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NUMERICAL SOLUTIONS OF STOCHASTIC DIFFERENTIAL

DELAY EQUATIONS WITH JUMPS
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(Communicated by Ed Allen)

Abstract. In this paper, the semi-implicit Euler (SIE) method for the sto-

chastic differential delay equations with Poisson jump and Markov switching

(SDDEwPJMSs) is developed. We show that under global Lipschitz assump-

tions the numerical method is convergent and SDDEwPJMSs is exponentially

stable in mean-square if and only if for some sufficiently small step-size ∆

the SIE method is exponentially stable in mean-square. We then replace the

global Lipschitz conditions with local Lipschitz conditions and the assump-

tions that the exact and numerical solution have a bounded pth moment for

some p > 2 and give the convergence result.
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1. Introduction

Stochastic modeling has come to play an important role in many branches of sci-
ence and industry and there are significant literatures that have been done concern-
ing approximate schemes for stochastic differential equations (SDEs) with Markov
switching [8, 12] or SDEs with Poisson jump [5, 6, 7].

In general, the future state of a system depends on the present and past states.
Hence, it is more significant to consider stochastic differential delay equations with
Poisson jump and Markov switching (SDDEwPJMSs). As many other equations,
SDDEwPJMSs cannot be solved analytically. Thus, it is necessary to develop
numerical methods and to study the properties of these methods. Finite time
convergence analysis of an Euler scheme is given in [13]. In this work, we consider
the finite time convergence of SIE method, the exponential mean-square stability
of analytic and SIE numerical solutions.

Throughout this paper, we let W (t) be a d-dimensional Brownian motion, N(t)
be a scalar Poisson process with intensity λ and independent of the Brownian
motion. Also we let r(t), t ≥ 0 be a right-continuous Markov chain taking values
in a finite state space S = {1, 2, . . . , N}. The corresponding generator is denoted
Γ = (γij)N×N , so that

P{r(t+ δ) = j|r(t) = i} =

{

γijδ + o(δ) : if i 6= j,

1 + γijδ + o(δ) : if i = j,
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where δ > 0. Here γij is the transition rate from i to j satisfying γij ≥ 0 if
i 6= j while γii = −∑

j 6=i γij . Assume the Markov chain r(·) is independent of the
Brownian motion W (·) and Poisson jump N(·). We note that almost every sample
path of r(·) is right continuous step function with a finite number of sample jumps
in any finite subinterval of R+ := [0,∞).

In this paper, we need to work on the probability space (Ω, F , P) with a filtration
{Ft}t≥0 satisfying the usual conditions. To construct such a filtration, we denote
by N the collection of P-null sets, that is N = {A ∈ F : P(A) = 0}, For each t ≥ 0,
define Ft = σ(N ∪ σ(B(s), r(s), N(s) : 0 ≤ s ≤ t)).

We will use | · | to denote the Euclidean norm of a vector and the trace norm of a
matrix and < ·, · > to denote the scalar product. We will denote the indicator func-
tion of a set G by IG and denote by L2

Ft
([−τ, 0];Rn) the family of Ft-measurable,

C([−τ, 0];Rn)-valued random variables ϕ = {ϕ(t) : −τ ≤ t ≤ 0} such that

||ϕ||2E := sup
−τ≤u≤0

E|ϕ(u)|2 < ∞.

For µ ∈ R, In[µ] denote the integer part of µ. In this paper we consider the following
n-dimensional SDDEwPJMSs

(1.1)











dx(t) =f(t, x(t), x(τ(t)), r(t))dt + g(t, x(t), x(τ(t)), r(t))dW (t)

+ h(t, x(t), x(τ(t)), r(t))dN(t), t ≥ 0,

x(t) =ϕ(t), r(0) = r0, t ∈ [−τ, 0],

where f : R × R
n × R

n → R
n, g : R × R

n × R
n → R

n×d, h : R × R
n × R

n → R
n,

τ(t) satisfy:
there exists a positive constant ρ such that

(1.2) −τ ≤ τ(t) < t, and |τ(t) − τ(s)| ≤ ρ|t− s|, ∀t, s ≥ 0,

and ϕ(t) ∈ L2
F0

([−τ, 0];Rn) which is uniformly Hölder continuous with exponent
γ ∈ (0, 1], that is, there exists a constant M > 0 such that for all −τ ≤ s < t ≤ 0

(1.3) E|ϕ(t) − ϕ(s)|2 ≤ M(t− s)γ .

We also assume that

(1.4) a(t, 0, 0, i) = 0 ∀i ∈ S, a = f, g, h,

so Eq. (1.1) admits the zero solution x(t) = 0.
To define the SIE approximate solution, we will need the following lemma (see

[1]).

Lemma 1.1. Given ∆ > 0, let r∆k = r(k∆) for k ≥ 0. Then {r∆k , k = 0, 1, 2, . . .}
is a discrete Markov chain with the one-step transition probability matrix

(1.5) P(∆) = (Pij(∆))N×N = e∆Γ.

Given a fixed step size ∆ > 0 and the one-step transition probability matrix
P(∆) in (1.5), the discrete Markov chain {r∆k , k = 0, 1, 2, . . .} can be simulated as
follows [8]. Let r∆0 = r0 and compute a pseudo-random number ξ1 from the uniform
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(0, 1) distribution. Define

r∆1 =







































i : if i ∈ S− {N} such that

i−1
∑

j=1

Pr∆0 ,j(∆) ≤ ξ1 <

i
∑

j=1

Pr∆0 ,j(∆),

N : if

N−1
∑

j=1

Pr∆0 ,j(∆) ≤ ξ1,

where we set
∑0

j=1 Pr∆0 ,j(∆) = 0 as usual. In other words, we ensure that the

probability of state s being chosen is given by P(r∆1 = s) = Pr∆0 ,s(∆). Generally,

having computed r∆0 , r∆1 , . . . , r∆k , we compute r∆k+1 by drawing a uniform (0, 1)
pseudo-random number ξk+1 and setting

r∆k+1 =







































i : if i ∈ S− {N} such that

i−1
∑

j=1

Pr∆
k
,j(∆) ≤ ξk+1 <

i
∑

j=1

Pr∆
k
,j(∆),

N : if

N−1
∑

j=1

Pr∆
k
,j(∆) ≤ ξk+1.

This procedure can be carried out independently to obtain more trajectories.
Having explained how to simulate the discrete Markov chain, we now define the

SIE approximation for Eq. (1.1).
Let the step-size ∆ ∈ (0, 1) be τ

m for some positive integer m, tk = k∆. The SIE
method applied to (1.1) computer approximations Yk ≃ x(tk), by setting Yk = ϕ(tk)
for −m ≤ k ≤ 0, r∆0 = r0 and forming

Yk+1 =Yk + [(1− θ)f(tk, Yk, YIn[τ(tk)/∆], r
∆
k ) + θf(tk+1, Yk+1, YIn[τ(tk+1)/∆], r

∆
k )]∆

+ g(tk, Yk, YIn[τ(tk)/∆], r
∆
k )∆Wk + h(tk, Yk, YIn[τ(tk)/∆], r

∆
k )∆Nk, k ≥ 0,

(1.6)

where ∆Wk = W (tk+1)−W (tk), ∆Nk = N(tk+1)−N(tk). Let

z1(t) = Yk, ẑ1(t) = Yk+1,

z2(t) = YIn[τ(tk)/∆], ẑ2(t) = YIn[τ(tk+1)/∆],

t = tk, t = tk+1, r̄(t) = r∆k ,











for t ∈ [tk, tk+1)

and define the continuous SIE approximate solution by

(1.7)

Y (t) : = Y0 +

∫ t

0

(1− θ)f(s, z1(s), z2(s), r̄(s)) + θf(s, ẑ1(s), ẑ2(s), r̄(s))ds

+

∫ t

0

g(s, z1(s), z2(s), r̄(s))dW (s) +

∫ t

0

h(s, z1(s), z2(s), r̄(s))dN(s),

with Y (t) = ϕ(t) on t ∈ [−τ, 0].
A key component in our analysis is the compensated Poisson process

(1.8) Ñ(t) := N(t)− λt

which is a martingale.
Throughout this paper, we usually use the following equalities.

