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SUPERCONVERGENCE OF GALERKIN SOLUTIONS FOR
HAMMERSTEIN EQUATIONS

QIUMEI HUANG AND HEHU XIE

Abstract. In the present paper, we discuss the superconvergence of the interpolated
Galerkin solutions for Hammerstein equations. With the interpolation post-processing
for the Galerkin approximation x, we get a higher order approximation 122;*1%, whose
convergence order is the same as that of the iterated Galerkin solution. Such an interpo-
lation post-processing method is much simpler than the iterated method especially for the
weak singular kernel case. Some numerical experiments are carried out to demonstrate
the effectiveness of the interpolation post-processing method.
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1. Introduction

In this paper, we investigate the superconvergence of the interpolated
Galerkin solutions for Hammerstein equations with smooth and weakly sin-
gular kernels. As for Hammerstein equations, various numerical methods
have been used to get the approximations. A variation of Nystrom’s method
was proposed by Lardy [18]. Two different discrete collocation methods were
proposed by Kumar [17] and Atkinson and Flores [3]. Brunner [7] discussed
the connection between implicitly linear collocation methods and iterated
spline collocation methods for Hammerstein equations, and then extended
the results to a class of nonlinear Volterra-Fredholm integral equations. A
degenerated kernel method for Hammerstein equations was introduced by
Kaneko and Xu [14]. Kaneko, Noren, and Xu [13] used the product integra-
tion method and the collocation method to solve Hammerstein equations
with weakly singular kernels, and got some superconvergence properties.
A survey paper by Atkinson [2] gave more information about numerical
solutions of Hammerstein equations. The superconvergence of the iterated
Galerkin solutions for Hammerstein equations with smooth as well as weakly
singular kernels was probed by Kaneko and Xu [16]. Moreover, the supercon-
vergence of the iterated collocation method for Hammerstein equations with
smooth as well as weakly singular kernels was studied by Kaneko, Noren,
and Padila [11].

For Hammerstein equations, generally, the iterated post-processing method
(see, for example, [4, 7, 11, 16]) is used to accelerate the approximation. If
the kernel is sufficiently smooth, it is very easy to get the iterated Galerkin
solutions. But if the kernel is weakly singular, there are many difficulties to
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get the iterated Galerkin solutions since the classical numerical quadrature
is no longer valid.

In this paper, we use another type of acceleration method, the interpola-
tion post-processing method, to get the same superconvergence. Applying
the interpolation post-processing to the Galerkin approximation xj, we get
a higher accuracy approximation I;;_lzrh (which is named the interpolated
Galerkin solution throughout this paper), whose convergence order is the
same as that of the iterated Galerkin solution. Furthermore, the interpo-
lation post-processing method is simpler than the iterated post-processing
method since we just need to interpolate x; at some nearby points to get the
interpolated Galerkin solution instead of computing a nonlinear integral for
each subinterval which is especially difficult for the weakly singular kernel.

The interpolation post-processing technique can be used to improve the
approximate rate of finite element solutions for various partial differential
equations, integral equations, and integro-differential equations, and the cor-
responding work has been contained in some papers (such as [22, 26]) and
some monographs (see [20, 21| for example). It has been found that this
technique is both simple and of higher accuracy. For Hammerstein equa-
tions, Huang and Zhang [10] applied the interpolation post-processing to
collocation solutions and obtained the same superconvergence as that of the
iterated collocation method.

Here is the outline of the remaining sections. The Galerkin method and
the iterated Galerkin method for Hammerstein equations are presented in
Section 2. And some materials for the approximation theory are also re-
viewed in this section to make the paper self-contained. In Section 3, main
results about the superconvergence of interpolated Galerkin solutions, in-
stead of the iterated collocation solutions, are obtained. Finally, numerical
experiments are listed in Section 4 to show the efficiency of the interpolation
post-processing method.

