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SUPERCONVERGENCE BY L2-PROJECTIONS FOR STABILIZED
FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS

JIAN LI, JUNPING WANG, AND XIU YE

Abstract. A general superconvergence result is established for the stabilized finite element
approximations for the stationary Stokes equations. The superconvergence is obtained by applying
the L2 projection method for the finite element approximations and/or their close relatives. For the
standard Galerkin method, existing results show that superconvergence is possible by projecting
directly the finite element approximations onto properly defined finite element spaces associated
with a mesh with different scales. But for the stabilized finite element method, the authors had
to apply the L2 projection on a trivially modified version of the finite element solution. This
papers shows how the modification should be made and why the L2 projection on the modified
solution has superconvergence. Although the method is demonstrated for one class of stabilized
finite element methods, it can certainly be extended to other type of stabilized schemes without
any difficulty. Like other results in the family of L2 projection methods, the superconvergence
presented in this paper is based on some regularity assumption for the Stokes problem and is valid
for general stabilized finite element method with regular but non-uniform partitions.

Key words. Stokes equations, Stabilized finite element method, Superconvergence, L2 projec-
tion, least-squares method

1. Introduction

In the analysis and practice of employing finite element methods in solving the
Navier-Stokes equations, the inf-sup condition has played an important role because
it ensures a stability and accuracy of the underlying numerical schemes. A pair of
finite element spaces that are used to approximate the velocity and the pressure
unknowns are said to be stable if they satisfy the inf-sup condition. Intuitively
speaking, the inf-sup condition is something that enforces a certain correlation
between two finite element spaces so that they both have the required properties
when employed for the Navier-Stokes or Stokes equations. It is well known that
the two simplest elements P1/P0 (i.e., linear/constant) on triangle and Q1/P0 (i.e.,
bilinear/constant) on quadrilateral are not stable, and therefore can not be trusted
when employed in practical computation. In contrast, many known stable elements
do not look natural because their construction involves artificial or non-standard
functions which are not commonly used/implemented in popular engineering code
packages. To eliminate the inf-sup condition so that simpler and more natural finite
element spaces can be used, stabilized finite element methods have been developed
for the Stokes equations in the last two decades [14, 4, 15, 9, 16]. These methods
are gaining more and more popularity in computational fluid dynamics.

The goal of this paper is to explore ways that improve the accuracy of the
approximate solutions resulted from the stabilized finite element formulations for
the Stokes equations. In particular, we are curious about postprocessing techniques
that lead to new approximations with superconvergence. In the literature, there
are number of techniques in the content of superconvergence [8, 10, 27, 24, 22, 18,
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31, 32, 30]. The main idea behind them is “cancelation”, which, at least in all the
existing results, are possible only for certain model problems with some strong, and
perhaps impractical assumptions on the geometry of the finite element partitions,
see for example [20, 21]. One exception in techniques of superconvergence is the L2-
projection method proposed and analyzed by Wang [28] for the standard Galerkin
method. The relaxation on the mesh uniformity is the key difference between
the L2-projection method and all other methods in superconvergence. The L2-
projection method has been extended by Wang and Ye [29] to the Stokes equations,
but only for finite element methods based on stable pairs. This paper aims at a
study of superconvergence by using the L2-projection method for the stabilized
finite element method.

Briefly speaking, the result to be presented in this paper shows that it is pos-
sible to obtain numerical solutions with superconvergence for the stabilized finite
element methods. However, there are essential differences between the stabilized
finite element method and the standard Galerkin method. For example, one can ob-
tain superconvergence for the L2 projection of the pressure approximation, but not
for the velocity approximation as one would get in the standard Galerkin method.
However, the L2-projection of a modified or corrected form of the velocity approx-
imation is of superconvergent to the exact velocity. Our analysis shows that the
correction comes from a scaled version of the residual which is exactly the stability
term added to the Galerkin formula. If similar stability terms were added to the
mass conservation equation, one would need to modify the pressure approximation
as well in order to obtain superconvergence by using the L2-projection method.
The main contribution of the paper is that it provides a systematic approach for
obtaining superconvergence when non-standard Galerkin methods are used.

The paper is organized as follows. In Section 2, we review a stabilized finite
element formulation for the Stokes equations. In Section 3, we describe the general
idea of the L2 projection method in superconvergence. In Sections 4 and 5, we
establish two super-approximation properties: one for the pressure and the other
for the velocity unknown by using L2-projections. Finally, in Section 6, we derive
some new superconvergent results for the Stokes equations when approximated by
using stabilized finite element methods.

