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AN UNCONDITIONALLY STABLE SECOND ORDER METHOD
FOR THE LUO-RUDY 1 MODEL USED IN SIMULATIONS OF

DEFIBRILLATION

MONICA HANSLIEN, ROBERT ARTEBRANT, JOAKIM SUNDNES AND ASLAK TVEITO

Abstract. Simulations of cardiac defibrillation are associated with consider-

able numerical challenges. The cell models have traditionally been discretized

by first order explicit schemes, which are associated with severe stability issues.

The sharp transition layers in the solution call for stable and efficient solvers.

We propose a second order accurate numerical method for the Luo-Rudy phase

1 model of electrical activity in a cardiac cell, which provides sequential update

of each governing ODE. An a priori estimate for the scheme is given, show-

ing that the bounds of the variables typically observed during electric shocks

constitute an invariant region for the system, regardless of the time step cho-

sen. Thus the choice of time step is left as a matter of accuracy. Conclusively,

we demonstrate the theoretical result by some numerical examples, illustrating

second order convergence for the Luo-Rudy 1 model.

Key Words. unconditionally stable, second order method, maximum princi-

ple, defibrillation, ODE system

1. Introduction

Computer simulations of cardiac electrophysiology have been established as a
helpful tool, particularly in the study of defibrillation where it is hard to observe
what is going on through in vitro experiments. The simulations are typically based
on a system of two PDEs, named the bidomain model of electrical activity in the
heart. Normally these equations are coupled to a set of ODEs, which serve to
describe the electrochemistry of a single cardiac cell. There is an ever increasing
need for efficient numerical methods as the mathematical models tend to expand in
size and complexity along with a higher level of realism. However, older cell models
such as the Beeler-Reuter model [1] and the Luo-Rudy phase 1 (LR1) model [8]
are also commonly used in simulations that involve electric shocks, and serve to
describe the electrophysiological membrane dynamics in a fairly realistic way.

Traditional numerical methods used in simulations of cardiac defibrillation are
based on forward Euler integrators with poor stability properties. These stability
issues are a consequence of the high values that the transmembrane potential under-
takes when the electric shock is on, as addressed in [4]. In that study, a numerical
method for the LR1 model of order O(∆t) was presented. This scheme was proved
to be unconditionally stable, leaving the choice of time step as a matter of accu-
racy. However, the extremely sharp transition layers in the solution present during
strong electric shocks put particularly high demands on the accuracy and stability
of the solvers. Also, in the strive for realistic simulations of defibrillation one would
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need to solve the equations on 3D geometries with relatively high resolution. Due
to these challenges, a numerical method that admits second order accuracy would
save considerable computation time. When we are to solve the coupled system
of ODEs and PDEs, it is possible to use an operator splitting technique in time
which is of order O(∆t2), see [10] and [13]. Therefore, it would be desirable for the
ODE solver to preserve the level of accuracy. In the present paper, we propose a
second order accurate method for the LR1 model. The numerical scheme is based
on a quasi-implicit method, which makes it possible to solve each ODE in separate,
where a method of Rush-Larsen type [11] is used for integration of the resulting
linear equation, together with a Lobatto IIIC method for the governing equation
of the scaled calcium concentration. A maximum principle for this scheme reveals
that the numerical solutions yield no numerical instabilities, regardless of the time-
step chosen. Thus we have a stable numerical method for the ODE system with
the same level of accuracy as can be obtained at the PDE level.

The rest of the paper is organised as follows. In Section 2 we present the
mathematical model under consideration, and in Section 3 we derive the numerical
method. A priori bounds of this scheme are given in Section 4, before we show
some simulation results in Section 5.