2. The Iterated Galerkin Method

In this section, the Galerkin method and the iterated Galerkin method
are considered for the following Hammerstein equation

1
(2.1) x(t) — /0 k(t,s)Y(s,xz(s))ds = f(t), 0<t<1,

where k, f and ¢ are known functions and x is the function to be determined.
Define ki(s) = k(t,s) for t,s € [0,1] to be the ¢ section of k. We assume
throughout this paper unless stated otherwise, the following conditions on
k, f, and % hold:

L lim by~ kel =0, 7€ [0,1];
—T
2. M = sup fol |k(t, s)|ds < oo;
0<t<1

3. feCo,1];
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4. (s, x) and its partial derivative 1)1 with respect to the second vari-
able are continuous in s € [0,1] and Lipschitz continuous in z € (—o0, 00),
i.e., there exists a constant C; > 0 such that

(2.2)  |Y(s,z1) —Y(s,x2)] < Cilz1 —x2|, for all x1,z9 € (—00,00);
OV (¢, 21) — OVt 29)| < Colzy —aa], for all 21, x5 € (—00, 00);
5. for z € C[0,1], ¥(-, z(-)), v OV (-, z(-) € C[0,1].
Let

b
(K0)(2) () = / k(t, 8 (s, (s))ds.

We get the corresponding operator form of (2.1)
(2.3) x— KVx = f.

For any positive integer n, let

T, O=th<ti < - <tp1 <tp=1
be a quasi-uniform partition of [0,1]. Namely, it satisfies the condition that
there exists a constant C' > 0, independent of n, such that

max (tl' — tifl)
1<i<n

: <C, forall n.
min (ti — tifl)
1<i<n

The subintervals generated by this partition of T} are denoted by I;, i.e.,
Il = [to,tl], Il' = (tifl,ti] (Z = 2,3, e ,’I’L). Let hl = ti—tz;l (Z = 1,2, tee ,n)

and h = ax hi. We assume that the mesh size h of the partition tends
<n

to zero as n — oo. With r, a positive integer, let S°(T},) be the space of
all piecewise polynomials of order r (i.e., of degree at most r — 1) on each
subinterval I;

SO(Ty,) = {x € L*[0,1] : =|;, € P,_y, for each i = 1,2,--- ,n},

where the superscript 0 denotes there is no continuity condition imposed
at the breakpoints, P._1 denotes the space of polynomials of degree not
exceeding 7 — 1. Tt is evident that N := dim(S%(7})) = nr.

Let Py, : C[0,1] 4+ S%(T},) — S%(T},) be an orthogonal projection operator
with respect to the Lo inner product

1
(u,v) = / u(s)v(s)ds
0
satisfying that, for u € SO(T},)
(24) (u7 .7}) = (u? Phx)

It is known that the projection P, when restricted to C[0, 1] is uniformly
bounded, i.e.,

(2.5) C = Sl}le HPh‘C’[O,l]” < 00,

and Py, — I pointwisely in C[0,1] as h — 0.
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In this paper, C denotes a generic constant which may takes different
values at its different occurrences, but will be independent of n.

In many cases, equation (2.1) possesses multiple solutions. Therefore,
we assume for the remainder of this paper that we only treat an isolated
solution zg of (2.1).

Let pi; (i=1,---,n;j =1,---,r) be the basis function of each subinter-
val I; and S9(T},) = span{¢;;}. Then the Galerkin method is to find

n T

(2.6) xp = Z Z bijpij
i=1 j=1

that satisfies

(27) Th — PhK\I/$h = th

Equivalently, we need to find the unknown coefficients {b;;} (i = 1,--- ,n;j =
1,---,7) from the following system of nonlinear equations

n r 1 n o r
(28) DO byl o) — (/0 E(t,s)(s, Y > bijpig(s))ds, or)

i=1 j=1 i=1 j=1
=(f,om), 1<k<n, 1<I<r.
Let’s define
(2.9) ot = f 4+ KWy,
Applying P, to the both sides of (2.9), we have
(2.10) Pyt = Pof + P,K Uy,
Comparing (2.10) with (2.7), we see that
(2.11) xp, = Pyl
and the iterated Galerkin approximation a:{l satisfies
(2.12) z} = f+ KUP,f.

Let I = [0,1]. We define W;"(I), for 1 < p < oo and m (a nonnegative
integer), to be the Sobolev space of functions g such that g(*) ¢ L,(I) for

k=0,1,---,m, where ¢/*) is the k—th order distributional derivative of g.
The space W)*(I) is equipped with the norm

m
gl s =D g™, -
k=0

For simplicity, we write || - | p.r as || - ||mp when I = [0,1]. If p = oo, the
norm of the space W2 (I) is defined by

— (%)
oo = gmax {119 o}

We recall the following convergence and superconvergence results from

[16].
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Lemma 2.1 Let xy be an isolated solution of equation (2.3) and x, the
solution of equation (2.7) in a neighborhood of xy. Assume that 1 is not an
eigenvalue of (KW) (xq), where (KW) (xg) denotes the Fréchet derivative of
KV at xg. If 1o € WL (1) (0 <1< 7), then

|20 — Zhloe = O(R*),

where p = min{l,r}. If o € Wé([) (0<i<r, 1<p< ), then
[z0 — @h 0 = O(R),

where v = min{l — 1,r}.

