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SUPERCONVERGENCE OF GALERKIN SOLUTIONS FOR
HAMMERSTEIN EQUATIONS

QIUMEI HUANG AND HEHU XIE

Abstract. In the present paper, we discuss the superconvergence of the interpolated
Galerkin solutions for Hammerstein equations. With the interpolation post-processing
for the Galerkin approximation xh, we get a higher order approximation I2r−1

2h xh, whose
convergence order is the same as that of the iterated Galerkin solution. Such an interpo-
lation post-processing method is much simpler than the iterated method especially for the
weak singular kernel case. Some numerical experiments are carried out to demonstrate
the effectiveness of the interpolation post-processing method.
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1. Introduction

In this paper, we investigate the superconvergence of the interpolated
Galerkin solutions for Hammerstein equations with smooth and weakly sin-
gular kernels. As for Hammerstein equations, various numerical methods
have been used to get the approximations. A variation of Nyström’s method
was proposed by Lardy [18]. Two different discrete collocation methods were
proposed by Kumar [17] and Atkinson and Flores [3]. Brunner [7] discussed
the connection between implicitly linear collocation methods and iterated
spline collocation methods for Hammerstein equations, and then extended
the results to a class of nonlinear Volterra-Fredholm integral equations. A
degenerated kernel method for Hammerstein equations was introduced by
Kaneko and Xu [14]. Kaneko, Noren, and Xu [13] used the product integra-
tion method and the collocation method to solve Hammerstein equations
with weakly singular kernels, and got some superconvergence properties.
A survey paper by Atkinson [2] gave more information about numerical
solutions of Hammerstein equations. The superconvergence of the iterated
Galerkin solutions for Hammerstein equations with smooth as well as weakly
singular kernels was probed by Kaneko and Xu [16]. Moreover, the supercon-
vergence of the iterated collocation method for Hammerstein equations with
smooth as well as weakly singular kernels was studied by Kaneko, Noren,
and Padila [11].

For Hammerstein equations, generally, the iterated post-processing method
(see, for example, [4, 7, 11, 16]) is used to accelerate the approximation. If
the kernel is sufficiently smooth, it is very easy to get the iterated Galerkin
solutions. But if the kernel is weakly singular, there are many difficulties to
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get the iterated Galerkin solutions since the classical numerical quadrature
is no longer valid.

In this paper, we use another type of acceleration method, the interpola-
tion post-processing method, to get the same superconvergence. Applying
the interpolation post-processing to the Galerkin approximation xh, we get
a higher accuracy approximation I2r−1

2h xh (which is named the interpolated
Galerkin solution throughout this paper), whose convergence order is the
same as that of the iterated Galerkin solution. Furthermore, the interpo-
lation post-processing method is simpler than the iterated post-processing
method since we just need to interpolate xh at some nearby points to get the
interpolated Galerkin solution instead of computing a nonlinear integral for
each subinterval which is especially difficult for the weakly singular kernel.

The interpolation post-processing technique can be used to improve the
approximate rate of finite element solutions for various partial differential
equations, integral equations, and integro-differential equations, and the cor-
responding work has been contained in some papers (such as [22, 26]) and
some monographs (see [20, 21] for example). It has been found that this
technique is both simple and of higher accuracy. For Hammerstein equa-
tions, Huang and Zhang [10] applied the interpolation post-processing to
collocation solutions and obtained the same superconvergence as that of the
iterated collocation method.

Here is the outline of the remaining sections. The Galerkin method and
the iterated Galerkin method for Hammerstein equations are presented in
Section 2. And some materials for the approximation theory are also re-
viewed in this section to make the paper self-contained. In Section 3, main
results about the superconvergence of interpolated Galerkin solutions, in-
stead of the iterated collocation solutions, are obtained. Finally, numerical
experiments are listed in Section 4 to show the efficiency of the interpolation
post-processing method.