(1.9) E|
∫ t

0

F (s)dÑ(s)|2 = λ

∫ t

0

E|F (s)|2ds,



662 G. ZHAO, M. SONG AND M. LIU

(1.10) E|
∫ t

0

F (s)dW (s)|2 =

∫ t

0

E|F (s)|2ds

which hold for integrated functions F (in particular, F (s) is Fs-measurable, if it is
random).

2. Convergence with the global Lipschitz condition

In this section we shall show the strong convergence of the SIE approximate
solution to the exact solution under the following global Lipschitz conditions:
(GL) There is a constant C > 0 such that

(2.1) |a(t, x, y, i)− a(t, x̄, ȳ, i)|2 ≤ C(|x − x̄|2 + |y − ȳ|2), a = f, g, h,

for all x, y, x̄, ȳ ∈ R
n, t ∈ R+ and i ∈ S;

there is a constant K > 0 such that

(2.2) |a(t, x, y, i)− a(s, x, y, i)|2 ≤ K(1 + |x|2 + |y|2)|t− s|, a = f, g, h,

for ∀x, y ∈ R
n, ∀t, s ∈ [−τ,∞), i ∈ S.

Recall (1.4) we observe from (2.1) that the linear growth condition

(2.3) |a(t, x, y, i)|2 ≤ C(|x|2 + |y|2), a = f, g, h

hold for all (t, x, y, i) ∈ R+ × R
n × R

n × S. Let us now present a number of
lemmas that will lead to our convergence result. First, we consider the existence of
a solution to (1.6).

Lemma 2.1. Under (2.1), if ∆ is sufficiently small such that ∆θ
√
C < 1, then

equation (1.6) can be solved uniquely for Yk+1 given YIn[τ(tk)/∆], YIn[τ(tk+1)/∆], Yk,
with probability 1.

Proof. Define, for u ∈ R
n

F (u) =Yk + [(1 − θ)f(tk, Yk, YIn[τ(tk)/∆], r
∆
k ) + θf(tk+1, u, YIn[τ(tk+1)/∆], r

∆
k )]∆

+ g(tk, Yk, YIn[τ(tk)/∆], r
∆
k )∆Wk + h(tk, Yk, YIn[τ(tk)/∆], r

∆
k )∆Nk.

Using (GL), we have

|F (u)− F (v)| = θ∆|f(tk+1, u, YIn[τ(tk+1)/∆], r
∆
k )− f(tk+1, v, YIn[τ(tk+1)/∆], r

∆
k )|

≤ θ∆
√
C|u− v|.

By the classical Banach contraction mapping theorem, F (u) has a unique fixed
point, which is Yk+1. �

Lemma 2.2. If (2.3) holds, then for all sufficiently small ∆(< 1/(3 + 3C)) the
SIM approximate solution (1.7) satisfies, for any T > 0,

(2.4) sup
−τ≤t≤T

E|Y (t)|2 ≤ αT ,

where αT = [6 + 10TC(2 + 3T + 8CT + 6CλT + 2λ2T )(1 + T + 2λ + 2λ2T )×
e(8+15C+12Cλ+3λ2+3λ)(T+1)]‖ϕ‖2

E
. Moreover, the true solution of (1.1) also obeys

(2.5) sup
−τ≤t≤T

E|x(t)|2 ≤ B̄T ,

where B̄T = [5 + 4C(1 + 2λ+ T + 2λ2T )]e8C(1+2λ+T+2λ2T )‖ϕ‖2
E
. For convenience,

we denote B = max{αT , B̄T }.
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Proof. It follows from (1.6) that

E|Yk+1|2 =E|Yk|2 + E|[(1 − θ)f(tk, Yk, YIn[τ(tk)/∆], r
∆
k ) + θf(tk+1, Yk+1, YIn[τ(tk+1)/∆], r

∆
k )]∆

+ g(tk, Yk, YIn[τ(tk)/∆], r
∆
k )∆Wk + h(tk, Yk, YIn[τ(tk)/∆], r

∆
k )∆Nk|2

+ 2∆E(< Yk, (1− θ)f(tk, Yk, YIn[τ(tk)/∆], r
∆
k ) + θf(tk+1, Yk+1, YIn[τ(tk+1)/∆], r

∆
k ) >

+ 2E < Yk, g(tk, Yk, YIn[τ(tk)/∆], r
∆
k )∆Wk > +2E < Yk, h(tk, Yk, YIn[τ(tk)/∆], r

∆
k )∆Nk > .

Noting that ∆Wk and ∆Nk are independent of Ftk , E∆Wk = 0, E∆Nk = λ∆.
Hence

E|Yk+1|2 =E|Yk|2 + E|[(1 − θ)f(tk, Yk, YIn[τ(tk)/∆], r
∆
k ) + θf(tk+1, Yk+1, YIn[τ(tk+1)/∆], r

∆
k )]∆

+ g(tk, Yk, YIn[τ(tk)/∆], r
∆
k )∆Wk + h(tk, Yk, YIn[τ(tk)/∆], r

∆
k )∆Nk|2

+ 2∆E(< Yk, (1− θ)f(tk, Yk, YIn[τ(tk)/∆], r
∆
k ) + θf(tk+1, Yk+1, YIn[τ(tk+1)/∆], r

∆
k ) >

+ 2λ∆E < Yk, h(tk, Yk, YIn[τ(tk)/∆], r
∆
k ) > .

Using elementary inequalities

2 < u, v >≤ |u|2 + |v|2 and |(1− θ)u + θv|2 ≤ |u|2 + |v|2, ∀ u, v ∈ R
n,

E[|g(tk, Yk, YIn[τ(tk)/∆], r
∆
k )|2|∆Wk|2] = ∆E|g(tk, Yk, YIn[τ(tk)/∆], r

∆
k )|2,

E[|h(tk, Yk, YIn[τ(tk)/∆], r
∆
k )|2|∆Nk|2] = (λ2∆2 + λ∆)E|h(tk, Yk, YIn[τ(tk)/∆], r

∆
k )|2,

τ(t) < t and (2.3), we then compute

E|Yk+1|2 ≤E|Yk|2 + 3E[|f(tk, Yk, YIn[τ(tk)/∆], r
∆
k )|2∆2 + |f(tk+1, Yk+1, YIn[τ(tk+1)/∆], r

∆
k )|2∆2

+ |g(tk, Yk, YIn[τ(tk)/∆], r
∆
k )|2|∆Wk|2 + |h(tk, Yk, YIn[τ(tk)/∆], r

∆
k )|2|∆Nk|2]

+ ∆E(|Yk|2 + |f(tk, Yk, YIn[τ(tk)/∆], r
∆
k )|2 + |f(tk+1, Yk+1, YIn[τ(tk+1)/∆], r

∆
k )|2)

+ λ∆E(|Yk|2 + |h(tk, Yk, YIn[τ(tk)/∆], r
∆
k )|2)