Then, let’s introduce the following Lemma 2.2 which establishes the su-
perconvergence of the iterated Galerkin method in a general setting .

Lemma 2.2 Let xg € C|0,1] be an isolated solution of equation (2.3), x,
be the unique solution of (2.7) in the sphere B(xg,d1) for some 61 > 0 and
z! be defined by the iterated scheme (2.9) (or (2.12)). Assume that 1 is not
an eigenvalue of (KW) (xg). Then, for all 1 < p < oo,

lzo — z4loc

scﬂm—mm&+am i [k(t, )0 OD (- 20() — ullog]
0<t<1ueSA(Ty)

zo — Pro 0,p} ;
where 1/p+1/q =1 and C is a constant independent of h.
The following two lemmas are obtained from the results of Lemma 2.2.
First, when both the kernels and the solutions of equation (2.1) are smooth,
the following result holds.
Lemma 2.3 Letxg € Wé([) (0 <1 <r) be an isolated solution of equation
(2.3) and xj, the unique solution of (2.7) in the sphere B(xo,01) for some
61> 0. Let xl be defined by the iterated scheme (2.9) (or (2.12)). Assume
that 1 is not an eigenvalue of (KW¥)'(xg) and for allt € [0,1], k()0 OV (-, zo(-)) €
W (0<m <r). Then

lz0 — @}l = O(RFMIE),
where 1/p+1/g =1, p = min{l,r}, and v = min{m, r}.

When the kernel k is of weakly singular type, we consider the following
special form

(2.13) k(t,s) = m(t, s)ga(|t — s|),
where m € CHL(I x I) and

271 0<a<l,
(214) i) ={ s =

Generally, the solution zg of equation (2.3) does not belong to W,(I). Let
S be a finite set in [0, 1] and define the function wg(t) = inf{|t —s| : s € S}.
A function is said to be of T'ype(a, k, S), for —1 < a < 0, if

e (0)] < Clws))*F, t¢s,
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and for a > 0, if the above condition holds and = € Lip(«). Here Lip(a) =
{z : |z(t) — z(s)| < C|t — s|*}. It was proved by Kaneko, Noren and
Xu [12] that if f is of T'ype(S, p, {0,1}), then a solution of equation (2.1)
with the kernel defined by (2.13) and (2.14) is of T'ype(y, 1, {0,1}), where
v = min{a, 8}. The optimal convergence rate of the Galerkin solution zj,
to xp can be recovered by selecting the knots of [0,1] that are defined by

t; = (1/2)(2i/n)?, 0<i<n/2,

(2'15) ti=1—1t,_,, n/2 <1< n,

where ¢ = r/~ denotes the index of singularity(see [12] for details).
Applying Lemma 2.2 to equation (2.1) with kernels given by (2.13) and

(2.14) and use SO(T}) (where S°(T},) of splines with nonuniform knots is

defined as (2.15)) as approximate spaces, the authors got the following result.

Lemma 2.4 Let xy be an isolated solution of equation (2.3) with kernels
given by (2.138) and (2.14), xp, be the unique solution of (2.7) in the sphere
B(z0,61) with some &, > 0 and knots defined by (2.15) and x} be defined by
the iterated scheme (2.9) or (2.12). Assume that 1 is not an eigenvalue of
(KW (z0) and that OV (- xo(")) is of Type(a,,{0,1}) for a > 0 whenever
xq is of the same type. Then

(2.16) 2o — 21 ||0 = O(A"F9).

The following lemma is concerned with spline approximation in L,, spaces
(see [9] for details).
Lemma 2.5 Let1<p<oo, g€ W (I), m >0. Then for eachn > 1,

there exists ¢p, € SO(T},) such that

lg — én

where m* = min{m, r}.

0p < ch™ 19llm* ps

3. Superconvergence of Interpolated Galerkin Method

In this section, we apply the interpolation post-processing technique to
the Galerkin solution to get a superconvergent approximation.