2. The Iterated Galerkin Method

In this section, the Galerkin method and the iterated Galerkin method
are considered for the following Hammerstein equation

(2.1) x(t)−
∫ 1

0
k(t, s)ψ(s, x(s))ds = f(t), 0 ≤ t ≤ 1,

where k, f and ψ are known functions and x is the function to be determined.
Define kt(s) ≡ k(t, s) for t, s ∈ [0, 1] to be the t section of k. We assume
throughout this paper unless stated otherwise, the following conditions on
k, f , and ψ hold:

1. lim
t→τ

‖kt − kτ‖∞ = 0, τ ∈ [0, 1];

2. M ≡ sup
0≤t≤1

∫ 1
0 |k(t, s)|ds < ∞;

3. f ∈ C[0, 1];
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4. ψ(s, x) and its partial derivative ψ(0,1) with respect to the second vari-
able are continuous in s ∈ [0, 1] and Lipschitz continuous in x ∈ (−∞,∞),
i.e., there exists a constant C1 > 0 such that

|ψ(s, x1)− ψ(s, x2)| ≤ C1|x1 − x2|, for all x1, x2 ∈ (−∞,∞);(2.2)

|ψ(0,1)(t, x1)− ψ(0,1)(t, x2)| ≤ C2|x1 − x2|, for all x1, x2 ∈ (−∞,∞);

5. for x ∈ C[0, 1], ψ(·, x(·)), ψ(0,1)(·, x(·)) ∈ C[0, 1].
Let

(KΨ)(x)(t) ≡
∫ b

a
k(t, s)ψ(s, x(s))ds.

We get the corresponding operator form of (2.1)

(2.3) x−KΨx = f.

For any positive integer n, let

Th : 0 = t0 < t1 < · · · < tn−1 < tn = 1
be a quasi-uniform partition of [0,1]. Namely, it satisfies the condition that
there exists a constant C > 0, independent of n, such that

max
1≤i≤n

(ti − ti−1)

min
1≤i≤n

(ti − ti−1)
≤ C, for all n.

The subintervals generated by this partition of Th are denoted by Ii, i.e.,
I1 = [t0, t1], Ii = (ti−1, ti] (i = 2, 3, · · · , n). Let hi = ti−ti−1 (i = 1, 2, · · · , n)
and h = max

1≤k≤n
hk. We assume that the mesh size h of the partition tends

to zero as n → ∞. With r, a positive integer, let S0
r (Th) be the space of

all piecewise polynomials of order r (i.e., of degree at most r − 1) on each
subinterval Ii

S0
r (Th) = {x ∈ L2[0, 1] : x|Ii ∈ Pr−1, for each i = 1, 2, · · · , n},

where the superscript 0 denotes there is no continuity condition imposed
at the breakpoints, Pr−1 denotes the space of polynomials of degree not
exceeding r − 1. It is evident that N := dim(S0

r (Th)) = nr.
Let Ph : C[0, 1] + S0

r (Th) → S0
r (Th) be an orthogonal projection operator

with respect to the L2 inner product

(u, v) =
∫ 1

0
u(s)v(s)ds

satisfying that, for u ∈ S0
r (Th)

(u, x) = (u, Phx).(2.4)

It is known that the projection Ph when restricted to C[0, 1] is uniformly
bounded, i.e.,

C := sup
h
‖Ph|C[0,1]‖ < ∞,(2.5)

and Ph → I pointwisely in C[0, 1] as h → 0.
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In this paper, C denotes a generic constant which may takes different
values at its different occurrences, but will be independent of n.

In many cases, equation (2.1) possesses multiple solutions. Therefore,
we assume for the remainder of this paper that we only treat an isolated
solution x0 of (2.1).

Let ϕij (i = 1, · · · , n; j = 1, · · · , r) be the basis function of each subinter-
val Ii and S0

r (Th) = span{ϕij}. Then the Galerkin method is to find

xh =
n∑

i=1

r∑

j=1

bijϕij(2.6)

that satisfies

xh − PhKΨxh = Phf.(2.7)

Equivalently, we need to find the unknown coefficients {bij} (i = 1, · · · , n; j =
1, · · · , r) from the following system of nonlinear equations

n∑

i=1

r∑

j=1

bij(ϕij , ϕkl)− (
∫ 1

0
k(t, s)ψ(s,

n∑

i=1

r∑

j=1

bijϕij(s))ds, ϕkl)(2.8)

= (f, ϕkl), 1 ≤ k ≤ n, 1 ≤ l ≤ r.

Let’s define

xI
h = f + KΨxh.(2.9)

Applying Ph to the both sides of (2.9), we have

PhxI
h = Phf + PhKΨxh.(2.10)

Comparing (2.10) with (2.7), we see that

xh = PhxI
h,(2.11)

and the iterated Galerkin approximation xI
h satisfies

xI
h = f + KΨPhxI

h.(2.12)

Let I = [0, 1]. We define Wm
p (I), for 1 ≤ p ≤ ∞ and m (a nonnegative

integer), to be the Sobolev space of functions g such that g(k) ∈ Lp(I) for
k = 0, 1, · · · ,m, where g(k) is the k−th order distributional derivative of g.
The space Wm

p (I) is equipped with the norm

‖g‖p
m,p,I =

m∑

k=0

‖g(k)‖p
0,p,I .