2. Preliminaries and the stabilized finite element method

For simplicity, we consider the homogeneous Dirichlet boundary value problem
for the Stokes equations. This model problem seeks unknown functions u ∈ H1(Ω)d

and p ∈ L2(Ω) satisfying

−ν∆u +∇p = f in Ω,(1)
∇ · u = 0 in Ω,(2)

u = 0 on ∂Ω,(3)

where Ω is an open bounded domain in the Euclidean space Rd(d = 2, 3) with a Lip-
schitz continuous boundary ∂Ω; f is a given function in H−1(Ω)d; ∆, ∇, and ∇· de-
note the Laplacian, gradient, and divergence operators respectively; ν > 0 is a given
constant representing the viscosity of the fluid. The given function/distribution
f = f(x) is the unit external volumetric force acting on the fluid at x ∈ Ω. Without
loss of generality, we assume that ν = 1, d = 2, and Ω is polygonal in the rest of
the paper.

The above description of the Stokes problem has assumed the standard notation
for the Sobolev spaces Hs(Ω) which is the collection of distributions whose weak
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derivatives of order up to s are square integrable functions over the domain Ω.
Denote by (·, ·)s the inner product associated with Hs(Ω), with a norm notation
‖·‖s, and semi-norm notation |·|s for non-negative integers s ≥ 0. The Sobolev space
H0(Ω) coincides with the space of square integrable functions L2(Ω), in which case
the norm and inner product are denoted by ‖ · ‖ and (·, ·), respectively. In addition,
denote by L2

0(Ω) the subspace of L2(Ω) consisting of all the functions in L2(Ω)
with vanishing mean value, and H1

0 (Ω) stands for the closed subspace of H1(Ω)
with vanishing boundary values on Ω. In general, ‖φ‖D denotes the L2 norm of
φ ∈ L2(D) for any domain D.

Let Vh ⊂
[
H1

0 (Ω)
]2 and Wh ⊂ L2

0(Ω) be two finite element spaces consisting of
piecewise polynomials for the velocity and pressure unknowns, respectively, associ-
ated with a prescribed finite element partition Th with mesh size h. Let Γ denote
the union of boundaries of the elements (e.g., triangles in the case that Th is a
triangulation of Ω) T ∈ Th and Γ0 := Γ\∂Ω. Let e ∈ Γ0 be an interior edge shared
by two elements T1 and T2 in Th. We denote by [q] the jump of q on e:

[q](x) = q|T1(x)− q|T2(x), ∀x ∈ e,

where q|Ti
(x) is the value of q at x as seen from the element Ti for i = 1, 2. It should

be pointed out that interchanging the role of T1 and T2 in the jump definition will
have no effect on the finite element scheme to be described shortly in this section.

The finite element spaces Vh and Wh are assumed to have the following approx-
imation properties:

(4) inf
v∈Vh

(
h−1‖u− v‖+ ‖∇(u− v)‖+ (

∑

T∈Th

h2
T ‖∆(u− v)‖2T )

1
2

)
≤ Chi‖u‖i+1,

(5) inf
q∈Wh

(
‖p− q‖+ (

∑

T∈Th

h2
T ‖∇(p− q)‖2T )

1
2 + (

∑

e∈Γ0

he‖[p− q]‖2e)
1
2

)
≤ Chi‖p‖i,

for u ∈ [Hi+1(Ω)∩H1
0 (Ω)]2 and p ∈ Hi(Ω)∩L2

0(Ω), where 1 ≤ i ≤ k, k is the order of
polynomial space employed in constructing the finite element space Vh, and hT and
he are the diameters of the element T and edge e respectively. For compatibility
of approximation accuracy, we have assumed that Wh was constructed by using
polynomials of order no less than k − 1.

Let β and γ be two parameters to be determined later and τ = ±1. Define a
bilinear form as follows:

Φ(w, r;v, q) = (∇w,∇v)− (∇ · v, r)− (∇ ·w, q)

− γ
∑

T∈Th

h2
T (∇r −∆w,∇q − τ∆v)T − β

∑

e∈Γ0

he([r], [q])e,

where (p, q)e =
∫

e
pqds is the L2-inner product in L2(e). The corresponding stabi-

lized finite element formulation for the Stokes equations seeks (uh; ph) ∈ Vh ×Wh

such that for all (v; q) ∈ Vh ×Wh

(6) Φ(uh, ph;v, q) = (f ,v)− γ
∑

T∈Th

h2
T (f ,∇q − τ∆v)T .