≤E|Yk|2 + (3C∆2 + 3C∆+ 3C(λ2∆2 + λ∆) +∆+ λ∆+ C∆+ λC∆)E|Yk |2

+ (3C∆2 + 3C∆+ 3C(λ2∆2 + λ∆) + C∆+ λC∆)E|YIn[τ(tk)/∆]|2

+ (3C∆2 + C∆)E|YIn[τ(tk+1)/∆]|2 + (3C∆2 + C∆)E|Yk+1|2

≤E|Yk|2 +∆(2 + 4C + 4Cλ+ λ2 + λ)E|Yk|2

+∆(1 + 4C + 4Cλ+ λ2)E|YIn[τ(tk)/∆]|2

+∆(1 + C)E|YIn[τ(tk+1)/∆]|2 +∆(1 + C)E|Yk+1|2,
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where we have noted that 3C∆ < 1. Let M̃ be any positive integer such that
M̃ ≤ In[T/∆]+1. Summing the inequality above for k from 0 to M̃ − 1, we obtain

E|YM̃ |2 ≤E|Y0|2 +∆(2 + 4C + 4Cλ+ λ2 + λ)
M̃−1
∑

k=0

E|Yk|2

+∆(1 + 4C + 4Cλ+ λ2)

M̃−1
∑

k=0

E|YIn[τ(tk)/∆]|2

+∆(1 + C)

M̃−1
∑

k=0

E|YIn[τ(tk+1)/∆]|2 +
M̃−1
∑

k=0

∆(1 + C)E|Yk+1|2

≤(1 + 2T + 5CT + 4CλT + λ2T )‖ϕ‖2
E
+∆(1 + C)E|YM̃ |2

+∆(5 + 10C + 8Cλ+ 2λ2 + 2λ)

M̃−1
∑

k=0

E|Yk|2.

Noting that (1 + C)∆ < 1/3, we have

E|YM̃ |2 ≤ (2+3T+8CT+6CλT+2λ2T )‖ϕ‖2E+(8+15C+12Cλ+3λ2+3λ)∆

M̃−1
∑

k=0

E|Yk|2

Using the discrete Gronwall inequality [3] and recalling that M̃∆ ≤ T + 1, we
obtain

E|YM̃ |2 ≤ ᾱT ‖ϕ‖2E,

where ᾱT = (2 + 3T + 8CT + 6CλT + 2λ2T )e(8+15C+12Cλ+3λ2+3λ)(1+T ). Recalling
the definition of z1(t), z2(t), ẑ1(t) and ẑ2(t) we see that

sup
0≤t≤T

E|zj(t)| ≤ ᾱT ‖ϕ‖2E, sup
0≤t≤T

E|ẑj(t)| ≤ ᾱT ‖ϕ‖2E, j = 1, 2.

Using the Hölder inequality, (1.8)-(1.10) and (2.3), we derive from (1.7) that

E|Y (t)|2 ≤5E|Y0|2 + 5(1− θ)2TE

∫ t

0

|f(s, z1(s), z2(s), r̄(s))|2ds

+ 5E

∫ t

0

θ2T |f(s, ẑ1(s), ẑ2(s), r̄(s))|2 + |g(s, z1(s), z2(s), r̄(s))|2ds

+ (10λ+ 10λ2T )E

∫ t

0

|h(s, z1(s), z2(s), r̄(s))|2ds

≤5E|Y0|2 + 5θ2TCE

∫ t

0

|ẑ1(s)|2 + |ẑ2(s)|2ds

+ [5(1− θ)2T + 5 + 10λ+ 10λ2T ]CE

∫ t

0

|z1(s)|2 + |z2(s)|2ds

≤[5 + 10ᾱTTC(1 + T + 2λ+ 2λ2T )]‖ϕ‖2
E
.

Hence

sup
−τ≤t≤T

E|Y (t)|2 ≤ [6 + 10ᾱTTC(1 + T + 2λ+ 2λ2T )]‖ϕ‖2E,
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which is the required assertion (2.4). Next, we prove (2.5). Using the Hölder
inequality, (1.8)-(1.10) and (2.3), we derive from (1.1) that

E|x(t)|2 ≤4E|x0|2 + 4E

∫ t

0

T |f(s, x(s), x(τ(s)), r(s))|2ds

+ |g(s, x(s), x(τ(s)), r(s))|2ds

+ (8λ+ 8λ2T )E

∫ t

0

|h(s, x(s), x(τ(s)), r(s))|2ds

≤4E|x0|2 + 4C(1 + 2λ+ T + 2λ2T )E

∫ t

0

|x(s)|2 + |x(τ((s))|2ds

≤4E|x0|2 + 4C(1 + 2λ+ T + 2λ2T )||ϕ||2
E

+ 8C(1 + 2λ+ T + 2λ2T )

∫ t

0

sup
0≤ξ≤s

E|x(ξ)|2ds.

Since the right-hand side term is non-decreasing in t, we have

sup
0≤t≤t1

E|x(t)|2 ≤[4 + 4C(1 + 2λ+ T + 2λ2T )]‖ϕ‖2
E

+ 8C(1 + 2λ+ T + 2λ2T )

∫ t1

0

sup
0≤ξ≤s

E|x(ξ)|2ds.

The continuous Gronwall inequality [9] yields

sup
0≤t≤T

E|x(t)|2 ≤ [4 + 4C(1 + 2λ+ T + 2λ2T )]e8C(1+2λ+T+2λ2T )‖ϕ‖2
E
.

Hence

sup
−τ≤t≤T

E|x(t)|2 ≤ [5 + 4C(1 + 2λ+ T + 2λ2T )]e8C(1+2λ+T+2λ2T )‖ϕ‖2E.

�

Next, we shall employ the technique in [8] to bound the effect of replacing the
right-continuous Markov chain by the interpolation of the discrete time Markov
chain.

Lemma 2.3. If (2.3) holds, then for all sufficiently small ∆,

(2.6) E

∫ T

0

|a(s, z1(s), z2(s), r(s)) − a(s, z1(s), z2(s), r̄(s))|2ds ≤ C1∆

and

(2.7) E

∫ T

0

|f(s, ẑ1(s), ẑ2(s), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds ≤ C1∆

for any T > 0, where a is f , g, or h and C1 = 8Cγ̂TB, γ̂ = N [ max
1≤i≤N

(−γii) + 1].
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Proof. Let l = [T/∆], then

E

∫ T

0

|f(s, z1(s), z2(s), r(s)) − f(s, z1(s), z2(s), r̄(s))|2ds

=
l

∑

k=0

E

∫ tk+1

tk

|f(s, z1(s), z2(s), r(s)) − f(s, z1(s), z2(s), r̄(s))|2ds

≤2

l
∑

k=0

E

∫ tk+1

tk

[|f(s, z1(s), z2(s), r(s))|2

+ |f(s, z1(s), z2(s), r̄(s))|2]I{r(s) 6=r(tk)}ds

≤4C

l
∑

k=0

E

∫ tk+1

tk

(|z1(s)|2 + |z2(s)|2)I{r(s) 6=r(tk)}ds

(2.8)

with, for convenience, tl+1 being redefined as T . By the property of conditional
expectation in [9], we have

E

∫ tk+1

tk

(|z1(s)|2 + |z2(s)|2)I{r(s) 6=r(tk)}ds

=

∫ tk+1

tk

E[E[(|Yk|2 + |YIn[τ(tk)/∆]|2)I{r(s) 6=r(tk)}|r(tk)]]ds

=

∫ tk+1

tk

E[E[(|Yk|2 + |YIn[τ(tk)/∆]|2)|r(tk)]E[I{r(s) 6=r(tk)}|r(tk)]]ds,

(2.9)

where in the last step we used the fact that Yk and YIn[τ(tk)/∆] are independent
of I{r(s) 6=r(tk)} with respect to the σ − algebra generated by r(tk). By the Markov
property

E[I{r(s) 6=r(tk)}|r(tk)] =
∑

i∈S

I{r(tk)=i}P(r(s) 6= i|r(tk) = i)

=
∑

i∈S

I{r(tk)=i}

∑

j 6=i

(γij(s− tk) + o(s− tk))

≤ ( max
1≤i≤N

(−γii)∆ + o(∆))
∑

i∈S

I{r(tk)=i}

≤ γ̂∆,

where γ̂ = N [1 + max
1≤i≤N

(−γii)]. Substituting this into (2.9) gives

E

∫ tk+1

tk

(|z1(s)|2 + |z2(s)|2)I{r(s) 6=r(tk)}ds

≤ γ̂∆

∫ tk+1

tk

E[|Yk|2 + |YIn[τ(tk)/∆]|2]ds.

