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A ROBUST OVERLAPPING SCHWARZ METHOD

FOR A SINGULARLY PERTURBED SEMILINEAR

REACTION-DIFFUSION PROBLEM

WITH MULTIPLE SOLUTIONS
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Abstract. An overlapping Schwarz domain decomposition is applied to a semi-

linear reaction-diffusion two-point boundary value problem with multiple solu-

tions. Its diffusion parameter ε2 is arbitrarily small, which induces boundary

layers. The Schwarz method invokes two boundary-layer subdomains and an

interior subdomain, the narrow overlapping regions being of width O(ε| ln ε|).
Constructing sub- and super-solutions, we prove existence and investigate the

accuracy of discrete solutions in particular subdomains. It is shown that when

ε ≤ CN−1 and layer-adapted meshes of Bakhvalov and Shishkin types are used,

one iteration is sufficient to get second-order convergence (with, in the case of

the Shishkin mesh, a logarithmic factor) in the maximum norm uniformly in ε,

where N is the number of mesh intervals in each subdomain. Numerical results

are presented to support our theoretical conclusions.

Key Words. semilinear reaction-diffusion, singularly perturbed, boundary

layers, domain decomposition, overlapping Schwarz method.

1. Introduction

Consider the singularly perturbed semilinear reaction-diffusion boundary value
problem

Fu := −ε2u′′(x) + f(x, u) = 0, x ∈ Ω = (0, 1),(1a)

u(0) = g0, u(1) = g1,(1b)

where ε is a small positive parameter, f is a sufficiently smooth function, and g0 and
g1 are given constants. This is a one-dimensional version of the multidimensional
reaction-diffusion equation −ε24u+f(x, u) = 0, which we will consider in a future
paper [10] (when posed in a smooth two-dimensional domain).

We shall examine solutions of (1) that exhibit sharp boundary layers, which are
narrow regions where solutions change rapidly. In general, solutions of (1) may also
have interior transition layers [12]. To obtain reliable numerical approximations of
layer solutions in an efficient way, one has to use locally refined meshes that are
fine and anisotropic in layer regions and standard outside. When multidimensional
meshes of different nature are introduced in different subdomains, it might be rather
inconvenient to match them; see, e.g., [7] for non-matching meshes used to solve
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a two-dimensional problem of type (1). Furthermore, different discretizations of
differential equations might be used in layer regions and outside, in which case they
should be matched along the interface boundaries; see, e.g., [9].

Handling non-matching meshes and matching different discretizations along the
interface boundaries can be entirely avoided by invoking iterative overlapping do-
main decomposition methods of Schwarz-Chimera type; see, e.g., [18, §1.5]. Note
that non-overlapping domain decomposition methods, at best, have conventional
geometric rates of convergence when applied to singularly perturbed problems of
type (1). In contrast, overlapping methods, with the overlapping regions being as
narrow as O(ε| ln ε|), might enjoy much faster convergence. To be more precise, we
prove in this paper that one iteration is sufficient to achieve second-order accurate
computed solutions when ε ≤ CN−1, where N is the number of mesh intervals in
each subdomain; see Theorem 5.5 for details.

When considering semilinear problems of type (1), it is frequently assumed in
the numerical analysis literature that fu(x, u) > γ2 > 0 for all (x, u) ∈ Ω × R
and some positive constant γ. Under this assumption, our problem (1) and the
associated reduced problem

(2) f(x, u0(x)) = 0 for all x ∈ Ω,

defined by setting ε = 0 in (1), have unique solutions u and u0. This global
assumption is however rather restrictive. E.g., mathematical models of biological
and chemical processes frequently involve problems related to (1) with f(x, u) that
is non-monotone with respect to u. Therefore, we examine problem (1) under the
following weaker assumptions also used in [4, 6, 11, 17, 19, 20]:

• it has a stable reduced solution, i.e. there exists a sufficiently smooth solution u0

of (2) such that

(3a) fu(x, u0(x)) > γ2 > 0 for all x ∈ Ω;

• the boundary data gl, for l = 0, 1, satisfy

(3b)

∫ v

u0(l)

f(l, s) ds > 0 for all v ∈ (u0(l), gl ]
′.

Here the notation (a, b]′ is defined to be (a, b] when a < b and [b, a) when a > b,
while (a, b]′ = ∅ when a = b.

Conditions (3) intrinsically arise from the asymptotic analysis of problem (1)
and guarantee that there exists a boundary-layer solution u such that u ≈ u0 in the
interior part of Ω, while the boundary layers are of width O(ε| ln ε|); see, e.g., [6, 17,
20]. Note that assumption (3a) is local, i.e. the reduced problem (2) is permitted
to have more than one stable solution. Furthermore, if multiple stable solutions
of the reduced problem satisfy (3b), then problem (1) has multiple boundary-layer
solutions.

We shall now present a continuous version of the discrete Schwarz method that
we investigate in this paper. Consider the overlapping subdomains

(4) ΩL = (0, 2σ), ΩC = (σ, 1− σ), ΩR = (1− 2σ, 1),

where σ ∈ (0, 1/4] is a parameter, which throughout the paper will satisfy σ ≥
(2/γ) ε lnN . Let uL, uR, and then uC be solutions of the following boundary value
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problems

FuL = 0 for x ∈ ΩL, uL(0) = g0, uL(2σ) = g2σ,(5a)

FuR = 0 for x ∈ ΩR, uR(1− 2σ) = g1−2σ, uR(1) = g1,(5b)

FuC = 0 for x ∈ ΩC, uC(σ) = uL(σ), uC(1− σ) = uR(1− σ).(5c)

Here g0 = u(0) and g1 = u(1) are the boundary data of our original problem (1),
while g2σ and g1−2σ should be appropriately chosen (they should satisfy (3b) with
l = 2σ, 1 − 2σ; otherwise the semilinear problems (5a), (5b) might have no solu-
tions). One can take g2σ = g0 and g1−2σ = g1 when σ is sufficiently small. Now,
the first-iteration approximation u[1] is defined by

(6) u[1](x) :=

 uL(x), x ∈ Ω̄L\ΩC,
uC(x), x ∈ Ω̄C,
uR(x), x ∈ Ω̄R\ΩC.

Further iterations, that consist of successfully solving similar problems in the sub-
domains ΩL, ΩR and ΩC, are described in Remark 5.1.

Our discrete Schwarz method is a domain decomposition version of the numer-
ical method considered in [11]; see also [4, 19]. It invokes special layer-adapted
meshes of Bakhvalov and Shishkin type in the boundary-layer subdomains ΩL and
ΩR. Problems in the overlapping subdomains ΩL, ΩR and ΩC are discretized by
a standard three-point finite-difference scheme. To estimate the Schwarz method
errors, we extend the analysis of [11] to discrete problems in particular subdomains.
Compared to [11], our problems might be posed in very narrow subdomains and
therefore require a more intricate analysis.