Theorem 3.1 Let zp € C[0, 1] be an isolated solution of equation (2.3) and
xp, be the unique solution of (2.7) in the sphere B(xg,61) for some §; > 0.
Py, is the orthogonal projection operator defined by (2.4). Assume that 1 is
not an eigenvalue of (KW)'(xg). Then, for all 1 < p < oo,

(3.1) ”iL'h — Ph.%'QHOO <C {H.CI}O — PthHio

+ sup inf |kt ) OD (- 2o()) — ullogllmo — thvoHo,p}a
0<t<1ueSY(Ty)

where 1/p+1/q =1.
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Proof. For simplicity, we use the result of Lemma 2.2. In fact, from (2.11),
(2.5), and Lemma 2.2, we obtain

|z, — Pholloo = | Phat, — Prolloo
< Sup 125 - |z, = zolloo < Cllzf, — @ol|oo

< C{llzo — Puzol%

+ sup inf )Ilk(t,')w(o’l)(wwo(‘))—u 0

Ty — Phﬂfo\lo,p} :
0<t<1 ueSY(Th

This completes the proof. ([l

Remark 3.1 In fact, the interpolated post-processing has nothing to do
with the iterated post-processing. That is, these two kinds of post-processing
are independent with each other. We can also prove Theorem 3.1 without
the results of Lemma 2.2. See Appendix for details.

(3.1) shows that zj, (the Galerkin approximation) is closer to Pyzo (the
orthogonal projection of xg) than to the solution z( itself, which is called
the superclose. From (3.1), we can obtain global superconvergence of the in-
terpolated Galerkin solutions by applying the interpolation post-processing
to the Galerkin solutions.

We assume that T}, is gained from 75, with mesh size 2h by subdividing
each element into two equal elements, so that the number of elements N for
T}, is a even number. Then we define a higher order interpolation operator
1271 of degree (2r—1) on each bigger element I;Ul; 41 (i = 1,3,5,--- , N—1)
associated with T}, according to the following conditions:

(3.2) I e o, € Pro1,  i=1,3,5,--- N —1,

and

(3.3) / (x — I3y 'a)vds =0, Yo € Po_y(L)), 1=1i,i+1.
I

It is easy to check that
(34) 'R, =137" and |35 '|ee < Olv]les, Vv € SOTH).

Then, we get the global superconvergence by interpolation post-processing
method.

When both the kernels and the solutions of equation (2.1) are smooth,
the following result holds.
Theorem 3.2  Let zg € WH(I)NWZI(I) (0 <1 <) be an isolated solution
of equation (2.3) and xp, the unique solution of (2.7) in the sphere B(xg, 1)
for some 01 > 0. The interpolation operator 122;_1 of degree (2r-1) is defined
by (3.2) and(3.3). Assume that 1 is not an eigenvalue of (KW) (x¢) and for
all t € 0,1], ke(-)yp OV (- 2o()) € W (0 <m < r). Then

123 n — olloo = O(hTmni0),

where % + é =1, p=min{l,r} and v = min{m,r}.
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Proof. From (3.4), the interpolation error estimates, and Theorem 3.1, we
have

(3.5) (137" — zolloo

< |3 1$h — I3y~ Puzoll o + ||13271Ph930 — 2[00
< Cllan — Puwolloo + 135 w0 — @ollo

< C{llwo — Pamoll%,

+osup inf k(0D 0() — ullogllzo — Pao
0<t<1 ueSU(Ty)

It follows from Lemma 2.5 that, for all u € S2(T},),

,p} + O(R*).

20 — Phzollop < llzo — Pawollso < llzo — ullos + [ Pa(u — 20)| o
< (1+0) inf — e < O(hM),
< ) nf 20 — ulles < O(R¥)

P (Th B
where p = min{/, r}. Similarly, Lemma 2.5 leads to that

sup inf [[k(t, )@V (-, 20() — ullo, < O(RY),
0<t<1ueS(Ty)

where v = min{m, r}. Then, from Theorem 3.1 and Lemma 2.1, we complete
the proof of Theorem 3.2. (]

The superconvergence of the interpolated Galerkin solutions of Hammer-
stein equations with weakly singular kernels is also considered.