Putting it into (2.8)

E

∫ T

0

|f(s, z1(s), z2(s), r(s)) − f(s, z1(s), z2(s), r̄(s))|2ds

≤ 4Cγ̂∆
l

∑

k=0

∫ tk+1

tk

E[|Yk|2 + |YIn[τ(tk)/∆]|2]ds

≤ 8Cγ̂TB∆.
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We can show a = g and a = h similarly. We have used that z1(t) is Ft-measurable.
However, ẑ1(t) is not Ft-measurable, so assertion (2.7) requires a more careful
treatment. By (2.3), it is easy to show that

E

∫ T

0

|f(s, ẑ1(s), ẑ2(s), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds

=

l
∑

k=0

E

∫ tk+1

tk

|f(s, ẑ1(s), ẑ2(s), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds

≤ 4C

l
∑

k=0

E

∫ tk+1

tk

(|Yk+1|2 + |YIn[τ(tk+1)/∆]|2)I{r(s) 6=r(tk)}ds.

(2.10)

By the Markov property

E[|Yk+1|2I{r(s) 6=r(tk)}]

=

∫

Rn

∫

Rn

∫

Rn

∑

i∈S

E[|Yk+1|2I{r(s) 6=i}|Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i]

× P{Yk = dx1, YIn[τ(tk)/∆] = dx2, YIn[τ(tk+1)/∆] = dx3, r(tk) = i}.

Given that Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i, we see from
(1.7) that

Yk+1 =x1 + [(1− θ)f(tk, x1, x2, i) + θf(tk+1, Yk+1, x3, i)]∆

+ g(tk, x1, x2, i)∆Wk + h(tk, x1, x2, i)∆Nk.

For τ(t) < t, In[τ(tk+1)/∆] ≤ k. Hence, Yk+1 depends on ∆Wk, ∆Nk which are in-
dependent of the Markov chain. In other words, Yk+1 and I{r(s) 6=i} are independent
given Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i. Hence

E[|Yk+1|2I{r(s) 6=r(tk)}]

=

∫

Rn

∫

Rn

∫

Rn

∑

i∈S

E[|Yk+1|2|Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i]

× P{r(s) 6= i|Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i}
× P{Yk = dx1, YIn[τ(tk)/∆] = dx2, YIn[τ(tk+1)/∆] = dx3, r(tk) = i}.

(2.11)

We compute that

P{r(s) 6= i|Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i}

=
P{r(s) 6= i, Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i}

P{Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i}

=
P{r(s) 6= i, Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3|r(tk) = i}

P{Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3|r(tk) = i} .

(2.12)

Noting that given r(tk) = i, then event r(s) 6= i is independent of Yk = x1,
YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, we have

P{r(s) 6= i, Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3|r(tk) = i}
= P{r(s) 6= i|r(tk) = i}P{Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3|r(tk) = i}.
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Putting this into (2.12) we obtain

P{r(s) 6= i|Yk = x1, YIn[τ(tk)/∆] = x2, YIn[τ(tk+1)/∆] = x3, r(tk) = i}
= P{r(s) 6= i|r(tk) = i} ≤ γ̂∆.

(2.13)

Using this in (2.11)

(2.14) E[|Yk+1|2I{r(s)=r(tk)}] ≤ γ̂∆E|Yk+1|2.
Noting that |YIn[τ(tk+1)/∆]|2 and I{r(s) 6=r(tk)} are conditionally independent with
respect to the σ-algebra generated by r(tk), we have

E[|YIn[τ(tk+1)/∆]|2I{r(s) 6=r(tk)}]

= E[E[|YIn[τ(tk+1)/∆]|2I{r(s) 6=r(tk)}|r(tk)]]
= E[E[|YIn[τ(tk+1)/∆]|2|r(tk)]E[I{r(s) 6=r(tk)}|r(tk)]]
≤ γ̂E|YIn[τ(tk+1)/∆]|2∆.

(2.15)

Substituting (2.15) and (2.14) into (2.10) we obtain

E

∫ T

0

|f(s, ẑ1(s), ẑ2(s), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds

≤ 8Cγ̂TB∆.

�

Lemma 2.4. If (2.3) holds, for all sufficiently small ∆ we have

E|Y (t)− z1(t)|2 ≤ C2∆, ∀t ∈ [0, T ],

for any T > 0, where C2 = 16(1 + λ+ λ2)CB is a constant independent of ∆.

Proof. For any t ∈ [0, T ], there exists a k such that t ∈ [tk, tk+1). Then

Y (t)− z1(t)

= [(1− θ)f(tk, Yk, YIn[τ(tk)/∆], r(tk)) + θf(tk+1, Yk+1, YIn[τ(tk+1)/∆], r(tk))](t − tk)

+ g(tk, Yk, YIn[τ(tk)/∆], r(tk))(W (t) −W (tk))

+ h(tk, Yk, YIn[τ(tk)/∆], r(tk))(N(t)−N(tk)).

For g(tk, Yk, YIn[τ(tk)/∆], r(tk)) and g(tk, Yk, YIn[τ(tk)/∆], r(tk)) are Ftk -measurable,
W (t)−W (tk) and N(t)−N(tk) are independent of Ftk , we have

E|g(tk, Yk, YIn[τ(tk)/∆], r(tk))(W (t)−W (tk))|2 = (t−tk)E|g(tk, Yk, YIn[τ(tk)/∆], r(tk))|2,
E|g(tk, Yk, YIn[τ(tk)/∆], r(tk))(N(t) −N(tk))|2 = E|g(tk, Yk, YIn[τ(tk)/∆], r(tk))|2|N(t)−N(tk)|2

≤ (2λ2∆2 + 2λ∆)E|g(tk, Yk, YIn[τ(tk)/∆], r(tk))|2.
By (2.3), we have

E|Y (t)− z1(t)|2 ≤4(1− θ)2CE[|Yk|2 + |YIn[τ(tk)/∆t]|2]∆2

+ 4θ2CE[|Yk+1|2 + |YIn[τ(tk+1)/∆]|2]∆2

+ 4C∆E[|Yk|2 + |YIn[τ(tk)/∆t]|2]
+ 8λ∆(1 + λ∆)E[|Yk|2 + |YIn[τ(tk)/∆t]|2]

≤16(1 + λ+ λ2)CB∆.

�

We will use the technique in [10] to prove the following lemma.
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Lemma 2.5. If (2.3) hold, then for all sufficiently small ∆

E|Y (τ(t)) − z2(t)|2 ≤ C3∆
γ , ∀t ∈ [0, T ],

for any T > 0, where C3 = 2M(ρ+ 1)γ + 16(ρ+ 1)[(ρ + 1)(1 + 2λ2) + 1 + 2λ]CB
is a constant independent of ∆.