When the Shishkin mesh is used, our discrete Schwarz method is identical to
the one studied in [15] for a linear version of (1). Note that the principal analysis
technique in [15] is the discrete maximum principle, which cannot be extended to
our more general semilinear problem (1) under conditions (3). Furthermore, we
particularly address faster convergence of the algorithm when ε ≤ CN−1. We also
refer the reader to [2, 3, 5], where Schwarz alternating techniques were applied to
semilinear problems of type (1) under the condition fu(x, u) > γ2 > 0 for all (x, u);
these iterative algorithms used either overlapping subdomains, or, to facilitate par-
allel computations, two overlapping sets of subdomains with no subdomain overlap
within each set.

Our paper is organized as follows. In §2 we discuss asymptotic properties of
solutions to the differential equation (1a) posed in an arbitrary particular subdo-
main and construct its sub- and super-solutions. These results are applied in §3
to problems (5); this section culminates in an error estimate for the continuous
first-iteration approximation u[1] from (6) to a certain solution u of our original
problem (1). In §4 we introduce the finite difference scheme on an arbitrary mesh
and then consider a discrete problem in a particular subdomain, establish existence
and investigate accuracy of its discrete solutions. The discrete Schwarz method
is described in §5 and its error estimates are derived on Bakhvalov and Shishkin
meshes. Finally, numerical results of §6 illustrate our theoretical conclusions.

Throughout our analysis we make a simplifying assumption that

(7) ε ≤ CN−1.

This is not a practical restriction, and from a theoretical viewpoint the analysis
of a semilinear problem such as (1) would be very different if ε were not small.
Note that the error estimate for the linear case [15] and our numerical results of
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§6 suggest that for ε > CN−1 the considered Schwarz method remains convergent,
although might require more iterations.

Notation. Throughout the paper, C, C ′, C̄ will denote generic positive constants
that may take different values in different formulas, but are independent of ε and N .
A subscripted C (e.g., C1) denotes a constant that is also independent of ε and N ,
but takes a fixed value. For any two quantities z1 and z2, the notation z1 = O(z2)
is equivalent to |z1| ≤ Cz2. When choosing N sufficiently large independently of ε,
we shall mean that N ≥ C for some sufficiently large constant C.

2. Continuous problem in a particular subdomain

Since our method involves the numerical solution of the differential equation
(1a) in various subdomains, we shall first consider this equation and asymptotic
properties of its solutions in an arbitrary particular subdomain (a, b). Here and in
§4 below, we extend the asymptotic and numerical analysis of [11], now allowing
very narrow subdomains, which requires more elaborate estimates.

Let u[a,b](x) be a solution of the problem

Fu[a,b] = 0 for x ∈ (a, b), u[a,b](a) = ga, u[a,b](b) = gb,(8)

where (a, b) ⊂ Ω, and the boundary data gl, for l = a, b, satisfy condition (3b).
Furthermore, only to avoid considering cases, we also assume that gl ≥ u0(l) for
l = a, b.

Then u[a,b] typically exhibits boundary layers and its standard first-order asymp-
totic expansion uas ; [a,b] is given by

(9) uas ; [a,b](x) := u0(x) +
[
v0; a(ξ+) + εv1; a(ξ+)

]
+
[
v0; b(ξ

−) + εv1; b(ξ
−)
]
.

Here the components [v0; a + εv1; a] and [v0; b + εv1; b] describe the boundary layers
at x = a and x = b respectively. They use the stretched variables ξ+ = ξ+

a := x−a
ε

and ξ− = ξ−b := b−x
ε . More generally,

ξ±l := ±(x− l)/ε.

When there is no ambiguity, as, e.g., in (9), the notation ξ± is used for ξ+
a and ξ−b .

Note that ξ±l = 0 corresponds to x = l, and ξ+
l has the same positive direction as

the x-axis, while ξ−l has the opposite direction.
The boundary-layer functions v0; l and v1; l in (9), with l = a, b, satisfy

−
(
d
dξ±

)2
v0; l + f(l, u0(l) + v0; l) = 0 ,(10a) [

−
(
d
dξ±

)2
+ fu(l, u0(l) + v0; l)

]
v1; l = ∓ξ± d

dxf(x, u0(x) + s)
∣∣∣
x=l
s=v0;l(ξ

±)

,(10b)

with the boundary conditions

(10c) v0; l(0) = gl − u0(l), v1; l(0) = v0; l(∞) = v1; l(∞) = 0.

To construct sub- and super-solutions for problem (8), we introduce a perturba-
tion β[a,b] of the asymptotic expansion (9):

(11) β[a,b](x; p) := u0(x)+
[
ṽ0; a(ξ+; p)+εv1; a(ξ+)

]
+
[
ṽ0; b(ξ

−; p)+εv1; b(ξ
−)
]
+C0p.

Here p is a small real number that will be chosen later and is typically o(N−1); for
some small p > 0 the functions β[a,b](x;−p) and β[a,b](x; p) will serve as sub- and

super-solutions. Relation (11) involves auxiliary functions ṽ0; l(ξ
±; p), for l = a, b,

that are defined by generalizing equations (10a) with the boundary conditions (10c):

(12) −
(
d
dξ±

)2
ṽ0; l+f(l, u0(l)+ṽ0; l) = pṽ0; l, ṽ0; l(0; p) = gl−u0(l), ṽ0; l(∞; p) = 0.
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Clearly, we have ṽ0; l(ξ
±; 0) = v0; l(ξ

±) for l = a, b.
The following lemma combines the results of [11, Lemma 2.1], [11, Lemma 2.3]

and [11, (2.15)]. The proof invokes dynamical systems techniques to show that
problems (10) and (12) have solutions and then obtain bounds on these solutions
and their derivatives.

Lemma 2.1. [11] Set γ2
0 = min

x=a,b
fu(x, u0(x)) > γ2, where γ > 0 is from (3a).

Given assumption (3b) with l = a, b, there exists p0 ∈ (0, γ2
0) such that for all |p| ≤

p0, problems (10) and (12) have solutions v0; a(ξ+), v0; b(ξ
−), v1; a(ξ+), v1; b(ξ

−),
ṽ0; a(ξ+; p) and ṽ0; b(ξ

−; p). Furthermore,

(13) v0; l(ξ
±) ≥ 0, ∂

∂p ṽ0; l(ξ
±; p) ≥ 0, where l = a, b.

Moreover, for an arbitrarily small but fixed δ ∈ (0, γ0 −
√
p0), there is a positive

constant Cδ such that

(14)
∣∣( ∂
∂ξ±

)k
ṽ0; l

∣∣+
∣∣( d
dξ±

)k
v1; l

∣∣+
∣∣ ∂
∂p ṽ0; l

∣∣ ≤ Cδ |gl − u0(l)| e−(γ0−
√
p0−δ) ξ±

for l = a, b, 0 ≤ ξ± ≤ ∞ and k = 0, 1, . . . , 4.

