt,

from which, it follows, by taking into account (4.1) and (4.2), that

(4.4) ‖µ̄h‖ ≤ C, for all h with 0 < h ≤ h0

Next, we will show that the family {µ̄h}0<h≤h0
is bounded in H1

0 (Ω). By (3.7)
and by the similar argument as that used in the proof of (2.5) and (2.6), we can
get

µ̄h = khȳh(T ),

where

kh =

{
0 if ‖ȳh(T )‖ < 1,
‖µ̄h‖ if ‖ȳh(T )‖ = 1.

Thus, it follows from (4.4) that

kh ≤ ‖µ̄h‖ ≤ C.

Finally, by making use of Lemma 3.1, we get

‖µ̄h‖1 = kh‖ȳh(T )‖1 ≤ C.

This completes the proof. �

Let y(ūh) be the solution of (1.1) with u = ūh and ϕ(ūh) be the solution of the
following equation





∂tϕ(ūh) +△ϕ(ūh) = y(ūh)− yd in Ω× (0, T ),
ϕ(ūh) = 0 on ∂Ω× (0, T ),
ϕ(ūh)(T ) = −µ̄h in Ω.

Now, we can give the estimate for the error between the solutions of the problem
(P ) and the problem (Ph).

Theorem 4.1. Suppose that ū and ūh are the solutions of the problem (P ) and the
problem (Ph), respectively. Then, there exists a positive number h0 such that for all
numbers h with 0 < h ≤ h0,

‖ū− ūh‖L2(Q) ≤ Ch.

Proof. Let h0 be given by Theorem 3.1. Then, it follow from (2.4) and (3.10)
that

(4.5)

∫ T

0

(ū(t), ū(t)− ūh(t))dt ≤

∫ T

0

(χωϕ̄(t), ū(t)− ūh(t))dt
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and

(4.6)

∫ T

0

(ūh(t)− χωϕ̄h(t),Πhū(t)− ūh(t))dt ≥ 0.

Here, we recall that Πh is the projection operator form L2(Ω) to Uh given in section
3. Thus by (4.5), (4.6) and (3.10), we obtain that

‖ū− ūh‖
2
L2(Q)(4.7)

=

∫ T

0

(ū(t), ū(t)− ūh(t))dt−

∫ T

0

(ūh(t), ū(t)− ūh(t))dt

≤

∫ T

0

(χωϕ̄(t), ū(t)− ūh(t))dt −

∫ T

0

(ūh(t), ū(t)− ūh(t))dt

≤

∫ T

0

(χωϕ̄(t), ū(t)− ūh(t))dt −

∫ T

0

(ūh(t), ū(t)− ūh(t))dt

+

∫ T

0

(ūh(t)− χωϕ̄h(t),Πhū(t)− ūh(t))dt

≤

∫ T

0

(χωϕ̄(t), ū(t)− ūh(t))dt −

∫ T

0

(ūh(t), ū(t)− ūh(t))dt

+

∫ T

0

(ūh(t)− χωϕ̄h(t),Πhū(t)− ū(t))dt

+

∫ T

0

(ūh(t)− χωϕ̄h(t), ū(t)− ūh(t))dt

=

∫ T

0

(χω(ϕ̄(t)− ϕ̄h(t)), ū(t)− ūh(t))dt

+

∫ T

0

(ūh(t)− χωϕ̄h(t),Πhū(t)− ū(t))dt

=

∫ T

0

(χω(ϕ̄(t)− ϕ(ūh)(t)), ū(t)− ūh(t))dt

+

∫ T

0

(χω(ϕ(ūh)(t) − ϕ̄h(t)), ū(t)− ūh(t))dt

+

∫ T

0

(ūh(t)− χωϕ̄h(t),Πhū(t)− ū(t))dt

≡ I1 + I2 + I3.

Now, we shall estimate terms Ii for i = 1, 2, 3 one by one. Since the family
{µ̄h}0<h≤h0

is bounded in H1
0 (Ω) by Lemma 4.1, and −µ̄h is the initial data for

the adjoint equation (3.9) for the problem (Ph), we can have the same estimate for
the solution ϕ̄h as that in Lemma 3.1, namely,

(4.8) sup
t∈[0,T ]

‖ϕ̄h(t)‖
2
1 + ‖∂tϕ̄h‖

2
L2(Q) ≤ C(‖µ̄h‖

2
1 + ‖ȳh − yd‖

2
L2(Q)) ≤ C.

Thus it follows from Proposition 3.2 that

‖ūh‖H1(0,T ;L2(Ω)) ≤ C,

which, together with (2.1), (3.7) and the second estimate of Lemma 3.2, yields

I1(4.9)

=

∫ T

0

(χω(ϕ̄(t)− ϕ(ūh)(t)), ū(t)− ūh(t))dt
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=

∫ T

0

(ϕ̄(t)− ϕ(ūh)(t), ∂t(ȳ(t)− y(ūh)(t)))dt

+

∫ T

0

a(ϕ̄(t)− ϕ(ūh)(t), ȳ(t)− y(ūh)(t))dt

= −(µ̄− µ̄h, ȳ(T )− y(ūh)(T ))−

∫ T

0

(∂t(ϕ̄(t)− ϕ(ūh)(t)), ȳ(t)− y(ūh)(t))dt

+

∫ T

0

a(ϕ̄(t)− ϕ(ūh)(t), ȳ(t)− y(ūh)(t))

= −(µ̄− µ̄h, ȳ(T )− y(ūh)(T ))−

∫ T

0

‖ȳ(t)− y(ūh)(t)‖
2dt

≤ −(µ̄− µ̄h, ȳ(T )− ȳh(T ))− (µ̄− µ̄h, ȳh(T )− y(ūh)(T ))

≤ −(µ̄− µ̄h, ȳh(T )− y(ūh)(T )) (by (2 .1 ) and (3 .7 ))

≤ (‖µ̄‖+ ‖µ̄h‖)‖ȳh(T )− y(ūh)(T )‖

≤ C(‖µ̄‖+ ‖µ̄h‖)h
2(

1

T
‖y0‖+ ‖ūh‖H1(0,T ;L2(Ω)))

≤ Ch2.

Similar to the first estimate of Lemma 3.2, we can easily get

‖ϕ(ūh)− ϕ̄h‖L2(Q) ≤ Ch2.

Thus it follows that

I2 =

∫ T

0

(χω(ϕ(ūh)(t)− ϕ̄h(t)), ū(t)− ūh(t))dt(4.10)

≤ C‖ϕ(ūh)− ϕ̄h‖
2
L2(Q) +

1

2
‖ū− ūh‖

2
L2(Q)

≤ Ch2 +
1

2
‖ū− ūh‖

2
L2(Q).

In order to estimate the term I3, we first observe that for any t ∈ [0, T ], it holds
that

Πhū(t)|S =

{ 1
|S|

∫
S
ūdx, S ∈ T̄ h,

0, otherwise.
,

Here T̄ h is given in assumption (iii). Moreover, it follows from Proposition 2.1 that
ū(t) ∈ H1(S) and ‖ū(t)‖H1(S) ≤ ‖ϕ̄‖H1(S) for any S ∈ T̄ h. By the well known

Poincaré inequality [15], it follows that, for any S ∈ T̄ h,

‖ū(t)−Πhū(t)‖
2
L2(S) ≤ Ch2‖ū(t)‖2H1(S) ≤ Ch2‖ϕ̄(t)‖2H1(S),

where the positive constant C is independent of h, t and S. By the assumption (iii),
we have

∫ T

0

‖ū(t)−Πhu(t)‖
2dt =

∫ T

0

∫

ω

|ū(t, x) −Πhu(t, x)|
2dxdt(4.11)

=

∫ T

0

∑

S⊂ω

‖ū(t)−Πhu(t)‖
2
L2(S)dt ≤ Ch2‖ϕ̄‖2L2(0,T ;H1(Ω)).