For simplicity, we write ‖ · ‖m,p,I as ‖ · ‖m,p when I = [0, 1]. If p = ∞, the
norm of the space Wm∞(I) is defined by

‖g‖m,∞ = max
0≤i≤m

{‖g(i)‖∞}.

We recall the following convergence and superconvergence results from
[16].
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Lemma 2.1 Let x0 be an isolated solution of equation (2.3) and xh the
solution of equation (2.7) in a neighborhood of x0. Assume that 1 is not an
eigenvalue of (KΨ)′(x0), where (KΨ)′(x0) denotes the Fréchet derivative of
KΨ at x0. If x0 ∈ W l∞(I) (0 ≤ l ≤ r), then

‖x0 − xh‖∞ = O(hµ),

where µ = min{l, r}. If x0 ∈ W l
p(I) (0 < l ≤ r, 1 ≤ p < ∞), then

‖x0 − xh‖∞ = O(hν),

where ν = min{l − 1, r}.
Then, let’s introduce the following Lemma 2.2 which establishes the su-

perconvergence of the iterated Galerkin method in a general setting .

Lemma 2.2 Let x0 ∈ C[0, 1] be an isolated solution of equation (2.3), xh

be the unique solution of (2.7) in the sphere B(x0, δ1) for some δ1 > 0 and
xI

h be defined by the iterated scheme (2.9) (or (2.12)). Assume that 1 is not
an eigenvalue of (KΨ)′(x0). Then, for all 1 ≤ p ≤ ∞,

‖x0 − xI
h‖∞

≤ C

{
‖x0 − Phx0‖2

∞ + sup
0≤t≤1

inf
u∈S0

r (Th)
‖k(t, ·)ψ(0,1)(·, x0(·))− u‖0,q‖x0 − Phx0‖0,p

}
,

where 1/p + 1/q = 1 and C is a constant independent of h.
The following two lemmas are obtained from the results of Lemma 2.2.

First, when both the kernels and the solutions of equation (2.1) are smooth,
the following result holds.
Lemma 2.3 Let x0 ∈ W l

p(I) (0 < l ≤ r) be an isolated solution of equation
(2.3) and xh the unique solution of (2.7) in the sphere B(x0, δ1) for some
δ1 > 0. Let xI

h be defined by the iterated scheme (2.9) (or (2.12)). Assume
that 1 is not an eigenvalue of (KΨ)′(x0) and for all t ∈ [0, 1], kt(·)ψ(0,1)(·, x0(·)) ∈
Wm

q (0 ≤ m ≤ r). Then

‖x0 − xI
h‖∞ = O(hµ+min{µ,ν}),

where 1/p + 1/q = 1, µ = min{l, r}, and ν = min{m, r}.
When the kernel k is of weakly singular type, we consider the following

special form

k(t, s) = m(t, s)gα(|t− s|),(2.13)

where m ∈ Cµ+1(I × I) and

gα(s) =
{

sα−1, 0 < α < 1,
log s, α = 1.

(2.14)

Generally, the solution x0 of equation (2.3) does not belong to Wm
p (I). Let

S be a finite set in [0, 1] and define the function ωS(t) = inf{|t− s| : s ∈ S}.
A function is said to be of Type(α, k, S), for −1 < α < 0, if

|x(k)(t)| ≤ C[ωS(t)]α−k, t /∈ S,
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and for α > 0, if the above condition holds and x ∈ Lip(α). Here Lip(α) =
{x : |x(t) − x(s)| ≤ C|t − s|α}. It was proved by Kaneko, Noren and
Xu [12] that if f is of Type(β, µ, {0, 1}), then a solution of equation (2.1)
with the kernel defined by (2.13) and (2.14) is of Type(γ, µ, {0, 1}), where
γ = min{α, β}. The optimal convergence rate of the Galerkin solution xh

to x0 can be recovered by selecting the knots of [0,1] that are defined by

ti = (1/2)(2i/n)q, 0 ≤ i ≤ n/2,
ti = 1− tn−i, n/2 < i ≤ n,

(2.15)

where q = r/γ denotes the index of singularity(see [12] for details).
Applying Lemma 2.2 to equation (2.1) with kernels given by (2.13) and

(2.14) and use S0
r (Th) (where S0

r (Th) of splines with nonuniform knots is
defined as (2.15)) as approximate spaces, the authors got the following result.