Remark 2.2. As γ0 > γ, choosing p0 and δ in Lemma 2.1 sufficiently small,
we can make γ0 −

√
p0 − δ in (14) satisfy γ0 −

√
p0 − δ > γ, which then yields

e−(γ0−
√
p0−δ) ξ± ≤ e−γ ξ± Consequently, we have

(15) e−(γ0−
√
p0−δ) ξ+a ≤ e−γ (x−a)/ε, e−(γ0−

√
p0−δ) ξ−b ≤ e−γ (b−x)/ε.

Similarly, we can choose p0 and δ so that γ0 −
√
p0 − δ > γ̃ for any γ̃ < γ0, which

then yields (15) with γ replaced by γ̃.

Next we shall investigate the perturbation β[a,b](x; p) of our asymptotic expan-
sion. Introduce the notation

ûas ; [a,b](x) := u0(x) +
[
v0; a(ξ+) + εv1; a(ξ+)

]
,(16)

β̂[a,b](x; p) := u0(x) +
[
ṽ0; a(ξ+; p) + εv1; a(ξ+)

]
+ C0p.(17)

Compared to uas ; [a,b] and β[a,b] defined in (9) and (11), the component [v0; b+εv1; b]
and its analogue, which describe the boundary layer at x = b, are skipped here.

Lemma 2.3. Under the assumptions of Lemma 2.1, for β̂[a,b](x; p) of (17) we have

Fβ̂[a,b](x; p) = C0p fu(x, u0) + [1 + C0λ(x)] p v0; a(ξ+) +O(ε2 + p2),

where x ∈ (a, b), while λ(x) := fuu
(
x, u0 + ϑv0; a

)
and ϑ = ϑ(x) ∈ (0, 1).

Proof. Similar estimates were obtained, e.g., in the proof of [11, Lemma 3.2] and
in [9]; we will sketch the proof here for completeness following the argument of [9,
Lemma 2.8].

Using (16), it is convenient to rewrite β̂[a,b] as

β̂[a,b](x; p) = ûas ; [a,b](x) + w(ξ+; p) + C0p, w(ξ+; p) := ṽ0; a(ξ+; p)− v0; a(ξ+).

Note that v0; a(ξ+) = ṽ0; a(ξ+; 0) implies w = p∂ṽ0∂p
∣∣
p=θ

; combining this with (14)

yields

(18) (1 + ξ+)|w| ≤ Cp.

Throughout the proof we shall use the abbreviations u0, v0; a and ṽ0; a for u0(x),
v0; a(ξ+) and ṽ0; a(ξ+; p) respectively.
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Since Fûas ; [a,b] = O(ε2) [20], then we get ε2 d2

dx2 ûas ; [a,b] = f(x, ûas ; [a,b]) +O(ε2).

Combining this with ε2 d2

dx2w =
(
d
dξ+

)2
w, we arrive at

(19) F β̂[a,b] = −f(x, ûas ; [a,b])−
(
d
dξ+

)2
w + f(x, ûas ; [a,b] + w + C0p) +O(ε2).

Now, by (10a), (12) combined with ṽ0; a = v0; a + w and w = O(p), we get

−
(
d
dξ+

)2
w = −[f(a, u0(a) + v0; a + w)− f(a, u0(a) + v0; a)] + pv0; a +O(p2).

Substituting this into (19) we obtain

Fβ̂[a,b] = −f(x, ûas ; [a,b])− [f(a, u0(a) + v0; a + w)− f(a, u0(a) + v0; a)] + pv0; a

+ f(x, ûas ; [a,b] + w + C0p) +O(p2 + ε2).

Introducing the function µ(t) := f(x, ûas ; [a,b] + t)− f(a, u0(a) + v0; a + t). we can
rewrite the above relation as

F β̂[a,b] = [f(x, ûas ; [a,b] + w + C0p)− f(x, ûas ; [a,b] + w)](20)

+ [µ(w)− µ(0)] + pv0; a +O(p2 + ε2).

Since ûas ; [a,b] = u0 + v0; a +O(ε) and w = O(p), we have

(21) f(x, ûas ; [a,b]+w+C0p)−f(x, ûas ; [a,b]+w) = [fu(x, u0+v0; a)+O(ε+p)]C0p,

where

(22) fu(x, u0 + v0; a)C0p = [fu(x, u0) + λ(x)v0; a]C0p.

Furthermore,

µ(w)− µ(0) = wµ′(ϑ̄w) = [fu(x, ûas ; [a,b] + ϑ̄w)− fu(a, u0(a) + v0; a + ϑ̄w)]w,

where ϑ̄ = ϑ̄(x) ∈ (0, 1). Now by (18), we get

(23) µ(w)− µ(0) = O(ε) [1 + ξ+] |w| = O(εp).

Combining (20)-(23), we complete the proof. �

Corollary 2.4. Under the assumptions of Lemma 2.1, for β[a,b](x; p) from (11) we
have

Fβ[a,b](x; p) = C0p fu(x, u0)+[1+C0λ(x)] p [v0; a+v0; b]+O(ε2+p2+e−γ(b−a)/(2ε)),

where x ∈ (a, b), while λ(x) := fuu
(
x, u0 + ϑ[v0; a + v0; b]

)
and ϑ = ϑ(x) ∈ (0, 1).

Proof. Consider only the case of x ∈ (a, (a+b)/2] as the other case is similar. Thus

it suffices to prove that |Fβ[a,b](x; p)−Fβ̂[a,b](x; p)| ≤ Ce−γ (b−x)/ε ≤ Ce−γ(b−a)/(2ε)

for all x ∈ (a, (a+ b)/2]. This follows from

Fβ[a,b](x; p)− F β̂[a,b](x; p) = −
(
d
dξ+

)2
[β[a,b] − β̂[a,b]] +O(β[a,b] − β̂[a,b])

combined with β[a,b] − β̂[a,b] = ṽ0; b + εv1; b, for which we have (14) and (15). �

Remark 2.5. Setting p = 0 in Corollary 2.4 and recalling that uas;[a,b](x) =
β[a,b](x; 0), we observe that the first-order asymptotic expansion uas;[a,b](x) defined

in (9) satisfies the estimate |Fuas;[a,b]| ≤ C[ε2 + e−γ(b−a)/(2ε)] for all x ∈ (a, b).
Since one expects Fuas;[a,b] ≈ Fu[a,b] = 0, the subdomain width (b − a) should
be sufficiently large, as in the following corollary. Furthermore, unless we have
b − a � ε, our problem (8) is no longer singularly perturbed and its asymptotic
analysis is no longer valid.
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Corollary 2.6. Let b − a ≥ (4/γ)ε lnN . Then there exists C0 > 0 such that for
β[a,b](x; p) from (11) for all |p| ≤ p0 we have

Fβ[a,b](x; p) ≥ C0p γ
2 +O(ε2 + p2 +N−2), if p > 0,

Fβ[a,b](x; p) ≤ −C0|p| γ2 +O(ε2 + p2 +N−2), if p < 0.