Proof. For any t ∈ [0, T ], there exists a k such that t ∈ [tk, tk+1). Then

(2.16) Y (τ(t)) − z2(t) = Y (τ(t)) − Y (In[τ(tk)/∆]∆).

It is also useful to note that

(2.17) τ(tk)−∆ ≤ In[τ(tk)/∆]∆ ≤ τ(tk).

To show the desired result, let us consider the following five possible cases:

• if 0 ≤ In[τ(tk)/∆]∆ ≤ τ(t), then by (2.17) and (1.2)

τ(t)− In[τ(tk)/∆]∆ ≤ τ(t) − τ(tk) + ∆ ≤ (ρ+ 1)∆.

Using Hölder inequality, (1.8)-(1.10), (2.16) and (2.3), we have that

E|Y (τ(t)) − z2(t)|2

= E|
∫ τ(t)

In[τ(tk)/∆]∆

(1− θ)f(s, z1(s), z2(s), r̄(s))

+ θf(s, ẑ1(s), ẑ2(s), r̄(s))ds

+

∫ τ(t)

In[τ(tk)/∆]∆

g(s, z1(s), z2(s), r̄(s))dW (s)

+

∫ τ(t)

In[τ(tk)/∆]∆

h(s, z1(s), z2(s), r̄(s))dN(s)|2

≤ 4C(1− θ)2(ρ+ 1)∆E

∫ τ(t)

In[τ(tk)/∆]∆

|z1(s)|2 + |z2(s)|2ds

+ 4Cθ2(ρ+ 1)∆E

∫ τ(t)

In[τ(tk)/∆]∆

|ẑ1(s)|2 + |ẑ2(s)|2ds

+ 4CE

∫ τ(t)

In[τ(tk)/∆]∆

|z1(s)|2 + |z2(s)|2ds

+ 8Cλ[(ρ+ 1)λ∆+ 1]E

∫ τ(t)

In[τ(tk)/∆]∆

|z1(s)|2 + |z2(s)|2ds

≤ 8(ρ+ 1)[(ρ+ 1)(1 + 2λ2)∆ + 1 + 2λ]CB∆.

• if 0 ≤ τ(t) ≤ In[τ(tk)/∆]∆, then by (2.17) and (1.2)

In[τ(tk)/∆]∆− τ(t) ≤ τ(tk)− τ(t) ≤ ρ∆.

Hence, it follows from (2.16) and (2.3) that

E|Ȳ (τ(t)) − z2(t)|2 ≤ 8ρ[ρ(1 + 2λ2)∆ + 1 + 2λ]CB∆.

• if τ(t) ≤ In[τ(tk)/∆]∆ ≤ 0 or In[τ(tk)/∆]∆ ≤ τ(t) ≤ 0, then by (2.17)
and (2.16)

|τ(t) − In[τ(tk)/∆]∆| ≤ (ρ+ 1)∆.

So by (1.3)

E|Y (τ(t)) − z2(t)|2 = E|ϕ(τ(t)) − ϕ(In[τ(tk)/∆]∆)|2

≤ M |τ(t)− In[τ(tk)/∆]∆|γ ≤ M(1 + ρ)γ∆γ .
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• if In[τ(tk)/∆]∆ ≤ 0 ≤ τ(t), then

−In[τ(tk)/∆]∆ ≤ (ρ+ 1)∆, since τ(t) ≤ τ(t) − In[τ(tk)/∆]∆ ≤ (ρ+ 1)∆.

Hence

E|Y (τ(t)) − z2(t)|2 ≤ 2E|Y (τ(t)) − Y (0)|2 + 2E|ϕ(0)− ϕ(In[τ(tk)/∆]∆)|2

≤ 16(ρ+ 1)[(ρ+ 1)(1 + 2λ2)∆ + 1 + 2λ]CB∆+ 2M(1 + ρ)γ∆γ .

• if τ(t) ≤ 0 ≤ In[τ(tk)/∆]∆, then

−τ(t) ≤ ρ∆, since In[τ(tk)/∆]∆ ≤ In[τ(tk)/∆]∆− τ(t) ≤ ρ∆.

Hence

E|Y (τ(t)) − z2(t)|2 ≤ 2E|ϕ(τ(t)) − ϕ(0)|2 + 2E|Y (0)− Y (In[τ(tk)/∆]∆)|2

≤ 16ρ[ρ(1 + 2λ2)∆ + 1 + 2λ]CB∆+ 2Mργ∆γ .

�

Corollary 2.6. If (2.3) holds, for all sufficiently small ∆

E|Y (t)− ẑ1(t)|2 ≤ 4C2∆, ∀t ∈ [0, T ]

for any T > 0, where C2 is defined in Lemma 2.4.

Proof. For any t ∈ [0, T ], there exists a k such that t ∈ [tk, tk+1), then

|Y (t)− ẑ1(t)|2 ≤ 2|Y (t)− z1(t)|2 + 2|ẑ1(t)− z1(t)|2

≤ 2|Y (t)− z1(t)|2 + 2|Yk+1 − Yk|2.
It is easy to get the result from Lemma 2.4. �

Corollary 2.7. If (2.3) hold, then for all sufficiently small ∆

E|Y (τ(t)) − ẑ2(t)|2 ≤ 4C3∆
γ , ∀t ∈ [0, T ]

for any T > 0, where C3 is defined in Lemma 2.5.

Proof. For any t ∈ [0, T ], there exists a k such that t ∈ [tk, tk+1), then

|Y (τ(t)) − ẑ2(t)|2

≤ 2|Y (τ(t)) − z2(t)|2 + 2|ẑ2(t)− z2(t)|2

≤ 2|Y (τ(t)) − z2(t)|2 + 2|Y (In[τ(tk + 1)/∆]∆)− Y (In[τ(tk)/∆]∆)|2.
(2.18)

Noting that

0 ≤ In[τ(tk + 1)/∆]∆− In[τ(tk)/∆]∆ ≤ τ(tk+1)− τ(tk) + ∆ ≤ (ρ+ 1)∆.

Clearly, we get the result from Lemma 2.5. �

Theorem 2.8. If (2.1), (2.2) hold, then for all sufficiently small ∆

E[ sup
0≤t≤T

|x(t) − Y (t)|2] ≤ Ĉ∆γ ,

for any T > 0, where Ĉ = 12[T + 1 + 2λ(1 + λT )][K(1 + 2B)T + C1 + 8C(C2 +
C3)T ]e

48C[T+1+2λ(1+λT )] which is independent of ∆, where B, C1, C2, C3 are
defined in Lemma 2.2, Lemma 2.3, Lemma 2.4, Lemma 2.5 respectively.
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Proof.

x(t) − Y (t) =(1− θ)

∫ t

0

f(s, x(s), x(τ(s)), r(s)) − f(s, z1(s), z2(s), r̄(s))ds

+ θ

∫ t

0

f(s, x(s), x(τ(s)), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))ds

+

∫ t

0

g(s, x(s), x(τ(s)), r(s)) − g(s, z1(s), z2(s), r̄(s))dW (s)

+

∫ t

0

h(s, x(s), x(τ(s)), r(s)) − h(s, z1(s), z2(s), r̄(s))dN(s).

By Hölder inequality, (1.8)-(1.10), we have

E[ sup
0≤s≤t

|x(s)− Y (s)|2]

≤ 4T (1− θ)2
∫ t

0

E|f(s, x(s), x(τ(s)), r(s)) − f(s, z1(s), z2(s), r̄(s))|2ds

+ 4Tθ2
∫ t

0

E|f(s, x(s), x(τ(s)), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds

+ 4

∫ t

0

E|g(s, x(s), x(τ(s)), r(s)) − g(s, z1(s), z2(s), r̄(s))|2ds

+ 8λ

∫ t

0

E|h(s, x(s), x(τ(s)), r(s)) − h(s, z1(s), z2(s), r̄(s))|2ds

+ 8λ2T

∫ t

0

E|h(s, x(s), x(τ(s)), r(s)) − h(s, z1(s), z2(s), r̄(s))|2ds.