Lemma 2.4 Let x0 be an isolated solution of equation (2.3) with kernels
given by (2.13) and (2.14), xh be the unique solution of (2.7) in the sphere
B(x0, δ1) with some δ1 > 0 and knots defined by (2.15) and xI

h be defined by
the iterated scheme (2.9) or (2.12). Assume that 1 is not an eigenvalue of
(KΨ)′(x0) and that ψ(0,1)(·, x0(·)) is of Type(α, r, {0, 1}) for α > 0 whenever
x0 is of the same type. Then

‖x0 − xI
h‖∞ = O(hr+α).(2.16)

The following lemma is concerned with spline approximation in Lp spaces
(see [9] for details).
Lemma 2.5 Let 1 ≤ p ≤ ∞, g ∈ Wm

p (I), m ≥ 0. Then for each n ≥ 1,
there exists φh ∈ S0

r (Th) such that

‖g − φh‖0,p ≤ chm∗‖g‖m∗,p,

where m∗ = min{m, r}.

3. Superconvergence of Interpolated Galerkin Method

In this section, we apply the interpolation post-processing technique to
the Galerkin solution to get a superconvergent approximation.

Theorem 3.1 Let x0 ∈ C[0, 1] be an isolated solution of equation (2.3) and
xh be the unique solution of (2.7) in the sphere B(x0, δ1) for some δ1 > 0.
Ph is the orthogonal projection operator defined by (2.4). Assume that 1 is
not an eigenvalue of (KΨ)′(x0). Then, for all 1 ≤ p ≤ ∞,

‖xh − Phx0‖∞ ≤ C
{‖x0 − Phx0‖2

∞(3.1)

+ sup
0≤t≤1

inf
u∈S0

r (Th)
‖k(t, ·)ψ(0,1)(·, x0(·))− u‖0,q‖x0 − Phx0‖0,p

}
,

where 1/p + 1/q = 1.
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Proof. For simplicity, we use the result of Lemma 2.2. In fact, from (2.11),
(2.5), and Lemma 2.2, we obtain

‖xh − Phx0‖∞ = ‖PhxI
h − Phx0‖∞

≤ sup
h
‖Ph‖ · ‖xI

h − x0‖∞ ≤ C‖xI
h − x0‖∞

≤ C
{‖x0 − Phx0‖2

∞

+ sup
0≤t≤1

inf
u∈S0

r (Th)
‖k(t, ·)ψ(0,1)(·, x0(·))− u‖0,q‖x0 − Phx0‖0,p

}
.

This completes the proof. ¤

Remark 3.1 In fact, the interpolated post-processing has nothing to do
with the iterated post-processing. That is, these two kinds of post-processing
are independent with each other. We can also prove Theorem 3.1 without
the results of Lemma 2.2. See Appendix for details.

(3.1) shows that xh (the Galerkin approximation) is closer to Phx0 (the
orthogonal projection of x0) than to the solution x0 itself, which is called
the superclose. From (3.1), we can obtain global superconvergence of the in-
terpolated Galerkin solutions by applying the interpolation post-processing
to the Galerkin solutions.

We assume that Th is gained from T2h with mesh size 2h by subdividing
each element into two equal elements, so that the number of elements N for
Th is a even number. Then we define a higher order interpolation operator
I2r−1
2h of degree (2r−1) on each bigger element Ii∪Ii+1 (i = 1, 3, 5, · · · , N−1)

associated with Th according to the following conditions:

I2r−1
2h x|Ii∪Ii+1 ∈ P2r−1, i = 1, 3, 5, · · · , N − 1,(3.2)

and ∫

Il

(x− I2r−1
2h x)vds = 0, ∀v ∈ Pr−1(Il), l = i, i + 1.(3.3)

It is easy to check that

I2r−1
2h Ph = I2r−1

2h and ‖I2r−1
2h v‖∞ ≤ C‖v‖∞, ∀v ∈ S0

r (Th).(3.4)

Then, we get the global superconvergence by interpolation post-processing
method.