Proof. Recall (3a) and that v0; a(ξ+) ≥ 0 and v0; b(ξ
−) ≥ 0, by (13). Now invoke

Corollary 2.4 choosing 0 < C0 ≤ |λ(x)|−1 for all x so that 1 + C0λ(x) ≥ 0. Finally
note that e−γ(b−a)/(2ε) ≤ N−2. �

Theorem 2.7. Suppose that b − a ≥ (4/γ)ε lnN , where ε + N−1 ≤ C̃0 for some

sufficiently small C̃0, and the boundary data gl, where l = a, b, of problem (8)
satisfy (3b). Then this problem has a solution u[a,b] such that

(24)
∣∣(u[a,b] − uas ; [a,b])(x)

∣∣ ≤ C(ε2 +N−2) for all x ∈ [a, b],

where uas ; [a,b] is defined in (9).

Proof. Set p̄ := C̄(ε2 + N−2) ≤ p0 for some sufficiently large C̄ so that applying
Corollary 2.6 yields Fβ[a,b](x;−p̄) ≤ 0 ≤ Fβ[a,b](x; p̄) (this is possible as ε + N−1

is sufficiently small). Furthermore, since (13) implies that β[a,b](x; p) is increasing
in p, while β[a,b](x; 0) = uas ; [a,b](x), we get β[a,b](x;−p̄) ≤ uas ; [a,b](x) ≤ β[a,b](x; p̄).
Thus β[a,b](x;−p̄) and β[a,b](x; p̄) are sub- and super-solutions for problem (8).
Therefore, this problem has a solution u[a,b] such that β[a,b](x;−p̄) ≤ u[a,b](x) ≤
β[a,b](x; p̄) and hence for this solution we obtain the desired bound

(25) |u[a,b](x)− uas ; [a,b](x)| ≤ β[a,b](x; p̄)− β[a,b](x;−p̄) ≤ Cp̄.

The final estimate here follows from β[a,b](x; p̄) − β[a,b](x;−p̄) = 2p̄ ( ∂∂p ṽ0; a +
∂
∂p ṽ0; b + C0)

∣∣
p=θ

, where we used (11) and (14). �

3. Error in the continuous Schwarz method

In this section we estimate the error in the first iteration (6) of the continuous
Schwarz method and show that under condition (7), one iteration is sufficient for
second-order accuracy. First, we consider problems (5a) and (5b) in the subdomains
ΩL and ΩR.

Lemma 3.1. Suppose that σ satisfies (2/γ)ε lnN ≤ σ ≤ 1/4, where ε+N−1 ≤ C̃0

for some sufficiently small C̃0, and the boundary data gl, for l = 0, 2σ, 1 − 2σ, 1,
of problems (1), (5a), (5b) satisfy (3b). Then there exist solutions u = u[0,1],
uL = u[0,2σ] and uR = u[1−2σ,1] of these problems such that

|(uL − u)(x)| ≤ C(ε2 +N−2) for all x ∈ Ω̄L \ ΩC = [0, σ],(26a)

|(uR − u)(x)| ≤ C(ε2 +N−2) for all x ∈ Ω̄R \ ΩC = [1− σ, 1].(26b)

Furthermore,

(27) |(uL − u0)(σ)|+ |(uR − u0)(1− σ)| ≤ C(ε2 +N−2).

Proof. Applying Theorem 2.7 to problems (1), (5a), (5b) immediately yields exis-
tence of their solutions. It suffices now to prove estimates (26a) and (27) for uL,
as the required estimates for uR are obtained similarly. Estimate (24) for problems
(1) and (5a) yields

uL−u = uas ; [0,2σ]−uas ; [0,1]+O(ε2+N−2), uL−u0 = uas ; [0,2σ]−u0+O(ε2+N−2).

Thus to get the desired estimates, it remains to show that

(28) uas ; [0,2σ]−uas ; [0,1] = O(N−2) for x ∈ [0, σ], (uas ; [0,2σ]−u0)
∣∣
x=σ

= O(N−2).
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Note that, by (9), we have

uas ; [0,2σ] − uas ; [0,1] =
[
v0; 2σ(ξ−2σ) + εv1; 2σ(ξ−2σ)

]
−
[
v0; 1(ξ−1 ) + εv1; 1(ξ−1 )

]
,

uas ; [0,2σ] − u0 =
[
v0; 0(ξ+

0 ) + εv1; 0(ξ+
0 )
]

+
[
v0; 2σ(ξ−2σ) + εv1; 2σ(ξ−2σ)

]
.

Combining these with (14), (15) and ξ−1 = 1−x
ε , ξ−2σ = 2σ−x

ε , ξ+
0 = x

ε , we obtain
(28) and thus complete the proof. �

Lemma 3.2. Under the conditions of Lemma 3.1, there exist solutions u and uC

of problems (1) and (5c) such that

|(u− uC)(x)| ≤ C(ε2 +N−2) for all x ∈ Ω̄C = [σ, 1− σ].

Proof. Applying Theorem 2.7 to problem (1) and then imitating the proof of (28)
in Lemma 3.1, we get u− uas ; [0,1] = O(ε2 +N−2) and uas ; [0,1] = u0 +O(N−2) for
x ∈ [σ, 1− σ]. Thus it remains to show that there exists a solution uC of (5c) such
that uC − u0 = O(ε2 +N−2).

Combining (27) with the boundary conditions from (5c), we note that

(29) uC(l) = gl at l = σ, 1− σ, where gl − u0(l) = O(ε2 +N−2),

so one can easily check that the boundary conditions of problem (5c) satisfy assump-
tion (3b). Now, Theorem 2.7, applied to this problem, implies existence of a solution
uC such that uC− uas ; [σ,1−σ] = O(ε2 +N−2). Furthermore, using (14) to estimate
the boundary-layer components of uas ; [σ,1−σ], we observe that they do not exceed

Cδ|gl − u0(l)| = O(ε2 + N−2). This implies that uas ; [σ,1−σ] = u0 + O(ε2 + N−2)

and hence uC − u0 = O(ε2 +N−2). �

We now obtained all the results that we need to bound the error in the continuous
Schwarz method.

Theorem 3.3. Under the conditions of Lemma 3.1, there exist a solution u of
problem (1) and a first-iteration approximation u[1] defined in (6) such that

|(u− u[1])(x)| ≤ C(ε2 +N−2), for all x ∈ Ω̄.

Proof. Combining (6) with Lemma 3.1 and Lemma 3.2 yields the required result.
�

4. Discrete problem in a particular subdomain

4.1. Z-fields. In our analysis of nonlinear discrete problems, we shall invoke the
theory of Z-fields, which we now briefly describe.

Definition 4.1. An operator H : Rn+1 → Rn+1 is a Z-field if for all i 6= j the
mapping xj 7→ (H(x0, x1, . . . , xn))i is a monotonically decreasing function from R
to R when x0, . . . , xj−1, xj+1, . . . xn are fixed.