It is not hard to see that the exact solution (u; p) of the Stokes equations also
satisfies (6) for any values of β and γ. Thus, the following error equation is easy to
be verified:

(7) Φ(u− uh, p− ph;v, q) = 0, ∀v ∈ Vh, ∀q ∈ Wh.
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Observe that the bilinear form Φ(·; ·) is symmetric for τ = 1, and is nonsymmetric
for τ = −1. It was proved that the symmetric formulation is conditionally stable
with respect to the positive parameter values of γ and β where β could assume
arbitrary values. The nonsymmetric scheme is absolutely stable with respect to
positive parameter values of γ and β. Details can be found in [9].

This paper aims at an establishment of superconvergence for the symmetric
formulation by using the L2 projection idea with respect to a finite element subspace
on a mesh coarser than Th. For the nonsymmetric formulation (i.e, when τ = −1),
we find that the forthcoming superconvergent algorithm and analysis are difficult
to apply. Therefore, this case is left to interested readers as an open problem. From
now on, we shall assume that τ = β = 1 and γ > 0 is a parameter to be determined
later.

Lemma 1. There exists a constant C independent of h such that for any
(v; q) ∈ Vh ×Wh, one has

(8) Φ(v, q;v,−q) ≥ C||(v; q)||
where ||(v; q)|| is a norm in Vh ×Wh defined as follows:

||(v; q)||2 = ‖∇v‖2 +
∑

T∈Th

h2
T ‖∇q‖2T +

∑

e∈Γ0

he([q], [q])e.

Proof. It follows from the definition of Φ(·; ·) that

Φ(v, q;v,−q) = (∇v,∇v)− γ
∑

T∈Th

h2
T (∇q −∆v,−∇q −∆v)T + β

∑

e∈Γ0

he([q], [q])e

= ‖∇v‖2 − γ
∑

T∈Th

h2
T ‖∆v‖2T + γ

∑

T∈Th

h2
T ‖∇q‖2T + β

∑

e∈Γ0

he([q], [q])e.

Now we use the standard inverse inequality to estimate the second term on the
right-hand side of the above identify. With γ ∈ (0, α0) for a sufficiently small, but
fixed α0, we easily obtain the desired estimate (8). ¤

An application of Lemma 1 and the standard error equation (7) for the stabilized
finite element scheme (6) yields the following result of error estimate.

Theorem 1. Let (uh; ph) ∈ Vh × Wh and (u; p) ∈ (Hk+1(Ω) ∩ H1
0 (Ω))2 ×

Hk(Ω)∩L2
0(Ω) be the solutions of (6) and (1)-(3) respectively. Then there exists a

constant C independent of h such that

(9) ||(u− uh; p− ph)|| ≤ Chk(‖u‖k+1 + ‖p‖k).

A similar result can be found in [4, 15].

The superconvergence analysis to be presented in next section requires a certain
regularity for the Stokes problem. To this end, we consider a more general Stokes
problem which seeks (u; p) ∈ H1

0 (Ω)2 × L2
0(Ω) satisfying

(∇u,∇v)− (∇ · v, p) = (f ,v), ∀ v ∈ H1
0 (Ω)2,(10)

(∇ · u, q) = (g, q), ∀ q ∈ L2
0(Ω),(11)

where g ∈ L2
0(Ω) is a given function. Assume that the domain Ω is so regular that

ensures a Hs, s ≥ 1 regularity for the solution of (10) and (11). In other words,
for any f ∈ Hs−2(Ω)2 and g ∈ Hs−1(Ω) ∩ L2

0(Ω), the problem (10) and (11) has
a unique solution u ∈ H1

0 (Ω)2 ∩ Hs(Ω)2 and p ∈ Hs−1(Ω) ∩ L2
0(Ω) satisfying the

following a priori estimate:

(12) ‖u‖s + ‖p‖s−1 ≤ C(‖f‖s−2 + ‖g‖s−1),



SUPERCONVERGENCE BY L2-PROJECTIONS FOR THE STOKES EQUATIONS 715

where C is a constant independent of the data f and g.