2. Model equations

Propagation of an electrical pulse in the heart can be formulated mathematically
by the bidomain model, and is thoroughly described in [5, 14]. The cardiac tissue is
divided into extracellular (e) and intracellular (i) domains, on which the electrical
potential is represented by ue and ui, respectively. We may then write the trans-
membrane potential in terms of these two quantities as v = ui − ue, measured in
mV. Moreover, Mi and Me are conductivity tensors for the intra- and extracellular
space, and s is a model dependent state vector. The complete system reads

∂s

∂t
= P (s, v), (1)

∂v

∂t
+ Iion(v, s) = ∇ · (Mi∇v) +∇ · (Mi∇ue), x ∈ H, (2)

0 = ∇ · (Mi∇v) +∇ · ((Mi + Me)∇ue), x ∈ H, (3)

where we have denoted by H our computational domain.
In the simulations we use the boundary conditions presented in [3] wherever the

heart is under normal electrophysiological conditions, whereas we incorporate the
electric shock as Dirichlet conditions during some time interval t ∈ [t1, t2]. The
shock is placed on the heart surface, but one could easily extend the model to
include torso simulations with the shock delivered through external electrode pads
on the surface of the body. For an outer normal vector nH we set

nH ·Mi∇(ue + v) = 0, x ∈ ∂H1, (4)

nH ·Mi∇(ue + v) = 0, x ∈ ∂H2 ∪ ∂H3, t < t1 or t > t2, (5)

ue = u1, x ∈ ∂H2, t1 ≤ t ≤ t2, (6)

ue = u2, x ∈ ∂H3, t1 ≤ t ≤ t2, (7)

where the values of the shock are given by u1 (cathode) and u2 (anode).
Equation (1) is a system of ODEs which describes electrical kinetics of a single

cell, and in the present study we let this represent the Luo-Rudy phase 1 model [8].
This cell model comprises eight variables, including the transmembrane potential v,
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the scaled intracellular calcium concentration c = 103[Ca2+]i, as well as six gating
variables denoted by y = m,h, j, f, d, X. Both depolarization and the refractory
phase can be fairly well described by this system, which reads

dv

dt
= −Iion(v, c, m, h, j, f, d, X), (8)

dc

dt
= 0.07(10−4 − c)− 10−4Isi(v, c, f, d), (9)

dy

dt
= αy(v)(1− y)− βy(v)y, y = m, h, j, f, d, X. (10)

The gate variables control the flow of ions across the membrane, and αy, βy, y =
m,h, j, f, d,X, are positive functions that represent the opening and closing rates
of the gates, see Appendix A for the expressions.

Inactivation of the sodium current, INa, contains two gate variables, h and j,
which have rate constants that are formulated as discontinuous functions of v.
Generally, when we are to solve an ODE of the type

dy

dt
= G(y)

with a second order method, the order of accuracy will be destroyed if there are dis-
continuities in G. For the Luo-Rudy 1 model, there are jumps in the rate functions
for v = −40mV. Therefore we have replaced these with smooth approximations,
found by a Matlab curvefit toolbox using data from the original rate functions.
All the rate functions used in the simulations are listed in Appendix A.

The total ionic current across the cell membrane, Iion, is given by

Iion(v, c,m, h, j, f, d,X) = INa(v, m, h, j) + IK1(v) + IK(v, X)

+ IKp(v) + Ib(v) + Isi(v, f, d, c). (11)

Below we have listed the expressions for the individual currents that appear in
(11). For convenience, we gather the constant conductivities together with the gate
variables of each component so that the gating mechanisms are collected into Yw,
w = si,Na,K, K1,Kp, b, as follows

Isi(v, f, d, c) = Ysi(v − E(c)), Ysi = gsfd,

with E(c) = 7.7− 13.0287 ln(c),

IK(v, X) = YK(v − EK), YK = gKXXi,

IK1(v) = YK1(v − EK1), YK1 = gK1K1∞,

IKp(v) = YKp(v − EKp), YKp = gKpKp,

Ib(v) = Yb(v − Eb), Yb = gb,

INa(v, m, h, j) = YNa(v − ENa), YNa = gNam3hj.

The equilibrium potentials Ew and the membrane conductivities gw, for w =
Na, K, K1,Kp, b, as well as gs, are all constants whose values are given in Table 5.
We remark that in simulations of cardiac defibrillation, it is common to extend the
ODE system with an additional equation for electroporation of the cell membrane,
as was done in [4]. Since the analysis in that study can be directly transferred to
the present work, we have left out the electroporation function. We also remark
that several models for electroporation of cells exist, see e.g. [6, 7, 2].