Remark 4.2. If H is differentiable, then H is a Z-field if and only if its Jacobian
matrix has non-positive off-diagonal entries.

We shall use the following unpublished result from Lorenz [14]; see also [11].

Lemma 4.3. [14] Let H : Rn+1 → Rn+1 be continuous and a Z-field. Let r ∈ Rn+1

be given. Assume that there exist α, β ∈ Rn+1 such that α ≤ β and Hα ≤ r ≤ Hβ
(these inequalities are understood to hold true component-wise). Then the equation
Hy = r has a solution y ∈ Rn+1 with α ≤ y ≤ β.

Remark 4.4. The functions α and β of Lemma 4.3 are called sub- and super-
solutions of the discrete problem Hy = r.
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4.2. Computed solution in a particular subdomain: existence and ac-
curacy. Following the discussion of problem (8) in a particular subdomain [a, b]
presented in §2, we shall now focus on its numerical solution.

For a given positive integer N , introduce an arbitrary nonuniform mesh Ω̄N[a,b] :=

{xi}Ni=0 in [a, b] with x0 = a, xN = b, hi := xi − xi−1 > 0 for i = 1, . . . , N , and

~i := (hi+hi+1)/2 for i = 1, . . . , N−1. Let ΩN[a,b] := {xi}N−1
i=1 be the corresponding

mesh of interior nodes.
The computed solution uN[a,b],i, i = 0, . . . , N , is required to satisfy the standard

three-point difference scheme:

FNuN[a,b],i := −ε2δ2 uN[a,b],i + f(xi, u
N
[a,b],i) = 0 for xi ∈ ΩN[a,b],(30a)

uN[a,b],0 = gNa , uN[a,b],N = gNb ,(30b)

where

(30c) δ2vi :=
1

~i

(
vi+1 − vi
hi+1

− vi − vi−1

hi

)
.

Remark 4.5. The mapping (x0, . . . , xN ) 7→ (gNa , F
N (uN )1, . . . , F

N (uN )N−1, g
N
b )

is a Z-field.

We want to investigate the existence and accuracy of solutions to problem (30).
As with the analysis of the discretisation of (1) in [11], this is done by constructing
discrete sub- and super-solutions and then invoking the theory of Z-fields.

Lemma 4.6. Let b − a ≥ (4/γ)ε lnN and β[a,b](x; p), for |p| ≤ p0, be defined by
(11) with p0 from Lemma 2.1. Suppose that the truncation error

(31a) ri [β[a,b](x; p)] := FNβ[a,b](xi; p)− Fβ[a,b](x; p)
∣∣
x=xi

= O(N−2 lnqN)

for all |p| ≤ p0 and xi ∈ ΩN[a,b] and for some q > 0. Furthermore, suppose that

(31b) |gNa − ga|+ |gNb − gb| ≤ CN−2 lnqN.

Then, for sufficiently large N , there exists a solution uN[a,b],i of (30) such that

(32) |uN[a,b],i − u[a,b](xi)| ≤ CN−2 lnqN for xi ∈ Ω̄N[a,b],

where u = u[a,b] is a solution of (8).

Proof. Set p̄ := C̄N−2 lnqN ≤ p0 for some sufficiently large C̄ so that, by Corol-
lary 2.6, we have

Fβ[a,b](x;−p̄) ≤ −(C̄/2)C0γ
2N−2 lnqN, Fβ[a,b](x; p̄) ≥ (C̄/2)C0γ

2N−2 lnqN

(this is possible since ε ≤ CN−1, by (7), and N is sufficiently large). Combining
these with (31a) and choosing C̄ sufficiently large, yields

FNβ[a,b](xi;−p̄) ≤ 0 ≤ FNβ[a,b](xi; p̄) for xi ∈ ΩN[a,b].

Furthermore, by (31b), a sufficiently large C̄ provides β[a,b](l;−p̄) ≤ gNl ≤ β[a,b](l; p̄)
for l = a, b. Finally note that β[a,b](x;−p̄) ≤ β[a,b](x; p̄); see the proof of Theo-
rem 2.7. Thus β[a,b](xi;−p̄) and β[a,b](xi; p̄) are sub- and super-solutions for the

discrete problem (30) and, by Lemma 4.3, there exists a discrete solution uN[a,b],i
between β[a,b](xi;−p̄) and β[a,b](xi; p̄). Now, imitating the argument used in the

proof of Theorem 2.7 to establish (25), we see that |uN[a,b],i − uas ; [a,b](xi)| ≤ Cp̄.

Combining this with (25), we get the desired error estimate (32). �
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5. Discrete Schwarz method. Error analysis

Now we introduce a discrete Schwarz method for problem (1) by discretizing the
continuous problems (5) in the overlapping subdomains ΩL, ΩC and ΩR described
in (4).

Choose σ ≥ (2/γ) ε lnN and define the meshes Ω̄NL , Ω̄NC and Ω̄NR in these sub-
domains as follows. Let the mesh Ω̄NC = {xC,i}Ni=0 in the interior region Ω̄C be
uniform with xC,i = σ + i(1 − 2σ)/N . In the boundary-layer regions Ω̄L and Ω̄R

we use certain layer-adapted meshes Ω̄NL = {xL,i}Ni=0 and Ω̄NR = {xR,i}Ni=0, which
are specified below. Note that the numbers of mesh nodes in these three meshes
should not be necessarily equal, but only of the same order, and are chosen equal
here only to simplify the presentation.

Each of the three problems in (5) is discretized by the finite difference scheme (30).
Thus we require the computed solutions uNL , uNR and uNC , associated with the meshes
Ω̄NL , Ω̄NR and Ω̄NC , respectively, to satisfy

FNuNL,i = 0 for xL,i ∈ ΩNL , u
N
L (0) = g0, uNL (2σ) = g2σ,(33a)

FNuNR,i = 0 for xR,i ∈ ΩNR , u
N
R (1− 2σ) = g1−2σ, uR(1) = g1,(33b)

FNuNC,i = 0 for xC,i ∈ ΩNC , u
N
C (σ) = uNL (σ), uNC (1− σ) = uNR (1− σ),(33c)

where g0 = u(0) and g1 = u(1). Next, the discrete first-iteration approximation
uN,[1] is defined, similarly to (6), by

(34) uN,[1](xi) :=

 uNL (xi), xi ∈ Ω̄NL \ΩC,
uNC (xi), xi ∈ Ω̄NC ,
uNR (xi), xi ∈ Ω̄NR \ΩC.