3. L2-Projection: a general idea for superconvergence

L2-Projection is a postprocessing technique introduced by Wang [28] for standard
Galerkin methods. The basic idea is to project the finite element solution to another
finite element space with a different, but coarser mesh. The scale difference in the
two meshes is the key for achieving a superconvergence after the postprocessing.

For the stabilized finite element method, in addition to the finite element parti-
tion Th that was used to produce the finite element approximation (uh; ph) from (6),
we introduce another finite element partition Tτ with mesh size τ , where h << τ .
Assume that the scales τ and h have the following relationship:

(13) τ ≈ hα

with α ∈ (0, 1). It will be seen that the parameter α plays an important role in the
post processing. For now, let Vτ and Wτ be any two finite element spaces consisting
of piecewise polynomials of degree r and t respectively associated with the partition
Tτ . Define Qτ and Rτ to be the L2 projectors from L2(Ω) onto the finite element
spaces Vτ and Wτ respectively. Roughly speaking, the postprocessing of the finite
element approximation (uh; ph) is simply given by their L2 projections:

postprosessed (uh; ph) ≈ (Qτuh; Rτph).

We will show that Rτph is indeed a new approximation of the pressure variable
with superconvergence. But the same assertion can not be made for the velocity
approximation under the above framework. However, the same L2 projection for a
slightly modified finite element approximation uh still gives an approximation with
superconvergence. Details are presented in forthcoming sections.

4. A super-approximation for the pressure

For the pressure unknown, the postprocessed approximate solution is given by
the L2 projection of the finite element solution ph:

postprossed pressure = Rτph.

The rest of this section is devoted to a mathematical analysis on a super-approximation
property for the postprocessed pressure approximation Rτph. To this end, we in-
troduce the following notation

a(w,v) := (∇w,∇v), b(v, q) := (∇ · v, q)

and
d(w, r;v, q) := γ

∑

T∈T h

h2
T (∇r −∆w,∇q −∆v)T .

The error equation (7) is equivalent to the following two equations:

a(u− uh,v)− b(v, p− ph)− d(u− uh, p− ph;v, 0) = 0(14)

b(u− uh, q) + d(u− uh, p− ph; 0, q) + β
∑

e∈Γ0

he([p− ph], [q])e = 0.(15)

The following lemma provides an estimate for Rτp−Rτph.
Lemma 2. Assume that the regularity result (12) holds true with 1 ≤ s ≤ k +1

and Wτ ⊂ Hs−1(Ω). Then there is a constant C independent of h and τ such that

(16) ‖Rτp−Rτph‖ ≤ Chk+s−1+αmin(0,s−1)(‖u‖k+1 + ‖p‖k)

where α ∈ (0, 1) is a parameter as defined in (13).
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Proof. It follows from the definition of ‖ · ‖ and Rτ that

‖Rτp−Rτph‖ = sup
φ∈L2(Ω),‖φ‖=1

|(Rτp−Rτph, φ)|

and

(Rτp−Rτph, φ) = (p− ph, Rτφ).

Thus,

‖Rτp−Rτph‖ = sup
φ∈L2(Ω),‖φ‖=1

|(p− ph, Rτφ)|.

Consider the following problem: find (ω, ξ) ∈ (Hk+1(Ω)∩H1
0 (Ω))2×(Hk(Ω)∩L2

0(Ω))
with k ≥ 1 such that

a(ω,v)− b(v, ξ) = 0, ∀ v ∈ H1
0 (Ω)2,(17)

b(ω, q) = (Rτφ, q), ∀ q ∈ L2
0(Ω).(18)

The solution of the above problem implies the following

−∆ω +∇ξ = 0.

Furthermore, we have

(19) d(ω, ξ;v, q) = 0.

It is not hard to see that the solution of the problem (17)-(18) satisfies

Φ(ω, ξ;v, q) = (Rτφ, q), ∀ v ∈ H1
0 (Ω)2, ∀ q ∈ L2

0(Ω).(20)

By setting v = u− uh and q = p− ph in (20) we obtain

(p− ph, Rτφ) = Φ(ω, ξ;u− uh, p− ph)(21)
= Φ(u− uh, p− ph; ω, ξ)
= Φ(u− uh, p− ph; ω − ωI , ξ − ξI).
= a(u− uh, ω − ωI)− b(ω − ωI , p− ph)

− b(u− uh, ξ − ξI)− β
∑

e∈Γ0

he([p− ph], [ξ − ξI ])e

− d(u− uh, p− ph; ω − ωI , ξ − ξI)
:= A + B + C + D + E

where ωI and ξI are interpolates of ω and ξ in Vh and Wh, respectively. The terms
A,B, C,D, and E are defined according to their appearance in order, and their
estimates are given as follows.