When both the kernels and the solutions of equation (2.1) are smooth,
the following result holds.
Theorem 3.2 Let x0 ∈ W l

p(I)∩W 2r∞ (I) (0 < l ≤ r) be an isolated solution
of equation (2.3) and xh the unique solution of (2.7) in the sphere B(x0, δ1)
for some δ1 > 0. The interpolation operator I2r−1

2h of degree (2r-1) is defined
by (3.2) and(3.3). Assume that 1 is not an eigenvalue of (KΨ)′(x0) and for
all t ∈ [0, 1], kt(·)ψ(0,1)(·, x0(·)) ∈ Wm

q (0 ≤ m ≤ r). Then

‖I2r−1
2h xh − x0‖∞ = O(hµ+min{µ,ν}),

where 1
p + 1

q = 1, µ = min{l, r} and ν = min{m, r}.
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Proof. From (3.4), the interpolation error estimates, and Theorem 3.1, we
have

‖I2r−1
2h xh − x0‖∞(3.5)

≤ ‖I2r−1
2h xh − I2r−1

2h Phx0‖∞ + ‖I2r−1
2h Phx0 − x0‖∞

≤ C‖xh − Phx0‖∞ + ‖I2r−1
2h x0 − x0‖∞

≤ C
{‖x0 − Phx0‖2

∞

+ sup
0≤t≤1

inf
u∈S0

r (Th)
‖k(t, ·)ψ(0,1)(·, x0(·))− u‖0,q‖x0 − Phx0‖0,p

}
+ O(h2r).

It follows from Lemma 2.5 that, for all u ∈ S0
r (Th),

‖x0 − Phx0‖0,p ≤ ‖x0 − Phx0‖∞ ≤ ‖x0 − u‖∞ + ‖Ph(u− x0)‖∞
≤ (1 + C) inf

u∈S0
r (Th)

‖x0 − u‖∞ ≤ O(hµ),

where µ = min{l, r}. Similarly, Lemma 2.5 leads to that

sup
0≤t≤1

inf
u∈S0

r (Th)
‖k(t, ·)ψ(0,1)(·, x0(·))− u‖0,q ≤ O(hν),

where ν = min{m, r}. Then, from Theorem 3.1 and Lemma 2.1, we complete
the proof of Theorem 3.2. ¤

The superconvergence of the interpolated Galerkin solutions of Hammer-
stein equations with weakly singular kernels is also considered.

The following theorem gives the superconvergence for the equation (2.3)
with the kernels given by (2.13) and (2.14).
Theorem 3.3 Let x0 ∈ C[0, 1] ∩ W r+α∞ (I) be an isolated solution of the
exact equation (2.3) with kernels defined by (2.13) and (2.14), xh be the
unique solution of the Galerkin equation (2.6) in the sphere B(x0, δ1). The
interpolation operator I2r−1

2h of degree (2r-1) is defined by (3.2) and (3.3).
Assume that 1 is not an eigenvalue of (KΨ)′(x0) and ψ(0,1)(·, x0(·)) is of
Type(α, r, {0, 1}) for α > 0 whenever x0 is of the same type. Then we have

‖I2r−1
2h xh − x0‖∞ = O(hr+α).(3.6)

Proof. From (3.4), (2.10), and the interpolation error estimates, we have

‖I2r−1
2h xh − x0‖∞ ≤ ‖I2r−1

2h xh − I2r−1
2h Phx0‖∞ + ‖I2r−1

2h Phx0 − x0‖∞
≤ C‖xh − Phx0‖∞ + ‖I2r−1

2h x0 − x0‖∞
≤ C sup

h
‖Ph‖‖xI

h − x0‖∞ + ‖I2r−1
2h x0 − x0‖∞

≤ C‖xI
h − x0‖∞ + O(hr+α),

which, together with Lemma 2.4, leads to (3.6). ¤

Since the theoretical results of the superconvergence of the interpolated
Galerkin solutions are the same as that of the iterated Galerkin solutions,
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why we use the interpolation post-processing? What are the advantages of
this post-processing? We then give a comparison between these two post-
processing methods.

• Iterated Galerkin method
Since we must compute the integral

xI
h(t) = f(t) +

∫ 1

0
k(t, s)ψ(s, x(s))ds := f + U,

the computational complexity of xI
h is determined by the the com-

putational complexity of U .
(1) For the smooth kernel case.

The nonlinear integral U can be approximated directly by the
classical numerical quadrature.

(2) For the weakly singular kernel case.
The classical numerical quadrature is no longer valid since it
won’t converge the true solution any more. We need to use
the graded mesh generated by the singularity of the kernel to
approximate the nonlinear integral which may increase greatly
the complexity of the numerical quadrature (see [15] for details).