Remark 5.1. Relations (33), (34) describe the first iteration of the Schwarz it-
erative procedure, which, as we shall show below, is sufficient for second-order
accuracy in the case of ε ≤ CN−1. Consequently, we do not theoretically inves-
tigate the accuracy of further iterations, which, for the alternating version of the
Schwarz method, consist of successfully solving the following discrete problems:

FNu
N,[k]
L,R,C = 0 in ΩNL,R,C subject to u

N,[k]
L (0) = g0 and u

N,[k]
L (2σ) = u

N,[k−1]
C (2σ) for

u
N,[k]
L , subject to u

N,[k]
R (1 − 2σ) = u

N,[k−1]
C (1 − 2σ) and u

N,[k]
R (1) = g1 for u

N,[k]
R ,

and subject to u
N,[k]
C (σ) = u

N,[k]
L (σ) and u

N,[k]
C (1 − σ) = u

N,[k]
R (1 − σ) for u

N,[k]
C ,

where k = 2, 3, . . .. Here if, e.g., 2σ is not on the mesh ΩNC , then the standard linear

interpolation is applied to the computed solution u
N,[k−1]
C to evaluate the boundary

condition at 2σ for u
N,[k]
L .

We shall now elaborate on the layer-adapted meshes Ω̄NL and Ω̄NR , whose choice
is crucial for the accuracy of the method. Note that our results hold true on general
layer-adapted meshes such as those considered in [13], but for clarity we shall discuss
only two examples: Bakhvalov and Shishkin meshes. Let the mesh Ω̄NR reflect Ω̄NL
in x = 1/2, i.e. xR,i = 1− xL,N−i for i = 0, . . . , N , and define Ω̄NL as follows.

5(a) Bakhvalov mesh. [1] Set σ := (2/γ)ε| ln ε| and let the mesh Ω̄NL on [0, 2σ]
have the nodes xL,i := x(ti), where ti = i[2(1 − ε)/N ] for i = 0 . . . , N . Here
we used the mesh-generating function

x(t) := −(2/γ)ε ln(1− t) for t ∈ [0, 1− ε],
while for t ∈ [1 − ε, 2(1 − ε)] we set x(t) = 2σ − x(2(1 − ε) − t) so that the

sub-mesh {xL,i}Ni=N/2 on [σ, 2σ] reflects the sub-mesh {xL,i}N/2i=0 on [0, σ] in
x = σ.
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5(b) Shishkin mesh. [16] Set σ := (2/γ) ε lnN and introduce a uniform mesh
Ω̄NL on [0, 2σ] with the nodes xL,i := i(2σ/N) for i = 0, . . . , N .

Remark 5.2. In view of Remark 2.2, an inspection of our further analysis shows
that in the mesh definitions 5(a),(b), the parameter γ from (3a) can be replaced by
an arbitrary, possibly larger, value γ̃ such that 0 < γ̃2 < γ2

0 = min
x=0,1

fu(x, u0(x)).

Lemma 5.3. Suppose that the boundary data gl, for l = 0, 2σ, 1−2σ, 1, of problems
(5a) and (5b) satisfy (3b), and, under condition (7), the mesh Ω̄NL is either the
Bakhvalov mesh of §5(a) or the Shishkin mesh of §5(b). Then there exist solutions
uNL and uNR of discrete problems (33a) and (33b) such that, for sufficiently large N ,

(35) |uNL,R − uL,R| ≤ CN−2 lnqN for xi ∈ Ω̄NL,R,

where q = 0 for the Bakhvalov mesh and q = 2 for the Shishkin mesh.

Proof. It suffices to estimate the error in the computed solution uNL , as the analo-
gous estimate for uNR is similar. The desired estimate for uNL is obtained by applying
Lemma 4.6 to the continuous problem (5a) and its discretization (33a). Hypothesis
(31b) of this lemma is straightforward. Thus, it remains to check the other hypoth-
esis (31a) for β[0,2σ]. Furthermore, we shall establish this hypothesis only for the
case of xi ∈ [0, σ] as the other case of xi ∈ [σ, 2σ] is analogous.

Let z := β[0,2σ] − β̂[0,2σ], where β[0,2σ] and β̂[0,2σ] are defined in (11), (17), so

z(x) = ṽ0; 2σ(ξ−2σ; p)+εv1; 2σ(ξ−2σ); note that β[0,2σ] ≈ β̂[0,2σ] on [0, σ]. The definition

of the truncation error ri from (31a) implies that ri [β[0,2σ]] = ri [β̂[0,2σ]] + ri [z].
Furthermore,

(36)
∣∣ri [z]

∣∣ = ε2
∣∣δ2z(xi)− d2

dx2 z(xi)
∣∣ ≤ 2ε2 max

x∈[0,σ+h]

∣∣ d2
dx2 z

∣∣ = 2 max
x∈[0,σ+h]

∣∣( d
dξ−2σ

)2
z
∣∣.

Here xi ∈ [0, σ] and h is the maximum mesh size of Ω̄NL , for which a calculation
shows that 2σ − (σ + h) = σ − h = xN/2−1 ≥ (2/γ)ε ln(CN). Thus, invoking (14)

combined with (15), we get ri [z] = O(N−2 lnqN). Finally, imitating the proof of

[11, Lemma 3.3 and §3.4.2] yields ri [β̂[0,2σ]] = O(N−2 lnqN). Combining this with
our estimate for ri [z], we obtain the required estimate (31a) for ri [β[0,2σ]] and thus
complete the proof. �

Lemma 5.4. Under the conditions of Lemma 5.3, there exists a solution uNC of
discrete problem (33c) such that

|uNC − uC| ≤ CN−2 lnqN for xi ∈ Ω̄NC ,

where uC is a solution of problem (5c), while q = 0 for the Bakhvalov mesh and
q = 2 for the Shishkin mesh.

Proof. The desired estimate for uNC follows from Lemma 4.6 applied to the con-
tinuous problem (5c) and its discretization (33b). Hypothesis (31b) of this lemma
follows from (35) combined with the boundary conditions in problems (5c) and
(33c). Therefore it remains to check the other hypothesis (31a) for β[σ,1−σ].

By (11), we have β[σ,1−σ] = u0(x) + z1 + z2 +C0p, where z1(x) := ṽ0;σ(ξ+
σ ; p) +

εv1;σ(ξ+
σ ) and z2(x) := ṽ0; 1−σ(ξ−1−σ; p) + εv1; 1−σ(ξ−1−σ). Now, imitating (36) yields∣∣ri [β[σ,1−σ]]

∣∣ ≤ 2ε2 max
x∈[σ,1−σ]

∣∣ d2
dx2 β[σ,1−σ]

∣∣ = 2 max
x∈[σ,1−σ]

∣∣ε2u′′0 +
(
d
dξ+σ

)2
z1 +

(
d

dξ−1−σ

)2
z2

∣∣.
Noting that ε2u′′0 = O(ε2) and estimating the derivatives of z1 and z2 by combining
(14) with (15) and (29), we arrive at ri [β[σ,1−σ]] = O(ε2 +N−2) = O(N−2). Here
we also used (7). Thus we obtained the required estimate (31a) for ri [β[σ,1−σ]]. �
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Theorem 5.5. Suppose that the boundary data gl, for l = 0, 2σ, 1 − 2σ, 1, of
problems (5a) and (5b) satisfy (3b), and, under condition (7), the mesh Ω̄NL is
either the Bakhvalov mesh of §5(a) or the Shishkin mesh of §5(b). Then there exist
a solution u of problem (1) and a discrete first-order approximation uN,[1] defined
in (33), (34), such that, for sufficiently large N , we have

|uN,[1]
i − u(xi)| ≤ CN−2 lnqN for xi ∈ Ω̄N := (Ω̄NL \ Ω̄C) ∪ Ω̄NC ∪ (Ω̄NR \ Ω̄C),

where q = 0 for the Bakhvalov mesh and q = 2 for the Shishkin mesh.