Similarly, we can obtain

(4.12)

∫ T

0

‖ϕ̄h(t)−Πhϕ̄h(t)‖
2dt ≤ Ch2‖ϕ̄h‖

2
L2(0,T ;H1(Ω)).
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We recall that ūh ∈ Kh. Thus, ūh(t) ∈ Uh for almost all t ∈ [0, T ]. Since the
operator χω and the operator Πh are commutative, it follows from (4.8), (4.11) and
(4.12) that

I3 =

∫ T

0

∫

Ω

(ūh(t)− χωϕ̄h(t))(Πhū(t)− ū(t))dxdt(4.13)

=

∫ T

0

(χωϕ̄h(t), ū(t)−Πhū(t))dt

=

∫ T

0

(χω(ϕ̄h(t)−Πhϕ̄h(t)), ū(t)−Πhū(t))dt

≤ ‖ϕ̄h −Πhϕ̄h‖L2(Q)‖ū−Πhū‖L2(Q)

≤ Ch2‖ϕ̄h‖L2(0,T ;H1(Ω))‖ϕ̄‖L2(0,T ;H1(Ω))

≤ Ch2.

Finally, the desired estimate follows immediately from (4.7), (4.9),(4.10) and (4.13).
This completes the proof. �

5. Fully discrete approximation of the problem (P )

In this section, we shall first set up a fully discrete approximation problem (Phτ )
for the semi-discrete problem (Ph) by making use of the backward Euler method.
Then we derive the first order optimality conditions for the solution of the problem
(Phτ ). For this purpose, we partition the time interval [0, T ] into N subintervals
with a uniform time step τ by the following nodal points:

0 = t0 < t1 < · · · < tN = T,

where ti = iτ for i = 0, 1, · · · , N and τ = T/N. For any function f ∈ L2(0, T ;L2(Ω)),

we write the average of function f on [ti−1, ti] for f̃
i, namely,

f̃ i(·) =
1

τ

∫ ti

ti−1

f(·, t)dt for i = 1, 2, · · · , N.

For any function f ∈ C([0, T ], L2(Ω)), we write f i(·) = f(·, ti) for i = 0, 1, · · · , N.
Recall the definition of the space V h given in the section 3, namely,

V h = {vh ∈ C(Ω̄) ; vh|S ∈ P1(S) for every S ∈ T h, and v|Ω̄\Ωh
= 0}.

Let Uhτ = (U1, U2, · · · , UN ) be a given function or a control in the space (L2(Ω))N .
Write Yhτ = (Y 1

h , Y
2
h , · · · , Y

N
h ) for a function in the space (V h)N . Denote by ∂τY

i

the difference quotient Y i−Y i−1

τ
for i = 1, 2, · · · , N . Consider the following equation

(5.1)

{
(∂τY

i
h , vh) + a(Y i

h , vh) = (χωU
i, vh), ∀ vh ∈ V h, 1 ≤ i ≤ N.

Y 0
h = Phy0.

We shall first give a stability estimate for the equation (5.1) as follows. By taking
vh = τ∂τY

i
h in (5.1), we get

τ‖∂τY
i
h‖

2 +
1

2
‖Y i

h‖
2
1 −

1

2
‖Y i−1

h ‖21 ≤ Cτ‖U i‖2 +
1

2
τ‖∂τY

i
h‖

2, 1 ≤ i ≤ N.

Here and in what follows, C stands for a positive constant independent of h and
τ , which may be different in the different contexts. Summing the above equations
over i from 1 to m with 1 ≤ m ≤ N , we get

‖Y m
h ‖21 + τ

m∑

i=1

‖∂τY
i
h‖

2 ≤ C(τ

m∑

i=1

‖U i‖2 + ‖Y 0
h ‖

2
1),



48 G. WANG AND X. YU

which shows

max
1≤i≤N

‖Y i
h‖

2
1 + τ

N∑

i=1

‖∂τY
i
h‖

2 ≤ C(τ

N∑

i=1

‖U i‖2 + ‖y0‖
2
1).

Thus, we have already proved the following result.

Lemma 5.1. Let y0 ∈ H1
0 (Ω) and Uhτ = (U1, U2, · · · , UN ) ∈ (L2(Ω))N . Then, the

equation (5.1) has a unique solution Yhτ = (Y 1, Y 2, · · · , Y N ) ∈ (V h)N . Moreover,
the following estimate holds:

max
1≤i≤N

‖Y i
h‖

2
1 + τ

N∑

i=1

‖∂τY
i
h‖

2 ≤ C(‖y0‖
2
1 + τ

N∑

i=1

‖U i‖2).

The next result concerns an estimate between the solutions of the equation
(3.3) and the equation (5.1). We would like to mention that in order to get
the estimate, the higher regularity for both control and the initial data, namely,
the H1(0, T ;L2(Ω))−regularity for the control u in the equation (3.3) and the
H2(Ω)∩H1

0 (Ω)−regularity for the initial data y0, are required. This is a difference
from Lemma 3.2.

Lemma 5.2. Let u ∈ H1(0, T ;L2(Ω)), Uhτ ∈ (L2(Ω))N and y0 ∈ H2(Ω) ∩H1
0 (Ω).

Assume that yh and Yhτ are the solutions of the equations (3.3) and (5.1), respec-
tively. Then it holds that

max
1≤i≤N

‖yih − Y i
h‖

2 + τ

N∑

i=1

‖yih − Y i
h‖

2
1

≤ C

(
τ

N∑

i=1

‖ũi − U i‖2 + τ2(‖u‖2H1(0,T ;L2(Ω)) + ‖y0‖
2
2)

)
,(5.2)

where yih(·) = yh(·, ti) and ũi is the average of u on [ti−1, ti] for i = 1, 2, · · · , N.

Proof. We first give an estimate for ∂tyh. Since u ∈ H1(0, T ;L2(Ω)), the term
on the right hand of the equation (3.3) is continuous. Thus, we can make use of the
standard ODE theories to get yh ∈ C1([0, T ], V h). Hence, the equation (3.3) holds
for every t ∈ [0, T ]. By making use of (3.1) and by taking t = 0 and vh = ∂tyh(0)
in the equation (3.3), we get that

‖∂tyh(0)‖
2 = (χωu(0), ∂tyh(0))− a(y0, ∂tyh(0)) + a(y0 − yh(0), ∂tyh(0))

≤ ‖u(0)‖‖∂tyh(0)‖+ ‖△y0‖‖∂tyh(0)‖+ C‖y0 − Phy0‖1‖∂tyh(0)‖1

≤ ‖u(0)‖‖∂tyh(0)‖+ ‖△y0‖‖∂tyh(0)‖+ Ch‖y0‖2
1

h
‖∂tyh(0)‖,

which implies

(5.3) ‖∂tyh(0)‖ ≤ C(‖u(0)‖+ ‖y0‖2).

By differentiating the equation (3.3) with respect to t, and then, by taking vh =
∂tyh(t), we obtain that

1

2

d

dt
‖∂tyh‖

2 + a(∂tyh, ∂tyh) = (χω∂tu, ∂tyh),

which, together with (5.3), yields

(5.4) sup
t∈[0,T ]

‖∂tyh(t)‖
2 +

∫ T

0

‖∂tyh(t)‖
2
1dt ≤ C(‖u‖2H1(0,T ;L2(Ω)) + ‖y0‖

2
2).
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Now, by integrating (3.3) from ti−1 to ti, we get that

(∂τy
i
h, vh) + a(ỹih, vh) = (χωũ

i, vh), ∀ vh ∈ V h, 1 ≤ i ≤ N,

where ∂τy
i
h = [yh(ti)−yh(ti−1)]/τ. Write eih = yih−Y i

h . By subtracting the equation
(5.1) from above equation, we see

(∂τe
i
h, vh) + a(eih, vh) = (χω(ũ

i − U i), vh)− a(ỹih − yih, vh), ∀ vh ∈ V h, 1 ≤ i ≤ N.