630 M. HANSLIEN, R. ARTEBRANT, J. SUNDNES AND A. TVEITO

3. Numerical method

Equations (1)-(7) constitute a complicated system which is hard to solve fully
coupled. To reduce the level of complexity, an operator splitting technique in time is
commonly used to obtain a set of ODEs and a system of PDEs which are to be solved
separately. A solution of second order accuracy in time can be obtained for the PDE
system by the Strang splitting technique described in [10], and for the bidomain
model this can be done as discussed in [13]. It would be preferable to have an ODE
solver that preserves this level of accuracy, so we present a second order method for
the ODE system (8)-(10). A tempting choice is the Crank-Nicolson scheme which
is of second order accuracy. However, if we perform a stability analysis in terms
of showing bounds on the discrete solutions, we find that the time step restriction
becomes only twice as large as that of the forward Euler method investigated in
[4]. Then ∆t still needs to be in the order of 10−27ms, due to the strong shocks,
which makes this scheme unfit for the LR1 model used in such simulations. Other
second order schemes like the BDF scheme or the second order SDIRK method are
relatively easy to implement, but they are hard to analyze in terms of proving a
priory bounds for solutions in the range of defibrillation. Below we present a second
order ODE solver which is unconditionally stable, even during defibrillation.

The discretization of equations (8)-(10) is based on a quasi-implicit scheme, i.e.
in each governing ODE for the membrane potential as well as for the gates, the
variable subject to change is evaluated explicitly whereas the scaled calcium con-
centration admits implicit evaluation at each time increment. The other variables
on the right hand sides in all the equations are just inputs from the previous time
step. Consequently, for each time evaluation, all equations in the ODE system
become decoupled and can be solved separately. The resulting one-variable ODEs
for the transmembrane potential as well as for the gating variables then become
linear, so that the integration method of Rush and Larsen [11] can be applied. A
two stage Lobatto IIIC type implicit Runge-Kutta method is applied to the ODE
for the scaled calcium concentration.

For the gating variables we find

dy

dt
= (1− y)αy(vn)− βy(vn)y, y = m,h, j, f, d,X,

which is linear in y. The governing equation for the transmembrane potential is not
linear in v since the terms YK1, YK and YKp on the right hand side are functions
of the conductance parameters K1∞(v), Xi(v) and Kp(v) respectively, which are
explicit functions of v. The equation for the transmembrane potential can however
be linearized by simply evaluating the conductance parameters from the previous
time step; all the other variables are taken from the previous evaluations as well.
In this way we obtain a linear ODE in v

dv

dt
=Y n

Na(ENa − v) + Y n
K1(EK1 − v) + Y n

K(EK − v)+

Y n
Kp(EKp − v) + Y n

b (Eb − v) + Y n
Si(E(cn)− v) , (12)

which is easily integrated exactly. Consequently, the equations for the gates and
the transmembrane potential can be written on the form

du

dt
= an − bnu, (13)
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where a and b are constants in each time step n. Due to the form of (13), the
equations can be solved analytically for each time step. We use an integration of
Rush-Larsen type which gives update like

un+1 =
an

bn
+ (un − an

bn
)e−bn∆t. (14)

Note that this is the exact solution of (13) after one time increment. For simplicity
we shall define

Y n
E = Y n

NaENa + Y n
K1EK1 + Y n

KEK + Y n
KpEKp + YbEb + Y n

siE(cn) (15)

and

Y n
I = Y n

Na + Y n
K1 + Y n

K + Y n
Kp + Yb + Y n

si , (16)

such that (12) takes the form
dv

dt
= Y n

E − Y n
I v.

In order to obtain the desired level of accuracy, we need to evaluate all solutions
twice between tn and tn+1. First we use (14) with step size ∆t

2 in order to find
an intermediate solution set at time tn+ 1

2
. In the next round we feed the solutions

found at tn+ 1
2

into the right hand side of (14), again except from the variable
subject to change. Then, with a time increment of ∆t, we integrate to obtain a
solution set at time tn+1. A Taylor series analysis shows that in order to obtain a
formally second order accurate approximation, the intermediate solution needs only
to be approximated to first order. This is exploited in the scheme for the calcium
concentration, see below. The procedure can be summarised as follows:
Step 1 Compute vn+ 1

2 , yn+ 1
2 , cn+ 1

2 , y = m,h, j, f, d, X. With v evaluated at time
tn, calculate

yn+ 1
2 = yn

∞ + (yn − yn
∞)e−(α(vn)+β(vn))∆t

2 (17)

where

yn
∞ =

α(vn)
α(vn) + β(vn)

.