For the first term A, it follows from the Schwarz inequality, (4), and (12) that

|A| = |a(u− uh, ω − ωI)| ≤ ‖∇(u− uh)‖‖∇(ω − ωI)‖
≤ Chs−1‖Rτφ‖s−1||(u− uh; p− ph)||
≤ Chs−1τmin(0,1−s)||(u− uh; p− ph)||‖φ‖.
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As to the second term B, we use the integration by parts, trace theorem, (4), and
(12), to come up with the following estimates

|B| = |b(ω − ωI , p− ph)|

=

∣∣∣∣∣−
∑

T∈Th

(ω − ωI ,∇(p− ph)) +
∑

e∈Γ0

∫

e

(ω − ωI) · n[p− ph]ds

∣∣∣∣∣
≤ ||(u− uh; p− ph)||(h−1‖ω − ωI‖+ ‖∇(ω − ωI)‖)
≤ Chs−1‖ω‖s||(u− uh; p− ph)||
≤ Chs−1‖Rτφ‖s−1||(u− uh; p− ph)||
≤ Chs−1τmin(0,1−s)||(u− uh; p− ph)||‖φ‖.

For the term C, we use the Schwarz inequality, (5), and (12) to obtain

|C| = |b(u− uh, ξ − ξI)| ≤ ‖∇(u− uh)‖‖ξ − ξI‖
≤ Chs−1τmin(0,1−s)||(u− uh; p− ph)||‖φ‖.

Next, it follows from the trace inequality, (5), and (12) that

|D| = |β
∑

e∈Γ0

he([p− ph], [ξ − ξI ])e|

≤ |β|
( ∑

e∈Γ0

he‖[p− ph]‖2e
) 1

2
( ∑

e∈Γ0

he‖[ξ − ξI ]‖2e
) 1

2

≤ Chs−1τmin(0,1−s)||(u− uh; p− ph)||‖φ‖.
To deal with the last term E, we first establish an estimate for local integrals by
using the standard triangle and the inverse inequalities:

∑

T∈Th

h2
T ‖∆(u− uh)‖2T ≤ 2

∑

T∈Th

h2
T ‖∆(u− uI)‖2T + 2

∑

T∈Th

h2
T ‖∆(uI − uh)‖2

≤ C(
∑

T∈Th

h2
T ‖∆(u− uI)‖2T + ‖∇(uI − uh)‖2)

≤ C(||(u− uh; p− ph)||2 +
∑

T∈Th

h2
T ‖∆(u− uI)‖2T + ‖∇(u− uI)‖2).

Using the above inequality, (4)-(5) and (12) one arrives at the following estimate

|E| = |d(u− uh, p− ph; ω − ωI , ξ − ξI)|

≤ |γ|
( ∑

T∈Th

h2
T ‖∇(p− ph)−∆(u− uh)‖2T

) 1
2

( ∑

T∈Th

h2
T ‖∇(ξ − ξI)−∆(ω − ωI)‖2T

) 1
2

≤ Chs−1τ s̃‖φ‖
(

(
∑

T∈Th

h2
T ‖∇(p− ph)‖2T )

1
2 + (

∑

T∈Th

h2
T ‖∆(u− uh)‖2T )

1
2

)

≤ Chs−1τ s̃‖φ‖
(
||(u− uh; p− ph)||+ (

∑

T∈Th

h2
T ‖∆(u− uI)‖2T )

1
2 + ‖∇(u− uI)‖

)
,

where s̃ = min(0, 1− s).
Collectively, the above estimates for the terms A,B, C,D, and E, together with

an application of (9) and (21), yield the following inequality

|(p− ph, Rτφ)| ≤ Chk+s−1+αmin(0,1−s)(‖u‖k+1 + ‖p‖k)‖φ‖,
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which implies the following

‖Rτp−Rτph‖ ≤ Chk+s−1+αmin(0,1−s)(‖u‖k+1 + ‖p‖k).