Then, taking vh = τeih in the above equation yields

1

2
‖eih‖

2 −
1

2
‖ei−1

h ‖2 + τ‖eih‖
2
1 ≤ Cτ‖ũi −U i‖2 +

τ

4
‖eih‖

2
1 +Cτ‖ỹih − yih‖

2
1 +

τ

4
‖eih‖

2
1.

Summing the above equations over i from 1 to m with 1 ≤ m ≤ N, we get that

‖emh ‖2 + τ

m∑

i=1

‖eih‖
2
1 ≤ C(τ

m∑

i=1

‖ũi − U i)‖2 + τ

m∑

i=1

‖ỹih − yih‖
2
1),

from which, it follows that

(5.5) ‖emh ‖2 + τ

N∑

i=1

‖eih‖
2
1 ≤ C(τ

N∑

i=1

‖ũi − U i)‖2 + τ

N∑

i=1

‖ỹih − yih‖
2
1).

On the other hand, by (5.4), we see that

τ
N∑

i=1

‖ỹih − yih‖
2
1 = τ

N∑

i=1

‖
1

τ

∫ ti

ti−1

yh(t)dt− yh(ti)‖
2
1

= τ

N∑

i=1

‖
1

τ

∫ ti

ti−1

(yh(t)− yh(ti))dt‖
2
1

≤

N∑

i=1

∫ ti

ti−1

‖yh(t)− yh(ti)‖
2
1dt

≤

N∑

i=1

∫ ti

ti−1

‖

∫ ti

t

∂syh(s)ds‖
2
1dt

≤ τ2
N∑

i=1

∫ ti

ti−1

‖∂tyh(t)‖
2
1dt

= τ2
∫ T

0

‖∂tyh(t)‖
2
1dt

≤ Cτ2(‖u‖2H1(0,T ;L2(Ω)) + ‖y0‖
2
2).

The estimate (5.5), together with the above inequality, gives us the desired esti-
mate. This completes the proof. �

Corollary 5.1. Assume u ∈ L2(Q) and y0 ∈ H1
0 (Ω). Let yh be the solution of

the equation (3.3) and Yh be the solution of the equation (5.1), where U i = ũi for
1 = 1, 2, · · · , N. Then we have

max
1≤i≤N

‖yih − Y i
h‖ −→ 0

uniformly with respect to h as τ −→ 0 .
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Proof. Since the space H1(0, T ;L2(Ω)) and the space H2(Ω)∩H1
0 (Ω) are dense

subspaces of L2(Q) and H1
0 (Ω), respectively, it holds that, for any ε > 0, there exist

functions uδ ∈ H1(0, T ;L2(Ω)) and y0δ ∈ H2(Ω) ∩H1
0 (Ω) such that

‖u− uδ‖L2(Q) ≤ ε, and ‖y0 − y0δ‖1 ≤ ε.

Let yhδ ∈ H1(0, T ;V h) be the solution of the following equation:

(∂tyhδ(t), vh) + a(yhδ(t), vh) = (χωuδ, vh), ∀ vh ∈ V h, t ∈ [0, T ],
yhδ(0) = Phy0δ,

and let (Y 1
hδ, Y

2
hδ, · · · , Y

N
hδ ) ⊂ (V h)N be the solution of the equation:

(∂τY
i
hδ, vh) + a(Y i

hδ, vh) = (χωũ
i
δ, vh), ∀ v ∈ V h, 1 ≤ i ≤ N,

Y 0
hδ = Phy0δ.

Then according to Lemma 5.2, we can find a positive number τ̄ = τ̄ (ε) such that
for any number τ with 0 < τ < τ̄ ,

(5.6) max
1≤i≤N

‖yihδ − Y i
hδ‖ ≤ Cτ(‖uδ‖H1(0,T ;L2(Ω)) + ‖y0δ‖2) ≤ ε.

Moreover, by making use of Lemma 3.1 and Lemma 5.1, we derive that

sup
t∈[0,T ]

‖yh(t)− yhδ(t)‖ ≤ C(‖y0 − y0δ‖1 + ‖u− uδ‖L2(Q)) ≤ Cε(5.7)

and

max
1≤i≤N

‖Y i
h − Y i

hδ‖(5.8)

≤ C

(
‖y0 − y0δ‖1 + (τ

N∑

i=1

‖ũi − ũi
δ‖

2)
1
2

)

= C

(
‖y0 − y0δ‖1 + (τ

N∑

i=1

‖
1

τ

∫ ti

ti−1

(u − uδ)dt‖
2)

1
2

)

≤ C

(
‖y0 − y0δ‖1 + (

N∑

i=1

∫ ti

ti−1

‖u− uδ‖
2dt)

1
2

)

= C
(
‖y0 − y0δ‖1 + ‖u− uδ‖L2(Q)

)

≤ Cε.

Now, it follows at once from (5.6), (5.7) and (5.8) that

‖yih − Y i
h‖ ≤ ‖yh(ti)− yhδ(ti)‖+ ‖yihδ − Y i

hδ‖+ ‖Y i
hδ − Y i

h‖ ≤ Cε.

This completes the proof. �

Now, we are on the position to set up a fully discrete approximation for the
problem (P ). For this purpose, we shall, from now on, assume yd ∈ H1(0, T ;L2(Ω)).
Write

Khτ = {Vhτ = (V 1, V 2, · · · , V N ) ∈ (Uh)N ; ‖V i‖ ≤ 1, i = 1, 2, · · · , N}.

Then, the fully discrete approximation problem reads

(Pτh) min

{
τ

2

N∑

i=1

(
‖Y i

h − yid‖
2 + ‖U i

h‖
2
)
}
,

subject to

Uhτ = (U1
h , U

2
h , · · · , U

N
h ) ∈ Khτ and Y N

h ∈ K,
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where Yhτ = (Y 1
h , Y

2
h , · · · , Y

N
h ) ∈ (V h)N is the solution of the equation (5.1). We

recall yd ∈ H1(0, T ;L2(Ω) ⊂ C([0, T ];L2(Ω)). Thus, yid(·) = yd(·, ti) is well-defined.
The next result concerns the Slater condition for the problem (Phτ ).

Lemma 5.3. Let y0 ∈ H1
0 (Ω). Then there exist two positive numbers h̄ and τ̄

having the following property: For each pair (h, τ) with 0 < h ≤ h̄, 0 < τ ≤ τ̄ , there
exists a control U0hτ = (U1

0h, U
2
0h, · · · , U

N
0h) ∈ Khτ such that the corresponding

solution Yhτ (U0hτ ) = (Y 1
h (U0hτ ), Y

2
h (U0hτ ), · · · , Y

N
h (U0hτ )) of the equation (5.1),

where U i = U i
0h, i = 1, 2, · · · , N , has such a property that Y N

h (U0hτ ) ∈ intK.

Proof. By the condition (A) and according to Lemma 3.3, we can take elements
u0 and u0h from the sets K and Kh, respectively, such that the solution y(u0) of
the equation (1.1) with u = u0 and the solution yh(u0h) of the equation (3.3) with
uh = u0h take values in the set intK at time T , namely, y(u0)(T ) ∈ intK and
yh(u0h)(T ) ∈ intK. Moreover, by (3.5) and (3.6), for any given ε > 0, we can find
a positive number h1 with h1 < h0 such that for any h with 0 < h ≤ h1,

(5.9) ‖u0 − u0h‖L2(Q) ≤ ε

and

(5.10) ‖yh(u0h)(T )‖ ≤
1 + γ

2
< 1, for a certain number γ with 0 ≤ γ < 1.

Write

U i
0h = ũi

0h =
1

τ

∫ ti

ti−1

u0hdt, i = 1, 2, · · · , N, 0 < h ≤ h1

and
U0hτ = (U1

0h, U
2
0h, · · · , U

N
0h).

Since u0h ∈ Kh, it holds that for i = 1, 2, · · · , N, ‖U i
0h‖ ≤ 1. Thus, we have

U0hτ = (U1
0h, U

2
0h, · · · , U

N
0h) ∈ Khτ .