The following theorem gives the superconvergence for the equation (2.3)
with the kernels given by (2.13) and (2.14).
Theorem 3.3 Let zg € C[0,1] N WZI*(I) be an isolated solution of the
exact equation (2.3) with kernels defined by (2.13) and (2.14), xp be the
unique solution of the Galerkin equation (2.6) in the sphere B(xg,d1). The
interpolation operator Iy~ ' of degree (2r-1) is defined by (3.2) and (3.3).
Assume that 1 is not an eigenvalue of (KW) (z0) and OV (-, xo(-)) is of
Type(a,r,{0,1}) for a > 0 whenever xq is of the same type. Then we have

(3.6) 127y, — wolleo = O(R™T).

Proof. From (3.4), (2.10), and the interpolation error estimates, we have

123 o = wolloo < M3 n — I35 Pholloo + 113, Pazo — %ol
< Cllan — Pawollo + 135 20 — ol
< Coup|Pallieh — ol + 10— 0
< COllzy, — ol + O(A7),
which, together with Lemma 2.4, leads to (3.6). O

Since the theoretical results of the superconvergence of the interpolated
Galerkin solutions are the same as that of the iterated Galerkin solutions,
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why we use the interpolation post-processing? What are the advantages of
this post-processing? We then give a comparison between these two post-
processing methods.

o [terated Galerkin method
Since we must compute the integral

1
x;ll(t) = f(t) —|—/ k(t,s)(s,x(s))ds := f + U,
0

the computational complexity of x,IL is determined by the the com-
putational complexity of U.
(1) For the smooth kernel case.
The nonlinear integral U can be approximated directly by the
classical numerical quadrature.
(2) For the weakly singular kernel case.
The classical numerical quadrature is no longer valid since it
won’t converge the true solution any more. We need to use
the graded mesh generated by the singularity of the kernel to
approximate the nonlinear integral which may increase greatly
the complexity of the numerical quadrature (see [15] for details).
e Interpolated Galerkin method
There is no such difficulty since we just need to interpolate zj at
some nearby points to get the interpolated Galerkin solution.

Therefore, we conclude that the interpolation post-processing method is not
only effective but also simple.

Remark 3.2 By the linear transformation ® from [0,1] to [a,b], ®(t) =
(b—a)t+a, t €0,1], all the lemmas and theorems can be extended from

[0,1] to [a,b].
4. Numerical Experiments

In this section, two examples are given to illustrate the theory established
in the previous sections.
Example 4.1 The equation

x(t) = t? + (sint) - /1 exp(—2s)z%(s)ds, te[-1,1]
~1

can be proved to have two solutions, one of which is
z(t) = t* + csint,

where ¢ = 1.9577839864709. . ..

We choose uniform partition with mesh h = 2/n (n = 8,16, 32,64, 128).
The basis functions ¢;; (i = 1,--- ,n;j =1,--- ,r) are generated by selecting
the r Gaussian points in each subinterval as interpolated points. Results are
obtained by using piecewise linear functions (r = 2) and piecewise quadratic
functions (r = 3). The spline coefficients in (2.8) are obtained by using
Newton-Raphson algorithm. The tabulated errors are estimated by taking
the largest of the computed errors at z; = —1 +4/50 (¢ = 0,1,---,100).
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en = ||z — zplloo, €, = ||z — Igg_lthoo, and €] = ||z — a:ﬁHoo denote the
approximate errors which are defined by

max{|z(z) — zn(z)| : 1 =0,1,---,100},
max{|z(z;) — I%*lﬂch(zm :1=20,1,---,100},
and
max{|z(z) — 21 (2)| :i=0,1,---,100}.
For simplicity, we introduce some notations as follows:

Rp, =logy(en/ensa), Rj, =logy(ey/e)n), Ry =logy(ey/eh o).

Numerical results are listed in the following tables.

Table 1 The errors of the approximate solutions for r = 2
n en Ry, e, R}, ey R}
16  4.6878e-3 7.3792e-6 7.9916e-6
32 1.1799e-3 1.9903 4.6929e-7 3.9749 5.0759e-7 3.9767

64  2.9592e-4 1.9954 2.9646e-8 3.9846 3.1854e-8 3.9941
128 7.4094e-5 1.9977 1.8575e-9 3.9964 2.0255e-9 3.9751

Table 2 The errors of the approximate solutions for r = 3
n en Ry, e, R}, ey R}
8 2.536le-4 5.6658e-7 1.3429e-6

16 3.1824e-5 2.9944 9.2967e-9  5.9294 2.1982e-8  5.9329
32 3.9818e-6 2.9986 1.4819e-10 5.9711 3.4824e-10 5.9800

The results displayed in the above table show that the convergence or-
der of the two post-processing are all O(h?") which support the theory of
Theorem 3.2. Here, because the kernel function k(t, s) is of the degenerate
from k(t,s) = g(s) - h(t), the computational cost of the two post-processing
methods are all very small, we didn’t list the elapsed time.