(2.19)

By (2.1) and (2.2), we have

|f(s, x(s), x(τ(s)), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2

≤ 3|f(s, x(s), x(τ(s)), r(s)) − f(s, x(s), x(τ(s)), r(s))|2

+ 3|f(s, x(s), x(τ(s)), r(s)) − f(s, ẑ1(s), ẑ2(τ(s)), r(s))|2

+ 3|f(s, ẑ1(s), ẑ2(τ(s)), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2

≤ 3K(1 + |x(s)|2 + |x(τ(s))|2)|s− s|+ 3C(|x(s)− ẑ1(s)|2

+ |x(τ(s)) − ẑ2(s)|2) + 3|f(s, ẑ1(s), ẑ2(τ(s)), r(s))
− f(s, z1(s), z2(s), r̄(s))|2

≤ 3K(1 + |x(s)|2 + |x(τ(s))|2)|s− s|+ 6C(|x(s)− Y (s)|2

+ |x(τ(s)) − Y (τ(s))|2 + |Y (s)− ẑ1(s)|2 + |Y (τ(s)) − ẑ2(s)|2)
+ 3|f(s, ẑ1(s), ẑ2(τ(s)), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2.
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From Lemma 2.2, Lemma 2.3, Corollary 2.6 and Corollary 2.7,
∫ t

0

E|f(s, x(s), x(τ(s)), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds

≤
∫ t

0

3K(1 + 2B)∆ + 6CE(|x(s) − Y (s)|2 + |x(τ(s)) − Y (τ(s))|2

+ 24CC2∆+ 24CC3∆
γds+ 3C1∆

≤ [3K(1 + 2B)T + 3C1 + 24CC2T + 24CC3T ]∆
γ

+ 12CE

∫ t

0

sup
0≤ξ≤s

|x(ξ) − Y (ξ)|2ds.

(2.20)

By (2.1) and (2.2), we have

|f(s, x(s), x(τ(s)), r(s)) − f(s, z1(s), z2(s), r̄(s))|2

≤ 3K(1 + |x(s)|2 + |x(τ(s))|2)|s− s|+ 6C(|x(s)− Y (s)|2

+ |x(τ(s)) − Y (τ(s))|2 + |Y (s)− z1(s)|2 + |Y (τ(s)) − z2(s)|2)
+ 3|f(s, z1(s), z2(τ(s)), r(s)) − f(s, z1(s), z2(s), r̄(s))|2.

From Lemma 2.2, Lemma 2.3, Lemma 2.4, Lemma 2.5,
∫ t

0

E|f(s, x(s), x(τ(s)), r(s)) − f(s, z1(s), z2(s), r̄(s))|2ds

≤
∫ t

0

3K(1 + 2B)∆ + 6CE(|x(s) − Y (s)|2 + |x(τ(s)) − Y (τ(s))|2

+ 6CC2∆+ 6CC3∆
γds+ 3C1∆

≤ [3K(1 + 2B)T + 3C1 + 6CC2T + 6CC3T ]∆
γ

+ 12CE

∫ t

0

sup
0≤ξ≤s

|x(ξ) − Y (ξ)|2ds.

(2.21)

Similarly,

(2.22)

∫ t

0

E|a(s, x(s), x(τ(s)), r(s)) − a(s, z1(s), z2(s), r̄(s))|2ds

≤ [3K(1 + 2B)T + 3C1 + 6CC2T + 6CC3T ]∆
γ

+ 12CE

∫ t

0

sup
0≤ξ≤s

|x(ξ)− Y (ξ)|2ds

a = g, h.

Putting (2.20)-(2.22) into (2.19), we have

E[ sup
0≤s≤t

|x(s) − Y (s)|2]

≤ 12[T + 1 + 2λ(1 + λT )][K(1 + 2B)T + C1 + 8C(C2 + C3)T ]∆
γ

+ 48C[T + 1 + 2λ(1 + λT )]E

∫ t

0

sup
0≤ξ≤s

|x(ξ) − Y (ξ)|2ds.
(2.23)

By the continuous Gronwall inequality

E[ sup
0≤s≤t

|x(s)− Y (s)|2] ≤ Ĉ∆γ ,

where Ĉ = 12[T+1+2λ(1+λT )][K(1+2B)T+C1+8C(C2+C3)T ]e
48C[T+1+2λ(1+λT )].

�
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3. Stability with global Lipschitz

In this section, we shall extend the results in [4, 11] to SDDEwPJMSs. We will
consider the autonomous case of (1.1). We show that under a global Lipschitz
assumption the SDDEwPJMSs is exponentially stable in mean-square if and only
if for some sufficeiently small step-size ∆ the SIE approximation is exponentially
stable in mean-square.

(3.1)











dx(t) =f(x(t), x(t − τ), r(t))dt + g(t, x(t), x(t − τ), r(t))dW (t)

+ h(x(t), x(t − τ), r(t))dN(t), t ≥ 0,

x(t) =ϕ(t), t ∈ [−τ, 0],

The solution of (3.1) is denoted by x(t) := x(t; 0, ϕ). The discrete SIE approxima-
tion of (3.1) is

Yk+1 =Yk + [(1− θ)f(Yk, Yk−m, r∆k ) + θf(Yk+1, Yk+1−m, r∆k )]∆

+ g(Yk, Yk−m, r∆k )∆Wk + h(Yk, Yk−m, r∆k )∆Nk, k ≥ 0.

(3.2)

The continuous SIE approximation of (3.2) is

Y (t) =Y0 +

∫ t

0

[(1− θ)f(z1(s), z2(s), r
∆
k ) + θf(ẑ1(s), ẑ2(s), r

∆
k )]ds

+

∫ t

0

g(z1(s), z2(s), r
∆
k )dW (s) +

∫ t

0

h(z1(s), z2(s), r
∆
k )dN(s).

(3.3)

Denote by Y (t) := Y (t; 0, ϕ) the SIE approximation. In this section we shall write
L2

Ft
([−τ ; 0];Rn) = L2

Ft
for simplicity. Next we will show that SIE (3.3) shares

stability with (3.1) under the (GL). First of all, we give some definitions.

Definition 3.1. The SDDEwPJMSs (3.1) is said to be exponentially stable in mean
square, if there is a pair of positive constants λ̄ and M̄ such that for any initial
data ϕ ∈ L2

F0

E|x(t)|2 ≤ M̄ ||ϕ||2
E
e−λ̄t, ∀t ≥ 0.

We refer to λ̄ as a rate constant and M̄ as a growth constant.

Definition 3.2. Given a step-size ∆ = τ/m for some positive integer m, the
discrete SIE (3.2) is said to be exponentially stable in mean square on the SDDEw-
PJMSs (3.1), if there is a pair of positive constants µ and H̄ such that for any
initial data ϕ ∈ L2

F0

(3.4) E|Yk|2 ≤ H̄ |ϕ||2
E
e−kµ∆, ∀k ≥ 0.

We refer to µ as a rate constant and H̄ as a growth constant.

Definition 3.3. Given a step-size ∆ = τ/m for some positive integer m, the
continuous SIE (3.3) is said to be exponentially stable in mean square on the SD-
DEwPJMSs (3.1), if there is a pair of positive constants µ and H such that for any
initial data ϕ ∈ L2

F0

(3.5) E|Y (t)|2 ≤ H ||ϕ||2
E
e−µt, ∀t ≥ 0.