Let Y N
h (U0hτ ) and Y N

h (U0h1τ ) be the solutions of the equation (5.1) correspond-
ing to U0hτ and U0h1τ , respectively. Then, by (5.9) and according to Lemma 5.1,
we get, for any h with 0 < h ≤ h1 and for any τ with τ > 0,

‖Y N
h (U0hτ )− Y N

h (U0h1τ )‖(5.11)

≤ C

(
τ

N∑

i=1

‖U i
0h − U i

0h1
‖2

) 1
2

= C

(
τ

N∑

i=1

‖
1

τ

∫ ti

ti−1

(u0h − u0h1
)dt‖2

) 1
2

≤ C

(
N∑

i=1

∫ ti

ti−1

‖u0h − u0h1
‖2dt

) 1
2

= C‖u0h − u0h1
‖L2(Q)

≤ C(‖u0h − u0‖L2(Q) + ‖u0 − u0h1
‖L2(Q))

≤ 2Cε.

Now, by making use of Corollary 5.1, we can select a positive number τ0 such that
for any τ with 0 < τ ≤ τ0 and for any h with 0 < h ≤ h1,

(5.12) ‖Y N
h (U0h1τ )− yh(u0h1

)(T )‖ ≤ ε.

Moreover, according to Lemma 3.1, we get, for any number h with 0 < h ≤ h1,

‖yh(u0h1
)(T )− yh(u0h)(T )‖(5.13)
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≤ C‖u0h1
− u0h‖L2(Q)

≤ C(‖u0h1
− u0‖L2(Q) + ‖u0 − u0h‖L2(Q))

≤ 2Cε.

Hence, it follows at once from (5.11), (5.12) and (5.13) that

‖Y N
h (U0hτ )− yh(u0h)(T )‖

≤ ‖Y N
h (U0hτ )− Y N

h (U0h1τ )‖ + ‖Y N
h (U0h1τ )− yh(u0h1

)(T )‖

+‖yh(u0h1
)(T )− yh(u0h)(T )‖ −→ 0 as h, τ −→ 0.

Thus there exist positive constants h̄ and τ̄ such that for any h with 0 < h ≤ h̄ and
for any τ with 0 < τ ≤ τ̄ ,

‖Y N
h (U0hτ )− yh(u0h)(T )‖ ≤

1− γ

4
,

where γ is exactly the number given in the inequality (5.10). The later, combined
with (5.10), gives

‖Y N
h (U0hτ )‖ ≤ ‖Y N

h (U0hτ )− yh(u0h)(T )‖+ ‖yh(u0h)(T )‖(5.14)

≤
1− γ

4
+

1 + γ

2
=

3 + γ

4
< 1.

This completes the proof. �

According to Lemma 5.3 and by making use of the same arguments as those
used in the proofs of Theorem 2.1 and Proposition 2.1, we can get the following
first order optimality conditions for the problem (Phτ ).

Theorem 5.1. Let y0 ∈ H1
0 (Ω) and yd ∈ H1(0, T ;L2(Ω)). Then there exists two

positive numbers h̄ and τ̄ such that for all numbers h and τ with 0 < h ≤ h̄ and 0 <
τ ≤ τ̄ , the problem (Phτ ) has a unique solution. Moreover, Ūhτ = (Ū1

h , Ū
2
h , · · · , Ū

N
h )

is the solution of the problem (Phτ ) if and only if there exist µ̄hτ ∈ V h, Ȳhτ =
(Ȳ 1

h , Ȳ
2
h , · · · , Ȳ

N
h ) ∈ (V h)N and Φ̄hτ = (Φ̄1

h, Φ̄
2
h, · · · , Φ̄

N
h ) ∈ (V h)N such that

(5.15) Ȳ N
h ∈ K, (µ̄hτ , z − Ȳ N

h ) ≤ 0, ∀ z ∈ K,

(5.16)

{
(∂τ Ȳ

i
h , vh) + a(Ȳ i

h , vh) = (χωŪ
i
h, vh), ∀ vh ∈ V h, 1 ≤ i ≤ N,

Ȳ 0
h = Phy0.

(5.17)

{
(∂τ Φ̄

i
h, vh)− a(Φ̄i−1

h , vh) = (Ȳ i
h − yid, vh), ∀ vh ∈ V h, 1 ≤ i ≤ N,

Φ̄N
h = −µ̄hτ .

(5.18)

Ūhτ ∈ Khτ ,

N∑

i=1

(Ū i
h − χωΦ̄

i−1
h , U i

h − Ū i
h) ≥ 0, ∀ Uhτ = (U1

h , U
2
h , · · · , U

N
h ) ∈ Khτ .

Furthermore, the optimal control Ūhτ for the problem (Phτ ) has the following
explicit expression:

(5.19) Ū i
h =

ΠhχωΦ̄
i−1
h

1 + kih
, i = 1, 2, · · · , N,

where

(5.20) kih =

{
0 if ‖ΠhχωΦ̄

i−1
h ‖ < 1,

‖ΠhχωΦ̄
i−1
h ‖ − 1 if ‖ΠhχωΦ̄

i−1
h ‖ ≥ 1.
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Proposition 5.1. Let Ūhτ = (Ū1
h , Ū

2
h , · · · , Ū

N
h ) be the solution of the problem

(Phτ ). Then it holds that

(5.21)

N∑

i=2

‖Ū i
h − Ū i−1

h ‖2 ≤ C(1 + max
1≤i≤N

‖Φ̄i−1
h ‖)

N∑

i=2

‖Φ̄i−1
h − Φ̄i−2

h ‖2.

Proof. By (5.19) and (5.20), we obtain that

N∑

i=2

‖Ū i
h − Ū i−1

h ‖2

=

N∑

i=2

‖
ΠhχωΦ̄

i−1
h

1 + kih
−

ΠhχωΦ̄
i−2
h

1 + ki−1
h

‖2

=
N∑

i=2

‖
ΠhχωΦ̄

i−1
h (1 + ki−1

h )−ΠhχωΦ̄
i−2
h (1 + kih)

(1 + kih)(1 + ki−1
h )

‖2

≤ C

N∑

i=2

‖Πhχω(Φ̄
i−1
h − Φ̄i−2

h )‖2 + C

N∑

i=2

‖ΠhχωΦ̄
i−1
h ‖2|ki−1

h − kih|
2

+C

N∑

i=2

‖Πhχω(Φ̄
i−1
h − Φ̄i−2

h )‖2

≤ C(1 + max
1≤i≤N

‖Φ̄i−1
h ‖)

N∑

i=2

‖Φ̄i−1
h − Φ̄i−2

h ‖2,

which completes this proof. �

Remark 5.1. Obviously, we can rewrite (5.21) as

τ

N∑

i=2

‖∂τ Ū
i
h‖

2 ≤ C(1 + max
1≤i≤N

‖Φ̄i−1
h ‖)τ

N∑

i=2

‖∂τ Φ̄
i−1
h ‖2,

which is the fully discrete version of Proposition 2.2.

6. Error estimate between the solutions of (Ph) and (Phτ )

Lemma 6.1. Suppose that all assumptions in Theorem 5.1 hold. Let Ūhτ =
(Ū1

h , Ū
2
h , · · · , Ū

N
h ) ∈ Khτ be the solution of the problem (Phτ ). Then there exists

a positive constant C independent of h, τ such that

‖µ̄hτ‖1 ≤ C

for any h, τ with 0 < h ≤ h̄, 0 < τ ≤ τ̄ , where m h̄ and τ̄ are the numbers given in
Theorem 5.1.

Proof. We first prove that the family {µ̄hτ}0<h≤h̄,0<τ≤τ̄ is bounded in L2(Ω).

Let U0hτ = (U1
0h, · · · , U

N
0h) ∈ Khτ be given in Lemma 5.3. Write Yhτ (U0hτ ) =

(Y 1
h (U0hτ ), · · · , Y

N
h (U0hτ )) for the solution of the equation (5.1) with Uhτ = U0hτ .