Example 4.2. Let’s consider the equation
1.2
z=(s)
(4.1) x(t) —/ ———ds = f(t), tel0,1],
o a0 telod]

where f is selected so that x(t) = /¢ is the solution. The splines of order 1
(¢ = 3, see [19] for details) with knots defined by equation (2.15) in terms
of ¢ is used in the computation.

The interpolated points are M; (i = 1,---,n) (one Gaussian point as
interpolated point in each subinterval). Let [;(t) be the corresponding La-

n
grange basis function and xp(t) = Y a;jl;j(t). Then the iterated Galerkin
j=1
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solution satisfies:

j=1
in which z; =¢/100 (i =0, --- ,100).

Here, because of the singularity of the kernel, A(i,7) can not be ob-
tained directly the classical numerical quadrature. We approximate each
A(i,j) (i=0,---,100;7 = 1,--- ,n) on the graded mesh corresponding to
the original point z; which increases greatly the complexity of the numerical
integration.

However, there is no such difficulty for the interpolated Galerkin method,
since we just need to use two adjacent points to get a linear interpolation.

We denote the elapsed time of the interpolated Galerkin solutions by
timel and the elapsed time of the iterated Galerkin solutions by time2. The
results are listed in the following table.

Table 4 The errors of the approximate solutions for r = 1

n en Ry, e, R}, timel ey R} time2

32 3.8004e-2 1.5698e-2 0.0000 1.6764e-2 5.5780
64  1.7258e-2 1.1388 3.3302e-3 2.2369 0.0000 5.5771le-3 1.5878 9.9849
128 8.5037e-3 1.0211 8.6349e-4 1.9473 1.50e-2 2.5618e-3 1.1223 18.703
256 4.2029e-3 1.0167 2.2754e-4 1.9240 1.60e-2 1.3308e-3 0.9449 36.562

From the table above, we conclude that the interpolated Galerkin method
is not only effective but also simple.

Acknowledgements. The authors would like to thank the anonymous
referee for constructive remarks and comments, which improve significantly
the presentation of the paper.

Appendix Here, we give a Proof of Theorem 3.1 which is independent of

the iterated Galerkin solution x,Il

We apply the mean-value theorem to v (s,y) at y = yo to get

(42)  ¥(s,y) =v(s,50) + OV (5,90 + 0y — 0)) (¥ — o).
where 6 := 0(s,y0,y) with 0 < § < 1. Also let

(4.3) 9(t, 5,90, y,0) = k(t,s)v' "V (5,50 + 0(y — v0)),
1

(44)  (Gpa)t) = /O ot 5, Pao(s), Parcl (), 0)(s)ds,

and

1
(Gz)(t) = /0 gi(s)z(s)ds, where g(s) = k(t, s) OV (s, 20(s)).
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Proof. From (2.3) and (2.7), we see that

xp — Prrg = PpRKVzx, — P,KVxg
(4.5) = Py(KWz), — KUPyxg) + Py(KUPyzo — KUx).
From (2.11) and (4.4), it is evident that

1
(th)(t):/o g(t, s, Prao(s),zp(s),0)x(s)ds.

Then, we see from (4.2) and (4.3) that

1
(4.6) KYxp — KVPyxo = /0 k(t, s)[v (s, zp(s) — (s, Prao(s))]ds

1
= / k(t, s)0 OV (s, Puao(s) + 0(xn(s) — Puao(s)) [zn(s) — Puao(s)]ds
0
= Gh(l'h — Pth)-
Substituting (4.6) into (4.5), we obtain
(47) Th — tho = PhGh(xh — Phx()) — Ph(K\I/Ph[IZO — K\I/xo)

It follows from the Lipschitz condition (2.2) imposed on (1) and condition
2 that for z € [0, 1]

|Gre — G|
1
< Oy Sup/ |k (t, s)|ds - |2l - (| Pazo — Zolloo + |zn — Prolloo)
0<t<1Jo
< CoM([|Phzo — 2olloo + [[Zn — Tolleo + |70 — Paolloo) * [|Z[|o
< C([[Przo = 2olloo + llzn — Tolloo) * (|| co-