This completes the proof of the lemma. ¤

5. A super-approximation for the velocity

Let (uh; ph) be the finite element approximation of the Stokes problem arising
from the stabilized finite element formulation (6). A straightforward application
of the projection method to the velocity approximation would involve a direct L2

projection of uh into a finite element space Vτ defined on a coarse level Tτ . But we
were not able to establish any super-approximation theory for such postprocessed
approximations. Yet, our numerical experiments did not provide any strong ev-
idence for possible superconvergence when uh was projected to Vτ without any
modification. Note that no numerical experiments are reported in this paper.

The goal of this section is to present a procedure which results in a super-
approximation property for the velocity. This new procedure continues our explo-
ration of the L2 projection method, in which the projection shall be applied to a
modified or corrected finite element approximation uh. To this end, we modify or
correct the velocity approximation to the Stokes problem as follows:

u∗h = uh + ψh,(22)

where ψh is defined by assuming the value γh2
T (f −∇ph + ∆uh) on each element

T . We claim that the L2 projection of this modified velocity approximation u∗h has
superconvergence.

Lemma 3. Assume that (12) holds true with 1 ≤ s ≤ k+1 and Vτ ⊂ Hs−2(Ω)2.
Then, there is a constant C independent of h and τ such that

(23) ‖Qτu−Qτu∗h‖ ≤ Chk+s−1+αmin(0,s−2)(‖u‖k+1 + ‖p‖k)

where α ∈ (0, 1) is a parameter specified as in (13).

Proof. Using the definition of ‖ · ‖ and Qτ we have

‖Qτu−Qτu∗h‖ = sup
φ∈L2(Ω)2,‖φ‖=1

|(Qτu−Qτu∗h, φ)|

= sup
φ∈L2(Ω)2,‖φ‖=1

|(u− u∗h, Qτφ)|.

Consider the following problem: find (w; λ) ∈ (Hk+1(Ω) ∩ H1
0 (Ω))2 × (Hk(Ω) ∩

L2
0(Ω)) with k ≥ 1 such that

a(w,v)− b(v, λ) = (Qτφ,v) ∀ v ∈ H1
0 (Ω)2,(24)

b(w, q) = 0 ∀ q ∈ L2
0(Ω).(25)

It can be seen that for any v ∈ H1
0 (Ω)2 and q ∈ L2

0(Ω) which are locally smooth
(meaning that v must be locally on H2 and q must be locally on H1 over each
element), we have

Φ(w, λ;v, q) = (Qτφ,v)− γ
∑

T∈Th

h2
T (Qτφ,∇q −∆v)T .(26)
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By setting v = u− uh and q = p− ph, the right-hand side of (26) becomes

(Qτφ,v)− γ
∑

T∈Th

h2
T (Qτφ,∇q −∆v)T(27)

= (Qτφ,u− uh)− γ
∑

T∈Th

h2
T (Qτφ,∇(p− ph)−∆(u− uh))T

= (Qτφ,u− uh)− γ
∑

T∈Th

h2
T (Qτφ, f −∇ph + ∆uh)T

= (Qτφ,u− u∗h),

where in the last step we have used the definition of u∗h given in (22). Thus, with
v = u− uh and q = p− ph, by substituting (27) into (26) we obtain

(Qτφ,u− u∗h) = Φ(w, λ;u− uh, p− ph)(28)
= Φ(u− uh, p− ph;w, λ)
= Φ(u− uh, p− ph;w −wI , λ− λI).

Now it follows from (21) that

|Φ(u− uh, p− ph;w −wI , λ− λI)| ≤ Chk+s−1‖Qτφ‖s−2(‖u‖k+1 + ‖p‖k)

≤ Chk+s−1+αmin(0,2−s)(‖u‖k+1 + ‖p‖k).

The last estimate, together with (28), completes the proof of the lemma. ¤

We point out that the technique in establishing Lemma 3 can be applied to derive
error estimates for u−u∗h in negative norms. To the author’s best knowledge, there
are no results in existing literature for estimating the error u − uh in negative
norms. In fact, we wonder if it is possible to have any optimal order error estimates
for u− uh in applicable negative norms.

6. Superconvergence

The results of super-approximation developed in the previous two sections can
be used to derive superconvergence for the finite element approximate solution to
the Stokes equations. The following is a superconvergent result for the velocity
approximation.