As a matter of convenience, we write Y i
h for Y i

h(U0hτ ) where i = 1, 2, · · · , N. By
the equation (5.14), we see that for all h ∈ (0, h̄) and τ ∈ (0, τ̄),

(6.1) ‖Y N
h ‖ = ‖Y N

h (U0hτ )‖ ≤
3 + γ

4
< 1
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for a certain constant γ with 0 ≤ γ < 1. Since U0hτ and Ūhτ are in the set of Khτ ,
it follows that

(6.2) ‖U i
0h‖ ≤ 1 and ‖Ū i

h‖ ≤ 1, 1 ≤ i ≤ N.

Then, by Lemma 5.1, we obtain that

(6.3) max
1≤i≤N

‖Y i
h‖ ≤ C and max

1≤i≤N
‖Ȳ i

h‖ ≤ C.

Because of (6.1), we can find a positive number ρ > 0, which is independent of
h, τ and satisfies 0 < ρ ≤ 1−γ

4 , such that

‖Y N
h + ρw‖ ≤ ‖Y N

h ‖+ ρ‖w‖ ≤
3 + γ

4
+

1− γ

4
≤ 1 for all ω with ‖w‖ ≤ 1.

Thus it follows from (5.15) that for any element w ∈ L2(Ω) with ‖w‖ ≤ 1 and for
all numbers h, τ with 0 < h ≤ h̄, 0 < τ ≤ τ̄ ,

(µ̄hτ , Y
N
h + ρw − Ȳ N

h ) ≤ 0.

By applying the following discrete integration by parts formula

(6.4)
N∑

i=1

(ai − ai−1)bi = aNbN − a0b0 −
N∑

i=1

ai−1(bi − bi−1),

where ai = Φ̄i
h, bi = Y i

h − Ȳ i
h , and by (5.16)-(5.18), we derive that

ρ‖µ̄hτ‖ ≤ −(µ̄hτ , Y
N
h − Ȳ N

h )

= τ

N∑

i=1

(∂τ Φ̄
i
h, Y

i
h − Ȳ i

h) + τ

N∑

i=1

(Φ̄i−1
h , ∂τ (Y

i
h − Ȳ i

h))

= τ

N∑

i=1

a(Φ̄i−1
h , Y i

h − Ȳ i
h) + τ

N∑

i=1

(Ȳ i
h − yid, Y

i
h − Ȳ i

h)

+τ

N∑

i=1

(Φ̄i−1
h , ∂τ (Y

i
h − Ȳ i

h))

= τ

N∑

i=1

(Φ̄i−1
h , χω(U

i
0h − Ū i

h)) + τ

N∑

i=1

(Ȳ i
h − yid, Y

i
h − Ȳ i

h)

= −τ

N∑

i=1

(Ū i
h − χωΦ̄

i−1
h , U i

0h − Ū i
h) + τ

N∑

i=1

(Ū i
h, U

i
0h − Ū i

h)

+τ

N∑

i=1

(Ȳ i
h − yid, Y

i
h − Ȳ i

h)

≤ τ

N∑

i=1

(Ū i
h, U

i
0h − Ū i

h) + τ

N∑

i=1

(Ȳ i
h − yid, Y

i
h − Ȳ i

h).

This together with (6.2) and (6.3) yields

(6.5) ‖µ̄hτ‖ ≤ C for all h, τ with 0 < h ≤ h̄, 0 < τ ≤ τ̄ .

Next, we will show that the family {µ̄hτ}0<h≤h̄,0<τ≤τ̄ is bounded in H1
0 (Ω). By

(5.15) and by making use of the same arguments as those used in the proof of (2.5)
and (2.6), we can easily derive that

µ̄hτ = khτ Ȳ
N
h ,
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where

khτ =

{
0 if ‖Ȳ N

h ‖ < 1,
‖µ̄hτ‖ if ‖Ȳ N

h ‖ = 1.

Thus it follows from (6.5) that

khτ ≤ ‖µ̄hτ‖ ≤ C.

According to Lemma 5.1, we obtain that

‖µ̄hτ‖1 = khτ‖Ȳ
N
h ‖1 ≤ C.

This completes the proof. �

Lemma 6.2. Assume y0 ∈ H2(Ω) ∩ H1
0 (Ω). Let h̄ and τ̄ be the positive numbers

given in Theorem 5.1 and Ūhτ = (Ū1
h , Ū

2
h , · · · , Ū

N
h ) ∈ Khτ be the solution of the

problem (Phτ ). Then it holds that

τ

N∑

i=1

‖Ȳ i
h − Ȳ i−1

h ‖21 ≤ Cτ2

for all h, τ with 0 < h ≤ h̄, 0 < τ ≤ τ̄ .

Proof. Write Ei
h = Ȳ i

h − Ȳ i−1
h . Subtracting two consecutive equations in (5.16)

gives

(∂τE
i
h, vh) + a(Ei

h, vh) = (χω(Ū
i − Ū i−1), vh), ∀ vh ∈ V h, 2 ≤ i ≤ N.

By taking vh = τEi
h in the above equation, we obtain that

1

2
‖Ei

h‖
2 −

1

2
‖Ei−1

h ‖2 + τCa‖E
i
h‖

2
1 ≤ Cτ‖Ū i − Ū i−1‖2 +

Caτ

2
‖Ei

h‖
2
1.

Summing the above equations over i from i = 2 to N yields

1

2
‖EN

h ‖2 −
1

2
‖E1

h‖
2 + τ

Ca

2

N∑

i=2

‖Ei
h‖

2
1 ≤ Cτ

N∑

i=2

‖Ū i − Ū i−1‖2,

from which, it follows that

τ

N∑

i=2

‖Ei
h‖

2
1 ≤ Cτ

N∑

i=2

‖Ū i − Ū i−1‖2 + C‖E1
h‖

2.

Thus we have

(6.6) τ

N∑

i=1

‖Ei
h‖

2
1 ≤ Cτ

N∑

i=2

‖Ū i − Ū i−1‖2 + C‖E1
h‖

2 + τ‖E1
h‖

2
1.

By the similar argument as that used in the proof of Lemma 5.1 and by making use
of the boundedness of the family {µ̄hτ}0<h≤h̄,0<τ≤τ̄ in H1

0 (Ω), which is provided
by Lemma 6.1, we get

(6.7) max
1≤i≤N

‖Φi−1
h ‖1 + τ

N∑

i=1

‖∂τΦ
i
h‖

2 ≤ C(‖µ̄hτ‖
2
1 + τ

N∑

i=1

‖Ȳ i
h − yid‖

2) ≤ C.

Then, according to Proposition 5.1, it follows from (6.7) that

τ

N∑

i=2

‖Ū i − Ū i−1‖2(6.8)

≤ C(1 + max
1≤i≤N

‖Φ̄i−1‖)τ

N∑

i=2

‖Φ̄i−1 − Φ̄i−2‖2 ≤ Cτ2.
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Write yh(·) = yh(Ū
1
h)(·) for the solution of the following equation:

{
(∂tyh(t), vh) + a(yh(t), vh) = (χωŪ

1
h , vh), ∀ vh ∈ V h, for a.e. t ∈ [0, τ ],

yh(0) = Phy0.

Because of Ū1
h ∈ H1(0, τ ;L2(Ω)), we can use the very similar arguments as those

used in the proofs of the inequality (5.2) and the inequality (5.4) to get the following
estimates:

(6.9) ‖y1h − Ȳ 1
h ‖

2 + τ‖y1h − Y 1
h ‖

2
1 ≤ Cτ2(‖Ū1

h‖
2 + ‖y0‖

2
2)

and

(6.10) sup
t∈[0,τ ]

‖∂tyh(t)‖
2 +

∫ τ

0

‖∂tyh(t)‖
2
1dt ≤ C(‖U1

h‖
2 + ‖y0‖

2
2).