• Interpolated Galerkin method
There is no such difficulty since we just need to interpolate xh at

some nearby points to get the interpolated Galerkin solution.
Therefore, we conclude that the interpolation post-processing method is not
only effective but also simple.

Remark 3.2 By the linear transformation Φ from [0,1] to [a,b], Φ(t) =
(b − a)t + a, t ∈ [0, 1], all the lemmas and theorems can be extended from
[0,1] to [a,b].

4. Numerical Experiments

In this section, two examples are given to illustrate the theory established
in the previous sections.
Example 4.1 The equation

x(t) = t2 + (sin t) ·
∫ 1

−1
exp(−2s)x2(s)ds, t ∈ [−1, 1]

can be proved to have two solutions, one of which is

x(t) = t2 + c sin t,

where c = 1.9577839864709 . . ..
We choose uniform partition with mesh h = 2/n (n = 8, 16, 32, 64, 128).

The basis functions ϕij (i = 1, · · · , n; j = 1, · · · , r) are generated by selecting
the r Gaussian points in each subinterval as interpolated points. Results are
obtained by using piecewise linear functions (r = 2) and piecewise quadratic
functions (r = 3). The spline coefficients in (2.8) are obtained by using
Newton-Raphson algorithm. The tabulated errors are estimated by taking
the largest of the computed errors at zi = −1 + i/50 (i = 0, 1, · · · , 100).
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eh = ‖x − xh‖∞, e′h = ‖x − I2r−1
2h xh‖∞, and e′′h = ‖x − xI

h‖∞ denote the
approximate errors which are defined by

max{|x(zi)− xh(zi)| : i = 0, 1, · · · , 100},
max{|x(zi)− I2r−1

2h xh(zi)| : i = 0, 1, · · · , 100},
and

max{|x(zi)− xI
h(zi)| : i = 0, 1, · · · , 100}.

For simplicity, we introduce some notations as follows:

Rh = log2(eh/eh/2), R′
h = log2(e

′
h/e′h/2), R′′

h = log2(e
′′
h/e′′h/2).

Numerical results are listed in the following tables.

Table 1 The errors of the approximate solutions for r = 2

n eh Rh e′h R′
h e′′h R′′

h

16 4.6878e-3 7.3792e-6 7.9916e-6
32 1.1799e-3 1.9903 4.6929e-7 3.9749 5.0759e-7 3.9767
64 2.9592e-4 1.9954 2.9646e-8 3.9846 3.1854e-8 3.9941
128 7.4094e-5 1.9977 1.8575e-9 3.9964 2.0255e-9 3.9751

Table 2 The errors of the approximate solutions for r = 3

n eh Rh e′h R′
h e′′h R′′

h

8 2.5361e-4 5.6658e-7 1.3429e-6
16 3.1824e-5 2.9944 9.2967e-9 5.9294 2.1982e-8 5.9329
32 3.9818e-6 2.9986 1.4819e-10 5.9711 3.4824e-10 5.9800

The results displayed in the above table show that the convergence or-
der of the two post-processing are all O(h2r) which support the theory of
Theorem 3.2. Here, because the kernel function k(t, s) is of the degenerate
from k(t, s) = g(s) · h(t), the computational cost of the two post-processing
methods are all very small, we didn’t list the elapsed time.

Example 4.2. Let’s consider the equation

x(t)−
∫ 1

0

x2(s)√
|t− s|ds = f(t), t ∈ [0, 1],(4.1)

where f is selected so that x(t) =
√

t is the solution. The splines of order 1
(q = 3, see [19] for details) with knots defined by equation (2.15) in terms
of q is used in the computation.

The interpolated points are Mi (i = 1, · · · , n) (one Gaussian point as
interpolated point in each subinterval). Let li(t) be the corresponding La-

grange basis function and xh(t) =
n∑

j=1
ajlj(t). Then the iterated Galerkin
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solution satisfies:

xI
h(zi) =

∫ 1

0

(
n∑

j=1
ajlj(s))2

√
|zi − s| ds + f(zi) =

n∑

j=1

a2
j

∫ tj

tj−1

1√
|zi − s|ds + f(zi)

:=
n∑

j=1

a2
j ·A(i, j) + f(zi),

in which zi = i/100 (i = 0, · · · , 100).
Here, because of the singularity of the kernel, A(i, j) can not be ob-

tained directly the classical numerical quadrature. We approximate each
A(i, j) (i = 0, · · · , 100; j = 1, · · · , n) on the graded mesh corresponding to
the original point zi which increases greatly the complexity of the numerical
integration.