Proof. The desired estimate immediately follows from Theorem 3.3, Lemma 5.3
and Lemma 5.4 combined with (6), (34) and then (7). �

Corollary 5.6. Under the conditions of Theorem 5.5, for the linear interpolant

uN,[1](x) of the discrete solution {uN,[1]
i } on the mesh Ω̄N = (Ω̄NL \ Ω̄C) ∪ Ω̄NC ∪

(Ω̄NR \ Ω̄C), we have

|uN,[1] − u(x)| ≤ CN−2 lnqN for x ∈ [0, 1].

Proof. The desired estimate follows from the analogous estimate for u− uI , where
uI(x) is a linear interpolant of the exact solution on the mesh Ω̄N . �

6. Numerical results

Consider the following version of a problem of Herceg [8]:

(37) −ε2u′′ + (u2 + u− 3.75)(u− 0.5)(u+ 2− cosx) = 0 for x ∈ (0, 1),

with u(0) = u(1) = 0. Here f(x, u) = (u2 +u−3.75)(u−0.5)(u+2−cosx), and the
reduced problem f(x, u0) = 0 has four solutions u1 = −2.5, u2 = cosx−2, u3 = 0.5
and u4 = 1.5 with fu(x, u1,3) < 0 and fu(x, u2,4) > 0 for x ∈ [0, 1]. By (3a), the
reduced solutions u1 and u3 are not stable, while u2 and u4 are stable and satisfy
conditions (3). We shall present numerical results for the solutions of (37) close to
u2 = cosx− 2. By (3a), we choose the Bakhvalov/Shishkin mesh parameter γ = 2

so that γ < min
x∈[0,1]

[fu(x, cosx− 2)]1/2 ≈ 2.37.

The test problem (37) was solved numerically using the alternating Schwarz
iterative procedure (see Remark 5.1) with g2σ := g0 = 0 and g1−2σ := g1 = 0
in (33), and the stopping criterion

(38) max
xi∈Ω̄N

|uN,[k+1](xi)− uN,[k](xi)| ≤ C∗N−2 lnqN,

where q = 0 for the Bakhvalov mesh and q = 2 for the Shishkin mesh, and we shall
usually take C∗ = 0.2. Here the tolerance of C∗N−2 lnqN is motivated by the error
estimate of Theorem 5.5.

Tables 1 and 4 list the numbers of Schwarz iterations needed until the stopping
criterion (38) is satisfied. We observe that whenever ε ≤ N−1, one iteration is
required, i.e. uN,[k] = uN,[1].

To computationally investigate |uN,[k]−u| (equal to |uN,[1]−u| for ε ≤ N−1), note
that the considered Schwarz domain decomposition method may be interpreted as
an iterative solver for the discretization [11] in the nondecomposed domain [0, 1]:

(39) FNuN = 0 for xi ∈ ΩN := (ΩNL \ Ω̄C) ∪ Ω̄NC ∪ (ΩNR \ Ω̄C),

with uN (0) = uN (1) = 0. As it was proved in [11] that |uNi −u(xi)| ≤ CN−2 lnqN ,

we list the values of maxxi∈Ω̄N |u
N,[k]
i − uNi | in Tables 2 and 5. Furthermore, in

Tables 3 and 6 we present approximate values of maxxi∈Ω̄N |uNi −u(xi)|, computed

as described in [11], in order to compare these values with maxxi∈Ω̄N |u
N,[k]
i − uNi |.
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N ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

16 9 2 1 1 1 1 1 1 1

32 11 2 1 1 1 1 1 1 1

64 13 2 1 1 1 1 1 1 1
128 15 2 2 1 1 1 1 1 1

256 17 2 2 1 1 1 1 1 1

512 19 2 2 1 1 1 1 1 1

Table 1. Bakhvalov mesh: number k of Schwarz iterations needed
to satisfy the stopping criterion (38) with C∗ = 0.2 and q = 0;
γ = 2.

N ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−8

16 9.77e-4 7.22e-4 2.11e-4 4.95e-5 1.76e-5 4.23e-6 1.61e-6
32 2.61e-4 3.01e-4 8.05e-5 1.39e-5 4.45e-6 9.62e-7 3.48e-7

64 6.98e-5 9.57e-5 3.83e-5 4.14e-6 1.17e-6 2.25e-7 7.71e-8

128 1.86e-5 2.59e-5 1.71e-6 1.33e-6 3.16e-7 5.31e-8 1.71e-8
256 4.98e-6 6.58e-6 1.16e-6 4.78e-7 8.85e-8 1.27e-8 3.83e-9

512 1.33e-6 1.60e-6 4.57e-7 2.09e-7 2.59e-8 3.09e-9 8.62e-10

Table 2. Bakhvalov mesh: maximum nodal values of |uN,[k] − uN |,
where uN,[k] satisfies the stopping criterion (38) with C∗ = 0.2 and
q = 0, and uN is a solution of (39).

N ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−8
max

ε=10−m
m=0,...,8

16 2.00 1.98 2.00 2.00 2.00 2.00 2.00 2.00

32 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
64 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

128 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

256 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

16 4.35e-5 5.88e-3 7.24e-3 7.38e-3 7.39e-3 7.39e-3 7.39e-3 7.39e-3

32 1.09e-5 1.50e-3 1.81e-3 1.85e-3 1.85e-3 1.85e-3 1.85e-3 1.85e-3

64 2.73e-6 3.74e-4 4.54e-4 4.62e-4 4.63e-4 4.63e-4 4.63e-4 4.63e-4
128 6.82e-7 9.36e-5 1.14e-4 1.16e-4 1.16e-4 1.16e-4 1.16e-4 1.16e-4

256 1.70e-7 2.34e-5 2.84e-5 2.89e-5 2.90e-5 2.90e-5 2.90e-5 2.90e-5
512 4.26e-8 5.85e-6 7.10e-6 7.23e-6 7.24e-6 7.24e-6 7.24e-6 7.24e-6

Table 3. Bakhvalov mesh: computational convergence rates r for
the conventional nondecomposed-domain method (39) assuming
that the error uN−u is CN−r (upper part); approximate maximum
nodal errors |uN − u| (lower part).