Thus, it follows from (6.9) and (6.10) that

τ‖Ei
h‖

2
1 ≤ τ‖Ȳ 1

h − Ȳ 0
h ‖

2
1(6.11)

≤ 2τ‖Ȳ 1
h − y1h‖

2
1 + 2τ‖yh(τ)− yh(0)‖

2
1

≤ Cτ2 + Cτ‖

∫ τ

0

∂tyh(t)dt‖
2
1

≤ Cτ2 + Cτ2
∫ τ

0

‖∂tyh(t)‖
2
1dt

≤ Cτ2

and

‖E1
h‖

2 = ‖Ȳ 1
h − Ȳ 0

h ‖
2(6.12)

≤ 2‖Ȳ 1
h − y1h‖

2 + 2‖yh(τ) − yh(0)‖
2

≤ Cτ2 + C‖

∫ τ

0

∂tyh(t)dt‖
2

≤ Cτ2 + Cτ

∫ τ

0

‖∂tyh(t)‖
2dt

≤ Cτ2.

Finally, by (6.6), (6.8), (6.11) and (6.12), we can get the desired estimate. This
completes the proof of this lemma. �

Now we define functions ȳhτ ∈ H1(0, T ;V h) and ūhτ ∈ L2(0, T ;Uh) by setting

(6.13) ȳhτ |(ti−1,ti] = Ȳ i−1
h + (

t− ti−1

τ
)(Ȳ i

h − Ȳ i−1
h ), i = 1, 2, · · · , N

and

(6.14) ūhτ |(ti−1,ti] = Ū i
h, i = 1, 2, · · · , N

respectively. For each function f ∈ C([0, T ];L2(Ω)), we define function f̂ by

f̂(t)|(ti−1,ti] = f(ti) for i = 1, 2, · · · , N.

Then, it is clear that the function ȳhτ solves the following equation:

(6.15)

{
(∂tȳhτ (t), vh) + a(ˆ̄yhτ (t), vh) = (ūhτ , vh), ∀ vh ∈ V h, for a.e. t,
ȳhτ (0) = Phy0,

Moreover, we have the following error estimate between the solutions of the semi-
discrete problem and the fully discrete problem.
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Theorem 6.1. Assume y0 ∈ H2(Ω) ∩ H1
0 (Ω), yd ∈ H1(0, T ;L2(Ω)). Let ūh and

Ūhτ = (Ū1
h , Ū

2
h, · · · , Ū

N
h ) be the solutions of the problem (Ph) and the problem (Phτ ),

respectively. Then there exist two positive numbers h̄ and τ̄ such that for all h, τ
with 0 < h ≤ h̄, 0 < τ ≤ τ̄ ,

N∑

i=1

∫ ti

ti−1

‖ūh − Ū i
h‖

2dt ≤ Cτ.

Proof. Let h̄ and τ̄ be the positive numbers given in Theorem 5.1. It follows
from (3.10) and (5.18) that

(6.16)

N∑

i=1

∫ ti

ti−1

(ūh(t)− χωϕ̄h(t), Ū
i
h − ūh(t))dt ≥ 0

and

(6.17) τ
N∑

i=1

(Ū i
h − χωΦ̄

i−1
h , U i

h − Ū i
h) =

N∑

i=1

∫ ti

ti−1

(Ū i
h − χωΦ̄

i−1
h , U i

h − Ū i
h)dt ≥ 0,

where

U i
h = ˜̄ui

h =
1

τ

∫ ti

ti−1

ūhdt, 1 ≤ i ≤ N.

By making use of the following equation

N∑

i=1

∫ ti

ti−1

(Ū i
h − χωΦ̄

i−1
h , ˜̄ui

h − ūh(t))dt = 0,

we get from (6.16) and (6.17) that

N∑

i=1

∫ ti

ti−1

‖ūh − Ū i
h‖

2dt(6.18)

=

N∑

i=1

∫ ti

ti−1

‖ūh(t)− Ū i
h‖

2dt

=

N∑

i=1

∫ ti

ti−1

(ūh(t), ūh(t)− Ū i
h)dt−

N∑

i=1

∫ ti

ti−1

(Ū i
h, ūh(t)− Ū i

h)dt

≤

N∑

i=1

∫ ti

ti−1

(χωϕ̄h(t), ūh(t)− Ū i
h)dt−

N∑

i=1

∫ ti

ti−1

(Ū i
h, ūh(t)− Ū i

h)dt

≤
N∑

i=1

∫ ti

ti−1

(χωϕ̄h(t), ūh(t)− Ū i
h)dt−

N∑

i=1

∫ ti

ti−1

(Ū i
h, ūh(t)− Ū i

h)dt

+

N∑

i=1

∫ ti

ti−1

(Ū i
h − χωΦ̄

i−1
h , ˜̄ui

h − Ū i
h)dt

=

N∑

i=1

∫ ti

ti−1

(χωϕ̄h(t), ūh(t)− Ū i
h)dt−

N∑

i=1

∫ ti

ti−1

(Ū i
h, ūh(t)− Ū i

h)dt

+

N∑

i=1

∫ ti

ti−1

(Ū i
h − χωΦ̄

i−1
h , ˜̄ui

h − ūh(t))dt
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+

N∑

i=1

∫ ti

ti−1

(Ū i
h − χωΦ̄

i−1
h , ūh(t)− Ū i

h)dt

=
N∑

i=1

∫ ti

ti−1

(χω(ϕ̄h(t)− Φ̄i−1
h ), ūh(t)− Ū i

h)dt

+

N∑

i=1

∫ ti

ti−1

(Ū i
h − χωΦ̄

i−1
h , ˜̄ui

h − ūh(t))dt

=

N∑

i=1

∫ ti

ti−1

(χω(ϕ̄h(t)− Φ̄i−1
h ), ūh(t)− Ū i

h)dt

=

N∑

i=1

∫ ti

ti−1

(χωϕ̄h(t), ūh(t))dt +

N∑

i=1

∫ ti

ti−1

(χωΦ̄
i−1
h , Ū i

h)dt

−
N∑

i=1

∫ ti

ti−1

(χωϕ̄h(t), Ū
i
h)dt−

N∑

i=1

∫ ti

ti−1

(χωΦ̄
i−1
h , ūh(t))dt

= J1 + J2 + J3 + J4.

Now we will rewrite the terms Ji, 1 ≤ i ≤ 4, into the forms which can be
estimated easier, one by one. First, it follows from (3.8) and (3.9) that

J1 =

N∑

i=1

∫ ti

ti−1

(χωϕ̄h(t), ūh(t))dt(6.19)

=

∫ T

0

(χωϕ̄h(t), ūh(t))dt

=

∫ T

0

(∂tȳh(t), ϕ̄h(t))dt +

∫ T

0

a(ȳh(t), ϕ̄h(t))dt

= (ȳh(T ), ϕ̄h(T ))− (ȳh(0), ϕ̄h(0))

−

∫ T

0

(ȳh(t), ∂tϕ̄h(t))dt +

∫ T

0

a(ȳh(t), ϕ̄h(t))dt

= −(ȳh(T ), µ̄h)− (Phy0, ϕ̄h(0))−

∫ T

0

(ȳh(t), ȳh(t)− yd(t))dt.