However, there is no such difficulty for the interpolated Galerkin method,
since we just need to use two adjacent points to get a linear interpolation.

We denote the elapsed time of the interpolated Galerkin solutions by
time1 and the elapsed time of the iterated Galerkin solutions by time2. The
results are listed in the following table.

Table 4 The errors of the approximate solutions for r = 1

n eh Rh e′h R′h time1 e′′h R′′h time2
32 3.8004e-2 1.5698e-2 0.0000 1.6764e-2 5.5780
64 1.7258e-2 1.1388 3.3302e-3 2.2369 0.0000 5.5771e-3 1.5878 9.9849
128 8.5037e-3 1.0211 8.6349e-4 1.9473 1.50e-2 2.5618e-3 1.1223 18.703
256 4.2029e-3 1.0167 2.2754e-4 1.9240 1.60e-2 1.3308e-3 0.9449 36.562

From the table above, we conclude that the interpolated Galerkin method
is not only effective but also simple.

Acknowledgements. The authors would like to thank the anonymous
referee for constructive remarks and comments, which improve significantly
the presentation of the paper.

Appendix Here, we give a Proof of Theorem 3.1 which is independent of
the iterated Galerkin solution xI

h.
We apply the mean-value theorem to ψ(s, y) at y = y0 to get

ψ(s, y) = ψ(s, y0) + ψ(0,1)(s, y0 + θ(y − y0))(y − y0).(4.2)

where θ := θ(s, y0, y) with 0 < θ < 1. Also let

g(t, s, y0, y, θ) = k(t, s)ψ(0,1)(s, y0 + θ(y − y0)),(4.3)

(Ghx)(t) =
∫ 1

0
g(t, s, Phx0(s), PhxI

n(s), θ)x(s)ds,(4.4)

and

(Gx)(t) =
∫ 1

0
gt(s)x(s)ds, where gt(s) = k(t, s)ψ(0,1)(s, x0(s)).
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Proof. From (2.3) and (2.7), we see that

xh − Phx0 = PhKΨxh − PhKΨx0

= Ph(KΨxh −KΨPhx0) + Ph(KΨPhx0 −KΨx0).(4.5)

From (2.11) and (4.4), it is evident that

(Ghx)(t) =
∫ 1

0
g(t, s, Phx0(s), xh(s), θ)x(s)ds.

Then, we see from (4.2) and (4.3) that

KΨxh −KΨPhx0 =
∫ 1

0
k(t, s)[ψ(s, xh(s)− ψ(s, Phx0(s))]ds(4.6)

=
∫ 1

0
k(t, s)ψ(0,1) (s, Phx0(s) + θ(xh(s)− Phx0(s)) [xh(s)− Phx0(s)]ds

= Gh(xh − Phx0).

Substituting (4.6) into (4.5), we obtain

xh − Phx0 = PhGh(xh − Phx0)− Ph(KΨPhx0 −KΨx0).(4.7)

It follows from the Lipschitz condition (2.2) imposed on ψ(0,1) and condition
2 that for x ∈ [0, 1]

‖Ghx−Gx‖∞
≤ C2 sup

0≤t≤1

∫ 1

0
|k(t, s)|ds · ‖x‖∞ · (‖Phx0 − x0‖∞ + ‖xh − Phx0‖∞)

≤ C2M(‖Phx0 − x0‖∞ + ‖xh − x0‖∞ + ‖x0 − Phx0‖∞) · ‖x‖∞
≤ C(‖Phx0 − x0‖∞ + ‖xh − x0‖∞) · ‖x‖∞.

Then, we have

‖Gh −G‖∞ → 0 as h → 0.

Also, for each x ∈ C[0, 1], it is easy to verify that Gx ∈ C[0, 1].
Since Ph → I pointwisely in C[0,1] as h → 0, we have

PhGx → Gx as h → 0.

That is, PhG → G pointwisely in C[0, 1] as h → 0.
As Ph is uniformly bounded, we have that for each x ∈ C[0, 1]

‖PhGhx−Gx‖∞ ≤ ‖PhGhx− PhGx‖∞ + ‖PhGx−Gx‖∞
≤ sup

h
‖Ph‖‖Ghx−Gx‖∞ + ‖PhGx−Gx‖∞.