We refer to mu as a rate constant and H as a growth constant.
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Proposition 3.4. Under (GL), the discrete SIE method on the SDDEwPJMSs
(3.2) is exponentially stable in mean square with rate constant µ and growth constant
H̄ if and only if the continuous SIE method (3.3) is exponentially stable in mean
square with the same rate constant µ but may be a different growth constant H.

Proof. Obviously (3.5) implies (3.4) and in this case we even have H̄ = H . So
we need only to show (3.4) implies (3.5). For any t ≥ 0 choose k ≥ 0 such that
t ∈ [tk, tk+1). Note that

Y (t) =Yk + [(1− θ)f(Yk, Yk−m, r∆k ) + θf(Yk+1, Yk+1−m, r∆k )](t− tk)

+ g(Yk, Yk−m, r∆k )(W (t) −Wk) + h(Yk, Yk−m, r∆k )(N(t)−Nk).

By (1.8)-(1.10), it is straightforward to show that

E|Y (t)|2 ≤5E|Yk|2 + 5∆2
E[(1− θ)2|f(Yk, Yk−m, r∆k )|2 + θ2|f(Yk+1, Yk+1−m, r∆k )|2]

+ 5∆E|g(Yk, Yk−m, r∆k )|2 + 10λ∆(1 + λ∆)E|h(Yk , Yk−m, r∆k )|2.
Using (3.4) and (GL) we have

E|Y (t)|2 ≤ H̄ ||ϕ||2
E
e−µk∆[5 + 5C∆(1 + eµτ )(∆ + 1 + 2λ(1 + λ∆))].

Consequently, (3.5) follows by setting

H = H̄eµ∆[5 + 5C∆(1 + eµτ )(∆ + 1 + 2λ(1 + λ∆))].

�

Definition 3.5. [11] Let ∆ > 0. A stochastic process {y(t; s, ϕ) : s ∈ R+, s − τ ≤
t < ∞, ϕ ∈ L2

Ft
}, which will be written as {y(t; s, ϕ)} thereafter for simplicity, is

said to be an L2
Ft

-related ∆-period stochastic flow if it satisfies the following three
conditions:

1. {y(s+ u; s, ϕ) : −τ ≤ u ≤ 0} = ϕ,

2. yt := {y(t+ u; s, ϕ) : −τ ≤ u ≤ 0} ∈ L2
Ft

, for ∀t ≥ s,

3. y(t; s, ϕ) = y(t; s+ k∆, ys+k∆) for ∀t ≥ s+ k∆ and k = 0, 1, 2, · · · .
The process is said to be an L2

Ft
-related stochastic flow if it is an L2

Ft
-related

∆-period stochastic flow for any ∆ > 0 ( ∆ may be not τ/m here).
For the Eq. (3.1) and Eq. (3.3) are both automatic, we have the following Prop-

erty (P1) by Lemma 2.2 and Theorem 2.8:

1. there is a positive constant C∗
1 independent of s, ϕ and ∆ such that

sup
0≤u≤τ

[E|x(s + u; s, ϕ)|2 ∨ E|Y (s+ u; s, ϕ)|2] ≤ C∗
1 ||ϕ||2E;

2. there is a positive constant C∗
2 = C∗

2 (T ) independent of s, ϕ, ∆ such that

sup
τ≤u≤τ+T

E|Y (s+ u; s, ϕ)− x(s+ u; s+ τ, Ys+τ )|2 ≤ C∗
2 ||ϕ||2E∆γ

and

sup
τ≤u≤τ+T

E|Y (s+ u; s+ τ, xs+τ )− x(s+ u; s, ϕ)|2 ≤ C∗
2 ||ϕ||2E∆γ .
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3. Y (t; s, ϕ) is L2
Ft

-related ∆-period stochastic flow and x(t; s, ϕ) is L2
Ft

-
related stochastic flow.

Noting that for system (3.1), the C3 in Lemma 2.5 can be

C̃3 = 16(ρ+ 1)[(ρ+ 1)(1 + 2λ2) + 1 + 2λ]CB, t ≥ τ,

and Eq. (2.2) holds with K = 0.
By Theorem 5.1 in [11], we obtain the following result.

Theorem 3.6. Under (GL), the (3.1) is exponentially stable in mean-square if and
only if for some ∆ > 0, the SIE method is exponentially stable in mean-square with
rate constant µ and growth constant H satisfying

β3∆
γ + 2

√

β3H∆γe−1/2µ(ν−2τ) +He−µ(ν−2τ) ≤ e−1/2µν ,

where ν = τ(9+In[4log(H)/µτ ]), β3 = C∗
2 (2ν−2τ) and C∗

2 (·) was given by Property
(P1).

4. Convergence with the Local Lipschitz condition

In this section we shall discuss the strong convergence of the SIE method on the
SDDEwPJMSs (1.1) under the local Lipschitz condition. In many situations, the
coefficients f , g and h are only locally Lipschitz continuous. It is therefore useful
to establish the strong convergence of the SIE method under the local Lipschitz
condition. By the local Lipschitz condition we mean:
(LL) There is a constant CR > 0 such that

(4.1) |a(t, x, y, i)− a(t, x̄, ȳ, i)|2 ≤ CR(|x− x̄|2 + |y − ȳ|2), a = f, g, h,

for all x, y, x̄, ȳ ∈ R
n, |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ R, t ∈ R+ and i ∈ S;

there is a constant KR > 0 such that

|a(t, x, y, i)− a(s, x, y, i)|2 ≤ KR(1 + |x|2 + |y|2)|t− s|, a = f, g, h,

for ∀x, y ∈ R
n, |x|∨|y| ≤ R, ∀t, s ∈ [−τ,∞). We also have the following assumption

Assumption 4.1. There is a constant Ĉ > 0 such that

(4.2) |f(t, x, y, i)− f(t, x̄, y, i)|2 ≤ Ĉ|x− x̄|2

for all x, x̄, y ∈ R
n, t ∈ R+ and i ∈ S, and

for some p > 2, there is a constant A > 0 such that

(4.3) sup
−τ≤t≤T

E|x(t)|p ∨ sup
−τ≤t≤T

E|Y (t)|p < A.

Lemma 4.2. Under (4.2), if θ
√

Ĉ∆ < 1, then equation (1.6) can be solved uniquely
for Yk+1 given YIn[τ(tk)/∆], YIn[τ(tk+1)/∆], Yk, with probability 1.

Proof. From the Lemma 2.1, we can easily get the result. �

Define

ρR := inf{t ≥ 0 : |x(t)| ≥ R}, τR := inf{t ≥ 0 : |Y (t)| ≥ R}, θR := ρR ∧ τR.

Lemma 4.3. If (4.1) and Assumption 4.1 hold, then for all sufficiently small ∆
we have

(4.4) E

∫ T∧θR

0

|f(s, ẑ1(s), ẑ2(s), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds ≤ CR
1 ∆

and

(4.5) E

∫ T∧θR

0

|a(s, z1(s), z2(s), r(s)) − a(s, z1(s), z2(s), r̄(s))|2ds ≤ CR
1 ∆
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for any T > 0, where a is f , g, or h and CR
1 = 8CRγ̂TAp/2, γ̂ = N [1+ max

1≤i≤N
(−γii)].