Secondly, by (5.16), (5.17) and (6.4), we get that

J2 = τ
N∑

i=1

(χωΦ̄
i−1
h , Ū i

h)(6.20)

= τ

N∑

i=1

(∂τ Ȳ
i
h , Φ̄

i−1
h ) + τ

N∑

i=1

a(Ȳ i
h , Φ̄

i−1
h )

= (Ȳ N
h , Φ̄N

h )− (Ȳ 0
h , Φ̄

0
h)− τ

N∑

i=1

(Ȳ i
h , ∂τ Φ̄

i
h) + τ

N∑

i=1

a(Ȳ i
h , Φ̄

i−1
h )

= −(Ȳ N
h , µ̄hτ )− (Phy0, Φ̄

0
h)− τ

N∑

i=1

(Ȳ i
h , Ȳ

i
h − yid).
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Thirdly, let ȳhτ be given by (6.13), which satisfies the equation (6.15). Let ūhτ

be defined by (6.14). Then by making use of (3.9) and (6.15), we obtain that

J3 = −
N∑

i=1

∫ ti

ti−1

(χωϕ̄h(t), Ū
i
h)dt(6.21)

= −

∫ T

0

(χωϕ̄h(t), ūhτ )dt

= −

∫ T

0

(∂tȳhτ (t), ϕ̄h(t))dt −

∫ T

0

a(ˆ̄yhτ (t), ϕ̄h(t))dt

= −

∫ T

0

(∂tȳhτ (t), ϕ̄h(t))dt −

∫ T

0

a(ȳhτ (t), ϕ̄h(t))dt

+

∫ T

0

a(ȳhτ (t)− ˆ̄yhτ (t), ϕ̄h(t))dt

= −(ȳhτ (T ), ϕ̄h(T )) + (ȳhτ (0), ϕ̄h(0)) +

∫ T

0

(ȳhτ (t), ∂tϕ̄h(t))dt

−

∫ T

0

a(ȳhτ (t), ϕ̄h(t))dt+

∫ T

0

a(ȳhτ (t)− ˆ̄yhτ (t), ϕ̄h(t))dt

= (Ȳ N
h , µ̄h) + (Phy0, ϕ̄h(0)) +

∫ T

0

(ȳhτ (t), ȳh(t)− yd(t))dt

+

∫ T

0

a(ȳhτ (t)− ˆ̄yhτ (t), ϕ̄h(t))dt.

Finally, we deal with the term J4. To this end, we integrate the equation (3.8)
from ti−1 to ti to get

(6.22) (∂τ ȳ
i
h, vh) + a(˜̄yih, vh) = (χω ˜̄u

i, vh), ∀ vh ∈ V h, 1 ≤ i ≤ N.

Then by (5.17), (6.4) and (6.22), we see that

J4 = −

N∑

i=1

∫ ti

ti−1

(χωΦ̄
i−1
h , ūh(t))dt(6.23)

= −τ

N∑

i=1

(χωΦ̄
i−1
h , ˜̄ui

h)

= −τ

N∑

i=1

(∂τ ȳ
i
h, Φ̄

i−1
h )− τ

N∑

i=1

a(˜̄yih, Φ̄
i−1
h )

= −(ȳNh , Φ̄N
h ) + (ȳ0h, Φ̄

0
h) + τ

N∑

i=1

(ȳih, ∂τ Φ̄
i
h)− τ

N∑

i=1

a(˜̄yih, Φ̄
i−1
h )

= (ȳh(T ), µ̄hτ ) + (Phy0, Φ̄
0
h)

+τ
N∑

i=1

(ȳih, Ȳ
i
h − yid) + τ

N∑

i=1

a(ȳih − ˜̄yih, Φ̄
i−1
h ).

Since it follows form (3.7) and (5.15) that

(Ȳ N
h − ȳh(T ), µ̄h) ≤ 0,

(ȳh(T )− Ȳ N
h , µ̄hτ ) ≤ 0,
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we get from (6.18)-(6.21) and (6.23) that

N∑

i=1

∫ ti

ti−1

‖ūh − Ū i
h‖

2dt(6.24)

≤ −

∫ T

0

(ȳh(t), ȳh(t)− yd(t))dt− τ

N∑

i=1

(Ȳ i
h , Ȳ

i
h − yid)

+

∫ T

0

(ȳhτ (t), ȳh(t)− yd(t))dt + τ

N∑

i=1

(ȳih, Ȳ
i
h − yid)

+

∫ T

0

a(ȳhτ (t)− ˆ̄yhτ (t), ϕ̄h(t))dt+ a(ȳih − ˜̄yih, Φ̄
i−1
h )

= −

N∑

i=1

∫ ti

ti−1

‖ȳh(t)− Ȳ i
h‖

2dt+

N∑

i=1

∫ ti

ti−1

(ȳhτ (t)− Ȳ i
h , ȳh(t))dt

+

N∑

i=1

∫ ti

ti−1

(ȳih − ȳh(t), Ȳ
i
h)dt+

N∑

i=1

∫ ti

ti−1

(ȳh(t)− ȳih, yd(t))dt

+

N∑

i=1

∫ ti

ti−1

(ȳih, yd(t)− yid)dt+

N∑

i=1

∫ ti

ti−1

(Ȳ i
h − ȳhτ (t), y

i
d)dt

+
N∑

i=1

∫ ti

ti−1

(ȳhτ (t), y
i
d − yd(t))dt +

∫ T

0

a(ȳhτ (t)− ˆ̄yhτ (t), ϕ̄h(t))dt

+τ

N∑

i=1

a(ȳih − ˜̄yih, Φ̄
i−1
h )

= Q1 +Q2 + · · ·+Q9.

Now we will estimate the terms Qi, 1 ≤ i ≤ 9. We make the estimates for the
terms Q1, Q8 and Q9 one by one, the estimates for the rest terms follow by the
similar arguments. It is clear that

(6.25) Q1 = −

N∑

i=1

∫ ti

ti−1

‖ȳh(t)− Ȳ i
h‖

2dt ≤ 0.

By (4.8) and according to Lemma 6.2, we see that

Q8 =

∫ T

0

a(ȳhτ (t)− ˆ̄yhτ (t), ϕ̄h(t))dt(6.26)

≤ C sup
t∈[0,T ]

‖ϕ̄h(t)‖1

N∑

i=1

∫ ti

ti−1

‖ȳihτ − Ȳ i
h‖1dt

≤ C

N∑

i=1

∫ ti

ti−1

ti − t

τ
dt‖Ȳ i−1

h − Ȳ i
h‖1

≤ Cτ
N∑

i=1

‖Ȳ i
h − Ȳ i−1

h ‖1

≤ C

(
τ

N∑

i=1

‖Ȳ i
h − Ȳ i−1

h ‖21

) 1
2

≤ Cτ.
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According to Proposition 3.2 and by the inequality (4.8), we obtain that

‖ūh‖H1(0,T ;L2(Ω)) ≤ C,

which, together with (5.4) and (6.7), yields the following estimate:

Q9 = τ

N∑

i=1

a(ȳih − ˜̄yih, Φ̄
i−1
h )(6.27)

≤ C max
1≤i≤N

‖Φ̄i−1
h ‖1τ

N∑

i=1

‖ȳih − ˜̄yih‖1

≤ C
N∑

i=1

∫ ti

ti−1

‖ȳh(ti)− ȳh(t)‖1dt

≤ C

N∑

i=1

∫ ti

ti−1

‖

∫ ti

t

∂sȳh(s)ds‖1dt

≤ Cτ

N∑

i=1

∫ ti

ti−1

‖∂sȳh(s)‖1ds

≤ Cτ(

∫ T

0

‖∂sȳh(s)‖
2
1ds)

1
2

≤ Cτ(‖ūh‖H1(0,T ;L2(Ω)) + ‖y0‖2)

≤ Cτ.

Similarly, we can show that

(6.28) Q2 +Q3 + · · ·+Q7 ≤ Cτ.

By (6.24)-(6.28), we complete the proof of this theorem. �

As a direct consequence of Theorem 4.1 and Theorem 6.1, we have the main
result of the paper as follows.

Theorem 6.2. Assume y0 ∈ H2(Ω)∩H1
0 (Ω), yd ∈ H1(0, T ;L2(Ω)). Let ū ∈ K and

Ūhτ = (Ū1
h , Ū

2
h, · · · , Ū

N
h ) ∈ Khτ be the solutions of the problem (P ) and the problem

(Phτ ), respectively. Then there exist two positive numbers h̄ and τ̄such that for all
h, τ with 0 < h ≤ h̄, 0 < τ ≤ τ̄ ,

N∑

i=1

∫ ti

ti−1

‖ū− Ū i
h‖

2dt ≤ C(h2 + τ).