Thus, PhGh → G pointwisely in C[0, 1] as h → 0. By conditions 4 and 5,
we know that there exists a constant C > 0, such that for any h,

|ψ(0,1)(s, Phx0(s) + θ(xh(s)− Phx0(s)))|
≤ |ψ(0,1)(s, Phx0(s) + θ(xh(s)− Phx0(s)))− ψ(0,1)(s, x0)|+ |ψ(0,1)(s, x0)|
≤ C2‖Phx0 − x0‖∞ + C2θ‖xh − Phx0‖∞ + M1

≤ C2‖Phx0 − x0‖∞ + C2θ(‖xh − x0‖∞ + ‖x0 − Phx0‖∞) + M1 ≤ C.
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Therefore,

‖PhGhx‖∞
≤ sup

h
‖Ph‖ · ‖Ghx‖∞ ≤ C‖Ghx‖∞

≤ C sup
0≤t≤1

∣∣∣∣
∫ 1

0
k(t, s)ψ(0,1)(s, Phx0(s) + θ(xh(s)− Phx0(s)))x(s)ds

∣∣∣∣
≤ C‖x‖∞,

and

|PhGhx(t)− PhGhx′(t)|

≤ sup
h
‖Ph‖ ·

∣∣∣∣
∫ 1

0
k(t, s)ψ(0,1)(s, Phx0(s) + θ(xh(s)− Phx0(s)))(x(s)− x′(s))ds

∣∣∣∣
≤ C‖x− x′‖∞.

This implies that {PhGh} is collectively compact (see [1] for details). Since
G = (KΨ)′(x0) is compact and (I −G)−1 exists, it follows from the theory
of collectively compact operators that (I −PhGh)−1 exists and is uniformly
bounded for sufficiently small h. Therefore, by (4.7), we have

sup
0≤t≤1

|(xh − Phx0)(t)| ≤ C sup
0≤t≤1

|Ph(KΨPhx0 −KΨx0)(t)|

≤ C sup
0≤t≤1

|(KΨPhx0 −KΨx0)(t)|.

Let d(t) = |(KΨPhx0 −KΨx0)(t)|. We will estimate the term d(t).
Using the mean-value formula (4.2) with y = x0 and y0 = Phx0 and (4.3),

we have

d(t)

=
∣∣∣∣
∫ 1

0
K(t, s)[ψ(s, x0(s))− ψ(s, Phx0(s))]ds

∣∣∣∣

=
∣∣∣∣
∫ 1

0
K(t, s)ψ(0,1)(s, Phx0(s) + θ(x0(s)− Phx0(s)))[x0(s)− Phx0(s)]ds

∣∣∣∣

=
∣∣∣∣
∫ 1

0
g(t, s, Phx0(s), x0(s), θ)[x0(s)− Phx0(s)]ds

∣∣∣∣ .

Note that Ph is the orthogonal projection operator from C[0, 1] + S0
r (Th)

onto S0
r (Th), that is,

∫ 1

0
u(s)[x0(s)− Phx0(s)]ds = 0 for allu ∈ S0

r (Th).
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Thus, for all u ∈ S0
r (Th)

d(t) =
∣∣∣∣
∫ 1

0
[g(t, s, Phx0(s), x0(s), θ)− u(s)][x0(s)− Phx0(s)]ds

∣∣∣∣

≤
∫ 1

0
|g(t, s, Phx0(s), x0(s), θ)− gt(s)|ds‖x0 − Phx0‖∞

+
∣∣∣∣
∫ 1

0
[gt(s)− u(s)][x0(s)− Phx0(s)]ds

∣∣∣∣ .

By (2.2), we have
∫ 1

0
|g(t, s, Phx0(s), x0(s), θ)− gt(s)|ds(4.8)

=
∫ 1

0

∣∣∣K(t, s)
[
ψ(0,1)(s, Phx0(s) + θ(x0(s)− Phx0(s)))

−ψ(0,1)(s, x0(s))
]∣∣∣ ds

≤ C2

∫ 1

0
|K(t, s)|ds‖x0 − Phx0‖∞

≤ C2M‖x0 − Phx0‖∞.

As 1
p + 1

q = 1, we have from Cauchy-Schwarz inequality that

|
∫ 1

0
[gt(s)− u(s)][x0(s)− Phx0(s)]ds|(4.9)

≤ ‖gt − u‖0,q ‖x0 − Phx0‖0,p.

Combining (4.8) and (4.9), we obtain

d(t) ≤ C‖x0 − Phx0‖2
∞ + ‖gt − u‖0,q · ‖x0 − Phx0‖0,p for all u ∈ S0

r (Th).

Therefore, we complete the proof of Theorem 3.1. ¤
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