Proof. Let l = [T/∆], then

E

∫ T∧θR

0

|f(s, ẑ1(s), ẑ2(s), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2ds

=

l
∑

k=0

E

∫ tk+1

tk

|f(s, ẑ1(s), ẑ2(s), r(s)) − f(s, ẑ1(s), ẑ2(s), r̄(s))|2I[[0,θR]]ds

≤ 2

l
∑

k=0

E

∫ tk+1

tk

[|f(s, ẑ1(s), ẑ2(s), r(s))|2 + |f(s, z1(s), z2(s), r̄(s))|2]I[[0,θR]]I{r(s) 6=r(tk)}ds

≤ 4CR
l

∑

k=0

E

∫ tk+1

tk

(|ẑ1(s)|2 + |ẑ2(s)|2)I{r(s) 6=r(tk)}ds,

where [[0, θR]] is defined in [9]

[[0, θR]] := {(t, w) ∈ R+ × Ω : 0 ≤ t ≤ θR(w)}.
Then we can get (4.4) directly from Lemma 2.3. Similarly, we can get (4.5). �

Using the above technique, the following lemmas and corollaries can be derived
directly by the lemmas and corollaries in section 2.

Lemma 4.4. Under (4.1) and Assumption 4.1, for all sufficiently small ∆

E|Y (t)− z1(t)|2 ≤ CR
2 ∆, ∀t ∈ [0, T ∧ θR],

for any T > 0, where CR
2 = 16(1+ λ+ λ2)CRAp/2 is a constant independent of ∆.

Lemma 4.5. Under (4.1) and Assumption 4.1, for all sufficiently small ∆

E|Y (τ(t)) − z2(t)|2 ≤ CR
3 ∆γ , ∀t ∈ [0, T ∧ θR],

for any T > 0 where CR
3 = 2M(ρ+1)γ+16(ρ+1)[(ρ+1)(1+2λ2)+1+2λ]CRAp/2

is a constant independent of ∆.

Corollary 4.6. Under (4.1) and Assumption 4.1, for all sufficiently small ∆

E|Y (t)− ẑ1(t)|2 ≤ 4CR
2 ∆, ∀t ∈ [0, T ∧ θR]

for any T > 0, where CR
2 is defined in Lemma 4.4.

Corollary 4.7. Under (4.1) and Assumption 4.1, then for all sufficiently small ∆

E|Y (τ(t)) − ẑ2(t)|2 ≤ 4CR
3 ∆γ , ∀t ∈ [0, T ∧ θR]

for any T > 0, where CR
3 is defined in Lemma 4.5.

Theorem 4.8. If (LL), Assumption 4.1 hold and then for any T > 0

lim
∆→0

E[ sup
0≤t≤T

|x(t)− Y (t)|2] = 0.

Proof. We will employ the technique due to Higham [3] to prove the theorem. Let

e(t) := x(t)− Y (t).

Recall the Young inequality [3]: for r−1 + q−1 = 1

ab ≤ δ

r
ar +

1

qδq/r
bq, ∀a, b, δ > 0.
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We thus have for any δ > 0

(4.6)

E[ sup
0≤t≤T

|e(t)|2] ≤E[ sup
0≤t≤T

|e(t)|2I{ρR>T,τR>T}]

+ E[ sup
0≤t≤T

|e(t)|2I{ρR≤T or τR≤T}]

≤E[ sup
0≤t≤T

|e(t ∧ θR)|2I{θR>T}] +
2δ

p
E[ sup

0≤t≤T
|e(t)|p]

+
1− 2/p

δ2/(p−2)
P (ρR ≤ T or τR ≤ T ).

Now

P (ρR ≤ T ) = E[1ρR≤T
|x(ρR)|p

RP
] ≤ 1

Rp
E[ sup

−τ≤t≤T
|x(t)|p] ≤ A

Rp
.

Using Assumption 4.1. A similar result can be derived for τR so that

P (τR ≤ T or ρR ≤ T ) ≤ P (τR ≤ T ) + P (ρR ≤ T ) ≤ 2A

Rp
.

Using these bounds along with

E[ sup
0≤t≤T

|e(t)|p] ≤ 2p−1E[ sup
0≤t≤T

(|x(t)|p + |Y (t)|p)] ≤ 2pA

in (4.6) gives

(4.7)

E[ sup
0≤t≤T

|e(t)|2] ≤E[ sup
0≤t≤T

|x(t ∧ θR)− Y (t ∧ θR)|2]

+
2p+1δA

p
+

(p− 2)2A

pδ2/(p−2)Rp
.

In the similar way as Theorem 2.8 was proved, we can show that

(4.8) E[ sup
0≤t≤T

|x(t ∧ θR)− Y (t ∧ θR)|2] ≤ ĈR∆
γ ,

where ĈR is a constant independent of ∆. Substituting this into (4.7) gives

E[ sup
0≤t≤T

|e(t)|2] ≤ ĈR∆
γ +

2p+1δA

p
+

(p− 2)2A

pδ2/(p−2)Rp
.

Now, given any ǫ > 0, we may first choose δ > 0 such that 2p+1δA/p < ǫ/3. then
we may choose R so that (p − 2)2A/(pδ2/(p−2)Rp) < ǫ/3, and finally choose ∆ to

ensure that ĈR∆t < ǫ/3. Hence, in (4.8), E[ sup
0≤t≤T

|e(t)|2] < ǫ, as required. �

Corollary 4.9. If (LL) and (4.3) hold, the Euler method (θ = 0) is strongly
convergent.

5. Numerical examples

In this section, we will illustrate the theoretical convergence of the semi-implicit
Euler method. The data used in FIGURE 1 and FIGURE 2 are obtained by the
mean square of data by 1000 trajectories, that is, wi : 1 ≤ i ≤ 1000, E|x(T )−YL|2 =
1/1000Σ1000

i=1 |x(T,wi)− YL(wi)|2. First, we consider the following test equation.

(5.1)

{

dx(t) = [ax(t) + r(t)x(t − 1)]dt+ [cx(t) + dx(t− 1)]dW (t) t ≥ 0,

x(t) = t+ 1), r(0) = 1, t ∈ [−1, 0],
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where a, c, d ∈ R, w(t) is a scalar Brownian motion, the state space for r(t) is
S = {1, 2}, the corresponding generator Γ is a zero matrix. By [9], we can obtain
the solution of (5.1). The solution of (5.1) for t ∈ [0, 1] is

x(t) = Φt,0(x0 +

t
∫

0

Φ−1
s,0(r(s) − cd)sds+

t
∫

0

Φ−1
s,0dsdW (s)),

where

Φt,0 = exp{
∫ t

0

a− 1

2
c2ds+

∫ t

0

cdW (s)}.

For time t ∈ [1, 2], we obtain the explicit solution by using the explicit solution
given above as a new initial function. Clearly, the explicit solution of (5.1) involve
a stochastic integral. Referring to [2], we take the SIE solution with θ = 0 and
∆ = 2−13 to be a good approximation of the exact solution and compare this with
the SIE approximation. We illustrate the convergence of the semi-implicit Euler
method for (5.1) in case I: a = −3, c = 2, d = 2 and case II: a = −2, c = 1, d = 1.
We consider another test equation.
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Figure 1. The global error of SIE for (5.1) at T = 2.

(5.2)

{

dx(t) = µx(t)dt + σx(t)dW (t) + γx(t)dN(t), t ≥ 0,

x(0) = 1,

where µ, σ, γ ∈ R, w(t) is a scalar Brownian motion, N(t) is a scalar Poisson
process with intensity λ. By [6], the solution of (5.2) is

x(t) = x(0)(1 + γ)N(t) exp{(µ− 1

2
σ2)t+ σW (t)}.

We illustrate the convergence of the semi-implicit Euler method for (5.2) in case I:
µ = 1, σ = 0.5, γ = 0.1, λ = 2 and case II: µ = 1, σ = 1, γ = 0.2, λ = 1.
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