Discrete non-linear problems involved in our method, were solved using Newton
iterations with initial guess equal to u2 at all mesh nodes. In all our computations
5 Newton iterations were sufficient to get discrete solutions within the tolerance
of 10−8.

6.1. Bakhvalov mesh. The numerical results for the Bakhvalov mesh are given in
Tables 1–3. The mesh definition of §5(a) is valid only when ε ≤ 1/e and σ ≤ 1/4;
otherwise, to accommodate larger values of ε ∈ (0, 1], we set σ := 1/4 and use
uniform meshes Ω̄NL and Ω̄NR .
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N ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 ε = 10−8

16 6 1 1 1 1 1 1 1 1

32 7 2 1 1 1 1 1 1 1

64 9 2 1 1 1 1 1 1 1
128 10 2 1 1 1 1 1 1 1

256 12 2 1 1 1 1 1 1 1

512 14 2 1 1 1 1 1 1 1

Table 4. Shishkin mesh: number k of Schwarz iterations needed
to satisfy the stopping criterion (38) with C∗ = 0.2 and q = 2;
γ = 2.

N ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−8

16 7.05e-3 3.76e-3 3.53e-3 4.05e-3 4.11e-3 4.12e-3 4.12e-3
32 3.65e-3 4.13e-8 5.54e-4 6.94e-4 7.11e-4 7.13e-4 7.13e-4

64 9.77e-4 3.85e-8 8.77e-5 1.26e-4 1.32e-4 1.33e-4 1.33e-4

128 5.05e-4 3.78e-8 1.42e-5 2.27e-5 2.49e-5 2.52e-5 2.52e-5
256 1.35e-4 3.76e-8 2.50e-6 3.98e-6 4.73e-6 4.83e-6 4.83e-6

512 3.61e-5 3.76e-8 4.67e-7 6.64e-7 8.92e-7 9.30e-7 9.30e-7

Table 5. Shishkin mesh: maximum nodal values of |uN,[k] − uN |,
where uN,[k] satisfies the stopping criterion (38) with C∗ = 0.2 and
q = 2, and uN is a solution of (39).

Tables 1 and 2 list the numbers k of Schwarz iterations needed until the stopping

criterion (38) is satisfied, and the corresponding values maxxi∈Ω̄N |u
N,[k]
i −uNi |. We

observe that whenever ε ≤ N−1, one iteration is required, i.e. uN,[k] = uN,[1].
Table 3 gives approximate values of the convergence rates r and the errors |uN−u|

for the conventional nondecomposed-domain method (39). As the exact solution is
unknown, Table 3 was computed as described in [11, §4.1] (assuming that uNi −ui ≈
CN−r for some C > 0 and r > 0, and therefore using uN−u2N ). It is clear from our
numerical results that r = 2, i.e. uN is an ε-uniform second-order approximation
to the exact solution u.

Comparing Tables 2 and 3, we observe that maxi |uN,[k] − uN | does not exceed
maxi |uN − u| (with one exception of ε = 1, which we discuss below). Thus, uN,[k]

is also an ε-uniform second-order approximation to the exact solution u. In partic-
ular, for ε ≤ N−1, when we have uN,[1] = uN,[k], this agrees with the theoretical
conclusion of Theorem 5.5.

In the non-singularly-perturbed case of ε = 1, the numerical method (39) enjoys
much faster convergence; a calculation using the first column of Table 3 shows
that maxi |uN − u| ≈ 0.0112N−2. Therefore, to make maxi |uN,[k] − uN | negligible
compared with maxi |uN − u|, one needs to use the stopping criterion (38) with
q = 0 and C∗ < 0.0112 (this is confirmed by numerical results that we do not
present here).

6.2. Shishkin mesh. The numerical results for the Shishkin mesh are given in
Tables 4–6. To accommodate larger values of ε ∈ (0, 1], the definition of σ of §5(b)
is slightly modified to σ := min{(2/γ) ε lnN, 1/4}.

Tables 4 and 5 list the numbers k of Schwarz iterations needed until the stopping

criterion (38) is satisfied, and the corresponding values maxxi∈Ω̄N |u
N,[k]
i − uNi |.
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N ε = 1 ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−6 ε = 10−8
max

ε=10−m
m=0,...,8

16 2.95 2.24 0.69 0.68 0.68 0.68 0.68 0.73

32 2.71 2.60 2.00 2.00 2.00 2.00 2.00 2.00
64 2.57 2.57 1.93 1.93 1.93 1.93 1.93 1.93

128 2.48 2.47 1.99 1.99 1.99 1.99 1.99 1.99
256 2.41 2.41 2.00 2.00 2.00 2.00 2.00 2.00

16 4.35e-5 7.04e-3 6.86e-3 6.87e-3 6.87e-3 6.88e-3 6.88e-3 7.04e-3

32 1.09e-5 2.45e-3 4.97e-3 4.99e-3 4.99e-3 4.99e-3 4.99e-3 4.99e-3
64 2.73e-6 6.49e-4 1.79e-3 1.80e-3 1.80e-3 1.80e-3 1.80e-3 1.80e-3

128 6.82e-7 1.63e-4 6.35e-4 6.37e-4 6.37e-4 6.37e-4 6.37e-4 6.37e-4

256 1.70e-7 4.09e-5 2.08e-4 2.09e-4 2.09e-4 2.09e-4 2.09e-4 2.09e-4
512 4.26e-8 1.02e-5 6.60e-5 6.62e-5 6.62e-5 6.62e-5 6.62e-5 6.62e-5

Table 6. Shishkin mesh: computational convergence rates r for
the conventional nondecomposed-domain method (39) assuming
that the error uN − u is C(N−1 lnN)r (upper part); approximate
maximum nodal errors |uN − u| (lower part).

We observe that whenever ε ≤ N−1 (and occasionally even when ε > N−1), one
iteration is required, i.e. uN,[k] = uN,[1].

Table 6 gives approximate values of the convergence rates r and the errors |uN−u|
for the conventional nondecomposed-domain method (39). As the exact solution is
unknown, Table 6 was computed as described in [11, §4.2] (assuming that uNi −ui ≈
C(N−1 lnN)r for some C > 0 and r > 0, and therefore using the discrete solution
ū2N on the auxiliary bisected mesh). It is clear from our numerical results that
r = 2, i.e. |uN − u| ≤ CN−2 ln2N .

Comparing Tables 5 and 6, we observe that maxi |uN,[k] − uN | does not exceed
maxi |uN − u| (with one exception of the non-singularly-perturbed case of ε = 1,
which we already discussed in §6.1). Thus, uN,[k] gives an ε-uniform almost-second-
order approximation (with a logarithmic factor ln2N) to the exact solution u. In
particular, for ε ≤ N−1, when we have uN,[1] = uN,[k], this confirms the theoretical
estimate of Theorem 5.5.

In summary, our numerical results agree with our theoretical conclusions.
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