7. An application to the exactly null controllability of the heat equation

Consider the internally controlled heat equation (1.1). It is well known ( [19, 29])
that for each initial data y0 ∈ L2(Ω), there exists a control ũ(·) ∈ L∞(0, T ;L2(Ω))
with the estimate

‖ũ‖L∞(0,T ;L2(Ω)) ≤ L‖y0‖

such that the corresponding solution ỹ(·) to the equation (1.1) with u = ũ reaches
zero in the state space at the time T , namely, ỹ(T ) = 0. Here, L stands for a positive
constant depending only on the domain Ω, the subdomain ω, the ending time T and
the operator −∆, which can be estimated in many cases. Such a property is called
the exactly null controllability for the heat equation, which has been extensively
investigated.
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It is significant to give a numerical approach for such a control ũ. For this
purpose, we fix the initial data y0 in the space H2(Ω) ∩ H1

0 (Ω). Without loss of
generality, we can assume that y0 6= 0. Write

K(L) = {u(·) ∈ L2(0, T ;L2(Ω)) ; ‖u(t)‖ ≤ L‖y0‖ a.e. t ∈ [0, T ]}.

Now, we set up the following optimal control problem:

(P) min

{
1

2

∫ T

0

∫

Ω

y2dxdt+
1

2

∫ T

0

∫

Ω

u2dxdt

}

over all pairs (y, u) satisfing the equation (1.1) and the constraints u ∈ K(L) and
y(T ) = 0.

Since there is a control ũ in the set KL such that ỹ(T ) = 0, one can easily prove,
by making use of the very similar argument as that used in the proof of Theorem
2.1, that the problem (P) has a unique optimal pair (ȳ, ū). In general, the qualified
Pontryagin maximum principle dose not hold for the problem (P) since the ending
point state constraint set is a single point and controls enter the system internally.
Thus, we can not use the previous results to approach the control ū numerically.
In what follows, we shall approximate the problem (P) by another optimal control
problem, whose solution can be numerically approximated. We consider, for each
natural number m, the following optimal control problem:

(Pm) min

{
1

2

∫ T

0

∫

Ω

y2dxdt+
1

2

∫ T

0

∫

Ω

u2dxdt

}

over all pairs (y, u) solving the equation (1.1) and satisfying

u ∈ K(L) and y(T ) ∈ Km,

where

Km = {w ∈ L2(Ω); ‖w‖ ≤
1

m
}.

By Theorem 2.1, the optimal control problem (Pm) has a unique optimal pair
(ym, um).

Theorem 7.1. Let (ym, um) and (ȳ, ū) be the optimal pairs for the problem (Pm)
and the problem (P), respectively. Then we have

um → ū strongly in L2(0, T ;L2(Ω)) as m → ∞.

Proof. Take arbitrarily a subsequence of the sequence of pairs {(ym, um)}∞m=1,
denoted in the same way. Since the sequence {um}∞m=1 of controls is bounded in
the space L∞(0, T ;L2(Ω)), there exists a subsequence of {um}∞m=1, still denoted in
the same way, such that

(7.1) um ⇀ ũ weakly star in L∞(0, T ;L2(Ω)) as m → ∞,

from which, it follows that

(7.2) um ⇀ ũ weakly in L2(0, T ;L2(Ω)) as m → ∞

and

‖ũ‖L∞(0,T ;L2(Ω)) ≤ lim inf
m→∞

‖um‖L∞(0,T ;L2(Ω)).

Since um ∈ K(L) for each natural number m, the later implies

(7.3) ũ ∈ K(L).
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Write ỹ for the solution of the equation (1.1) with u = ũ. Because the pair
(ym, um) solves the equation (1.1), we get from (7.2) that there is a subsequence of
the sequence {ym}∞m=1, denoted in the same way, such that

(7.4) ym → ỹ strongly in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) as m → ∞,

from which, it follows, in particular, that for m → ∞,

ym(T ) → ỹ(T ) strongly in L2(Ω).

Since ym(T ) ∈ Km for each natural number m, the later gives

(7.5) ỹ(T ) = 0.

Set J(y, u) = 1
2

∫
Q
(y2 + u2)dxdt for (y, u) ∈ L2(Q)×L2(Q). Then, by (7.2) and

(7.4), we have

(7.6) J(ỹ, ũ) ≤ lim inf
m→∞

J(ym, um).

Because the pair (ỹ, ũ) solves the equation (1.1) and properties (7.3) and (7.5) hold,
we get, by the optimality of the pair (ȳ, ū) for the problem (P),

(7.7) J(ỹ, ũ) ≥ J(ȳ, ū).

On the other hand, since ȳ(T ) = 0, we have ȳ(T ) ∈ Km for each natural number
m. Then, by making use of the optimality of the pair (ym, um) to the problem
(Pm), we see that for each natural number m,

(7.8) J(ym, um) ≤ J(ȳ, ū).

Now, it follows at once from (7.6)-(7.8) that

J(ỹ, ũ) ≤ lim inf
m→∞

J(ym, um) ≤ lim sup
m→∞

J(ym, um) ≤ J(ȳ, ū) ≤ J(ỹ, ũ),

from which, it follows that

(7.9) lim
m→∞

J(ym, um) = J(ỹ, ũ) = J(ȳ, ū).

Thus, the pair (ỹ, ũ) is optimal for the problem (P). However, the problem (P) has
a unique optimal pair. Hence, we must have

(7.10) ỹ = ȳ and ũ = ū.

By (7.4), (7.9) and (7.10), we get that

‖um‖L2(Q) → ‖ū‖L2(Q) as m → ∞,

which, together with (7.2) and (7.10), gives that

um → ū strongly in L2(0, T ;L2(Ω)) as m → ∞.

Thus, we have proved that for any subsequence {um,k}∞k=1 of the sequence
{um}∞m=1, there is a subsequence of {u

m,k}∞k=1 converging to ū strongly in L2(0, T ;L2(Ω)),
from which, it follows that the sequence {um}∞m=1 converges to the control ū
strongly in L2(0, T ;L2(Ω)). This completes the proof.

�

Remark 7.1. By Theorem 7.1, we see that if the optimal control um for the problem
(Pm) can be numerically approximated for each m, then the optimal control ū for
the problem (P) is numerically approached. Moreover, the control ū not only makes
the corresponding solution to the equation (1.1) with u = ū reaches zero in the
state space at the time T but also is optimal in the sense that the cost functional
J(·, ·) is minimized. On the other hand, by Theorem 6.2, we observe that each
aforementioned control um can really be approximated numerically. Thus, we have
provided a way to approximate the control ū numerically.
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Now, we shall state our last result in the paper. Consider the following discrete
optimal control problem:

(Pm
hτ ) min

{
τ

2

N∑

i=1

(
‖Y i

h‖
2 + ‖U i

h‖
2
)
}
,

subject to
Uhτ = (U1

h , U
2
h , · · · , U

N
h ) ∈ K(L)hτ

and
Y N
h ∈ Km,

where Yhτ = (Y 1
h , Y

2
h , · · · , Y

N
h ) ∈ (V h)N is the solution of the following equation:

(7.11)

{
(∂τY

i
h , vh) + a(Y i

h , vh) = (χωU
i, vh), ∀vh ∈ V h, 1 ≤ i ≤ N,

Y 0
h = Phy0,

.

Theorem 7.2. For each natural number m and for any sufficient small numbers h
and τ , the problem (Pm

hτ ) has a unique optimal control Ūm
hτ = (Ūm1

h , Ūm2
h , · · · , ŪmN

h ) ∈
K(L)hτ . Moreover, for each natural number m, there exits a positive constant C(m)
such that

N∑

i=1

∫ ti

ti−1

‖ū− Ūmi
h ‖2dt ≤ ‖ū− ūm‖2L2(Q) + C(m)(h2 + τ).
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