Theorem 2. Assume that (12) holds true with 1 ≤ s ≤ k + 1 and Vτ ⊂
Hs−2(Ω)2. If (uh; ph) is the finite element approximation of the solution (u; p) of
(6), then we have

‖u−Qτu∗h‖+ hα‖∇τ (u−Qτu∗h)‖
≤ Chα(r+1)‖u‖r+1 + Chσ(‖u‖k+1 + ‖p‖k),(29)

where σ = k + s− 1 + αmin(0, 2− s).

Proof. By the definition of Qτ and the relation (13) between τ and h, we have

(30) ‖u−Qτu‖ ≤ Cτ r+1‖u‖r+1 ≤ Chα(r+1)‖u‖r+1.

Combining (30) and (23) gives

‖u−Qτu∗h‖ ≤ ‖u−Qτu‖+ ‖Qτu−Qτu∗h‖ ≤ Chα(r+1)‖u‖r+1

+ Chk+s−1+αmin(0,2−s)(‖u‖k+1 + ‖p‖k),

which completes the estimate for ‖u−Qτu∗h‖ in (29). The gradient term hα‖∇τ (u−
Qτu∗h)‖ can be estimated in a similar manner, and is thus omitted. ¤
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For the pressure approximation, we have the following superconvergence.
Theorem 3. Assume that (12) holds true with 1 ≤ s ≤ k + 1 and Wτ ⊂

Hs−1(Ω). Let (uh; ph) be the finite element approximation of the solution (u; p) of
(6). Then, we have

(31) ‖p−Rτph‖ ≤ Chα(t+1)‖p‖t+1 + Ch% (‖u‖k+1 + ‖p‖k) ,

where % = k + s− 1 + αmin(0, 1− s).

Proof. By the definition of Rτ and the scale relation (13), we have

(32) ‖p−Rτp‖ ≤ Cτ t+1‖p‖t+1 = Chα(t+1)‖p‖t+1.

Thus, it follows from (32) and (16) that

‖p−Rτph‖ ≤ ‖p−Rτp‖+ ‖Rτp−Rτph‖ ≤ Chα(t+1)‖p‖t+1

+ Chk+s−1+αmin(0,1−s)(‖u‖k+1 + ‖p− ph‖k),(33)

which completes the proof. ¤

The velocity estimate can be optimized by choosing α = αu such that

(34) αu(r + 1) = k + s− 1 + αumin(0, 2− s).

The corresponding error estimate is given by

‖u−Qτu∗h‖ + hαu‖∇τ (u−Qτu∗h)‖
≤ Chαu(r+1) (‖u‖r+1 + ‖u‖k+1 + ‖p‖k) .

Similarly, the pressure estimate can be optimized by choosing α = αp such that

αp(t + 1) = k + s− 1 + αpmin(0, 1− s).

The corresponding error estimate for the post-processed pressure approximation is
given by

‖p−Rτph‖ ≤ Chαp(t+1) (‖p‖t+1 + ‖u‖k+1 + ‖p‖k) .

The results are summarized as follows.
Theorem 4. Assume that (12) holds true with 1 ≤ s ≤ k + 1. Let the surface

fitting spaces Vτ and Wτ be sufficiently smooth such that Vτ ⊂ Hs−2(Ω)2 and
Wτ ⊂ Hs−1(Ω). Let (uh; ph) be the finite element approximation of the solution
(u; p) of (6). Denote by u∗h the modified/corrected approximation such that over
each element T ,

u∗h(x) = uh(x) + γh2
T (f(x)−∇ph(x) + ∆uh(x)), x ∈ T.

Then, the post-processed velocity approximation Qτu∗h satisfies the following su-
perconvergent estimate:

‖u−Qτu∗h‖ + hαu‖∇τ (u−Qτu∗h)‖(35)

≤ Chαu(r+1) (‖u‖r+1 + ‖u‖k+1 + ‖p‖k) ,

where

(36) αu =
k + s− 1

r + 1−min(0, 2− s)
.

As to the pressure unknown, the post-processed pressure approximation Qτph sat-
isfies the following estimate

‖p−Rτph‖ ≤ Chαp(t+1) (‖p‖t+1 + ‖u‖k+1 + ‖p‖k) ,
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where

(37) αp =
k + s− 1

t + 1−min(0, 1− s)
.

It should be pointed out that the coarse scale for postprocessing the velocity might
be different from that for the pressure in the theoretical optimization.