Moreover, using cn, yn, y = m,h, j, f, d, X compute

vn+ 1
2 =

Y n
E

Y n
I

+ (vn − Y n
E

Y n
I

)e−Y n
I (∆t

2 ). (18)

The calcium concentration in the first half step can be found by a standard back-
ward Euler method, since only first order accuracy is needed. Find cn+ 1

2 , with
vn, fn, dn as input on the right hand side, i.e. calculate

cn+ 1
2 − cn

∆t/2
= F (vn, fn, dn, cn+ 1

2 ) (19)

where

F (v, f, d, c) = 0.07(10−4 − c)− 10−4
(
Ysi(v − E(c))

)
. (20)

This gives a nonlinear equation for cn+ 1
2 which is solved with a Newton method.

Next use the solutions evaluated in the half step as input to the calculations of the
full time step;
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Step 2 Compute vn+1, cn+1, yn+1, y = m,h, j, f, d, X. Calculate

yn+1 = y
n+ 1

2∞ + (yn − y
n+ 1

2∞ )e−(α(vn+ 1
2 )+β(vn+ 1

2 ))∆t (21)

where v is evaluated at tn+ 1
2
, and

vn+1 =
Y

n+ 1
2

E

Y
n+ 1

2
I

+ (vn − Y
n+ 1

2
E

Y
n+ 1

2
I

)e−Y
n+ 1

2
I ∆t, (22)

where all c, y, y = m,h, j, f, d, X are evaluated at time tn+ 1
2
.

Also, in (22), we have found Y
n+ 1

2
E , Y

n+ 1
2

I by first calculating K1∞(vn+ 1
2 ), Xi(vn+ 1

2 )
and Kp(vn+ 1

2 ). Finally, solve the nonlinear ODE
dc

dt
= F (vn+ 1

2 , fn+ 1
2 , dn+ 1

2 , c), (23)

where F is defined by (20). It remains to find a suitable second order scheme
for (23). As mentioned above, the Crank-Nicolson method provides poor stability
properties so instead we have chosen a Lobatto IIIC scheme. This approach involves
solving a coupled system of two intermediate stages and gives, formally, second
order accuracy in time. The Lobatto IIIC method has the Butcher tableau

0 1
2 − 1

2
1 1

2
1
2

1
2

1
2

,

and for the ODE the scheme reads

k1 = F

(
cn +

1
2
∆tk1 − 1

2
∆tk2

)

k2 = F

(
cn +

1
2
∆tk1 +

1
2
∆tk2

)

cn+1 = cn +
1
2
∆tk1 +

1
2
∆tk2 .

Observe that the sequential nature of the numerical method for the entire ODE
system, makes the equations easy to analyse separately, in terms of finding bounds
on solutions.

4. A maximum principle

In the following we prove that the solutions generated by the scheme, defined
by Steps 1 and 2 above, provide physiologically acceptable values, regardless of the
time step chosen. Due to the operator splitting technique[13], the high potentials
present during electric shocks come in as initial conditions from the PDE step and
into the ODE system. Therefore it is crucial to check that the ODE solver handles
these values. In [4] we motivated the bounds of the transmembrane potential as well
as the calcium concentration. The same argument for both variables applies here
as well. We found the maximum and minimum values (in mV) for the membrane
potential to be

v+ = 800 and v− = −800, (24)

which are close to the values observed in experimental studies of defibrillation, see
[7] and references therein. For the scaled calcium concentration we set the lower
and upper bounds
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c− = e
7.7−v+
13.0287 ≈ 3.9 · 10−27 and c+ = 0.2, (25)

respectively, where the equilibrium potential of calcium satisfies

E(c−) = v+. (26)

Moreover, we want all the gate variables to stay within the unit interval. Thus, we
state that the whole solution set should be bounded by

v− ≤ v0 ≤ v+,

c− ≤ c0 ≤ c+, (27)

0 ≤ y0 ≤ 1, y = m,h, j, f, d,X.

We are now ready to prove that the numerical solution stays within the desired
bounds for all time.