Then, we have
IGr — Gllooc — 0 as h — 0.
Also, for each z € C[0,1], it is easy to verify that Gz € C[0, 1].
Since P}, — I pointwisely in C[0,1] as h — 0, we have
P,Gx — Gx as h — 0.
That is, P,G — G pointwisely in C[0,1] as h — 0.
As Py, is uniformly bounded, we have that for each z € C[0, 1]
|1PhGrae — Gzl < ||PhGrr — PhGx||oo + ||PhGx — G|/ o
< Sl}llp | Pulll|Grhe — Gz||oo + || PnGr — G2 || 0o-

Thus, P,G), — G pointwisely in C[0, 1] as h — 0. By conditions 4 and 5,
we know that there exists a constant C' > 0, such that for any h,

[0V (s, Pywo(s) + O(xn(s) — Przo(s)))|

WO (s, Pyao(s) + 0(zn(s) — Pawo(s)) — 100 (s, 20)| + [ O (s, 20))|
Csl| Prxo — 2ol|co + C28||xp, — Praol|co + My

Co|| Przo — 20|00 + C20(||xn — zo||loo + |0 — Prxolleo) + M1 < C.

VAN VANVAN
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Therefore,

[ PhGrloo
Sup 1Pl - [Ghzlloo < CllGh]lo

IA

IN

C sup
0<t<1

Cllzoo,

1
/0 B(t, )9O (s, P (s) + 0z (5) — Praro(s)))(s)ds

IN

and
‘PhGh{L'(t) — PhGh.’L'/<t) ‘

1
/O k(t, s)pOD (s, Paao(s) + 0(xn(s) — Puao(s)))(z(s) — 2'(s))ds

IN

sup [| Py ]| -
h

IN

Cllz — 2'||co-

This implies that {P;,G},} is collectively compact (see [1] for details). Since
G = (KW)/(x0) is compact and (I — G)~! exists, it follows from the theory
of collectively compact operators that (I — P,G}) ™! exists and is uniformly
bounded for sufficiently small h. Therefore, by (4.7), we have

sup |(vp — Puao)(t)] < C sup |Py(KVYPyzo — KWVao)(t)]
0<t<1 0<t<1

< C sup [(KVYPyzo— KVx)(t)|.
0<t<1

Let d(t) = (KU Ppxog — KWUxg)(t)|. We will estimate the term d(¢).

Using the mean-value formula (4.2) with y = z¢ and yo = Ppxo and (4.3),
we have

d(t)
1
— /0K(t,s)[w(s,xo(S))—¢(S,Phw0(5))]d5

1
= /0 K(t, )%V (s, Poao(s) 4 0(zo(s) — Puxo(s)))[zo(s) — Przo(s)]ds

1
= /0 g(t, s, Prao(s),xzo(s),0)[xo(s) — Prxo(s)]ds|.

Note that Py, is the orthogonal projection operator from C[0,1] + S%(T},)
onto SY(T},), that is,

1
/0 u(s)[zo(s) — Prao(s)]ds =0 forallu € S(T},).
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Thus, for all u € S(T})

1
d(it) = /0 [g(t, s, Prxo(s),xzo(s),0) — u(s)][zo(s) — Prxo(s)]ds

1
< / l9(t, 5, Pawo(s), zo(s),0) — gi(s)|ds||xo — Przolloo
0

" / [au(s) — u(s)|fzo(s) — Praro(s))ds|.

By (2.2), we have
1
(4.8) /0 |g(t, 5, Pao(s), wo(s),0) — ge(s)|ds
1
= /O ‘K(t, s) WO’U(S, Przo(s) + 0(xo(s) — Puxo(s)))
fw(o’l)(s, 1:0(8))] } ds

IN

1
02/ K (¢, 5)|ds|[z0 — Pholoc
0
< CoM|lzg — Pholloo-
As % + % = 1, we have from Cauchy-Schwarz inequality that

(4.9) | / [96(5) — u(s)][z0(s) — Po(s)]ds]

< [lg: — ullog llzo = Pazollo,p-
Combining (4.8) and (4.9), we obtain
d(t) < Cllzo — Pazoll3s + gt — ullog - lzo — Pazollo, forallu € SP(Th).
Therefore, we complete the proof of Theorem 3.1. (]
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