As an illustrative example, we consider an application of the superconvergence
theory on the Pk+1−Pk element. In this case, the finite element spaces Vh and Wh

are defined as follows:

Vh = {v ∈ C0(Ω)2 : v|T ∈ (Pk+1(T ))2,∀T ∈ Th,v|∂Ω = 0}
and

Wh = {q ∈ C0(Ω) : q|T ∈ Pk(T ), ∀T ∈ Th} ∩ L2
0(Ω),

or
Wh = {q ∈ L2

0(Ω) : q|T ∈ Pk(T ), ∀T ∈ Th},
where Pk(T ) consists of all the polynomials with degree less or equal to k defined
on the element T .

Let (uh; ph) be the solution of the stabilized finite element formulation (6) with
Vh and Wh defined as above. It follows from Theorem 1 that the following error
estimate holds true:

‖∇(u− uh)‖+ ‖p− ph‖ ≤ Chk(‖u‖k+1 + ‖p‖k).

But for the L2 projected approximation, we have from Theorem 4 that

‖u−Qτu∗h‖+ hαu‖∇τ (u−Qτu∗h)‖ ≤ Chαu(r+1) (‖u‖r+1 + ‖u‖k+1 + ‖p‖k)

and
‖p−Rτph‖ ≤ Chαp(t+1) (‖p‖t+1 + ‖u‖k+1 + ‖p‖k)

with αu and αp defined in (36) and (37) respectively.
For the P1 − P0 elements, it is well known that the velocity is over-constrained

and a locking phenomenon will occur when this element is used in the standard
finite element formulation. However, this simple velocity/pressure combination can
be used in the stabilized finite element formulation. As to superconvergence, since
the order of polynomial here is k = 1, it is sufficient to assume the H2-regularity
(i.e., s = 2 in Theorem 4). The fitting finite element space Vτ must be selected to
satisfy Vτ ⊂ Hs−2(Ω). Since s = 2 in the application to the P1 − P0, we see that
Vτ could be chosen as a finite element space consisting of discontinuous piecewise
polynomials of degree r ≥ 0. Using Theorem 4 we obtain the following estimate for
the velocity approximation:

(38) ‖u−Qτu∗h‖ ≤ Ch2(‖u‖r+1 + ‖u‖2 + ‖p‖1),

(39) ‖∇τ (u−Qτu∗h)‖ ≤ Ch
2r

r+1 (‖u‖2 + ‖u‖r+1 + ‖p‖1).
Therefore, we see no improvement for the velocity error in L2-norm. But (39) is a
superconvergence result for the gradient of the velocity. For example, with r = 2
(i.e., projection to the space of piecewise quadratic functions), the post-processed
velocity approximation has the following superconvergence:

(40) ‖∇τ (u−Qτu∗h)‖ ≤ Ch
4
3 (‖u‖3 + ‖p‖1).

The above estimate is useful for an accurate determination of the fluid velocity.
As to the pressure approximation, observe that the theory presented in Theorem

4 requires that Wτ ⊂ Hs−1(Ω) = H1(Ω) in the post-processing method. Let Wτ



722 J. LI, J. WANG, AND X. YE

be a surface fitting space consisting of continuous piecewise polynomials of degree
t ≥ 1. By using Theorem 4 we obtain the following estimate

(41) ‖p−Rτph‖ ≤ Ch
2(t+1)

t+2 (‖u‖2 + ‖u‖t+1 + ‖p‖1).
With s = 2 and t = 1, we have the following error estimate for the pressure
approximation

(42) ‖p−Rτph‖ ≤ Ch
4
3 (‖u‖2 + ‖p‖2).

With s = 2 and t = 2, the pressure approximation can be improved by

(43) ‖p−Rτph‖ ≤ Ch
3
2 (‖u‖2 + ‖p‖3).

Assume that the exact solution is sufficiently smooth. Then it is not hard to see
that

‖∇τ (u−Qτu∗h)‖ ≈ O(h2), as r →∞
and

(44) ‖p−Rτph‖ ≈ O(h2), as t →∞.

In practical computation, there is no need to use very high order of polynomials
in the L2 projection method. The results developed in this paper are robust and
applicable to finite element partitions with the usual assumption on regularity. In
theory, the L2 projection is computationally easy to implement. But it remains to
numerically verify the efficiency of the superconvergent algorithms presented and
analyzed in this paper.
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