Theorem 4.1 (Maximum principle). Let vn, cn, yn, y = m,h, j, f, d, X be the
solution produced by the scheme (17) - (23), and let the initial conditions satisfy
the bounds (27). Then, for any ∆t > 0

v− ≤ vn ≤ v+, (28)

c− ≤ cn ≤ c+, (29)

0 ≤ yn ≤ 1, y = m, h, j, f, d, X, (30)

for all n = 0, . . . , N .

Proof. Assume that (28)-(30) hold for some time tn. We start by investigating the
update scheme for the gates, which reads

yn+ 1
2 =

αn
y

αn
y + βn

y

+
(
yn − αn

y

αn
y + βn

y

)
e−(αn

y +βn
y )∆t

2 .

Inserting for the upper bound of yn gives

yn+ 1
2 ≤ αn

y

αn
y + βn

y

+
(αn

y + βn
y

αn
y + βn

y

− αn
y

αn
y + βn

y

)
e−(αn

y +βn
y )∆t

2

≤ αn
y

αn
y + βn

y

+
(αn

y + βn
y

αn
y + βn

y

− αn
y

αn
y + βn

y

)
= 1,

since

e−(αn
y +βn

y )∆t
2 < 1. (31)

Similarly, by inserting for the lower bound of yn we find

yn+ 1
2 =

αn
y

αn
y + βn

y

+
(
yn − αn

y

αn
y + βn

y

)
e−(αn

y +βn
y )∆t

2

≥ αn
y

αn
y + βn

y

− αn
y

αn
y + βn

y

e−(αn
y +βn

y )∆t
2 ≥ 0,

where the last transition is again due to (31).
Next, consider the scheme for the transmembrane potential. Recall that

vn+ 1
2 =

Y n
E

Y n
I

+ (vn − Y n
E

Y n
I

)e−Y n
I (∆t

2 ).
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To prove the upper bound, we first observe that all Ew, w = K,K1,Kp, b, Na are
all less than the maximum of the equilibrium potential of calcium so we get

Y n
E = Y n

NaENa + Y n
K1EK1 + Y n

KEK + Y n
KpEKp + YbEb + Y n

siE(cn)

≤ (Y n
Na + Y n

K1 + Y n
K + Y n

Kp + Yb + Y n
si)E(c−) = Y n

I E(c−) = Y n
I v+.

Replace vn by its maximum value to obtain

vn+ 1
2 ≤ Y n

E

Y n
I

+
(

Y n
I v+

Y n
I

− Y n
E

Y n
I

)
e−Y n

I (∆t
2 ),

where we realize that the terms within the parenthesis are always non-negative.
Now, since

e−Y n
I

∆t
2 ≤ 1, (32)

we deduce

vn+ 1
2 ≤YE

YI
+

(
v+ − YE

YI

)
= v+.

A lower bound is found in a similar manner. Realize that all equilibrium potentials
are greater than the lower bound of v, so

Y n
E ≥ (Y n

Na + Y n
K1 + Y n

K + Y n
Kp + Yb + Y n

si)v
− = Y n

I v−.

Consequently,

vn+ 1
2 ≤YE

YI
+

(
v− − YE

YI

)
e−Y n

I
∆t
2 ≤ YE

YI
+

(
v− − YE

YI

)
= v−,

where again we have used (32) in the last transition. As for bounds on cn+ 1
2 , we

refer to [4] for details, since the analysis of this evaluation can be carried out in
the exact same manner as found therein. Provided that (28)-(30) hold, we have
thus shown that the solutions at time tn+ 1

2
stay within these bounds regardless of

the time step chosen. When taking a full time increment to evaluate vn+1, yn+1,
y = m,h, j, f, d,X we observe from Step 2 above that the schemes are very similar,
only with input from tn+ 1

2
instead of feeding solutions at tn into the right hand

side, and with a full time step taken. Since these values are all within the desired
range, the analysis just carried out applies in the very same manner.

It remains to show bounds on cn+1. Recall that the update scheme for this
variable was written in Step 2 as

k1 = F

(
cn +

1
2
∆tk1 − 1

2
∆tk2

)

k2 = F

(
cn +

1
2
∆tk1 +

1
2
∆tk2

)

cn+1 = cn +
1
2
∆tk1 +

1
2
∆tk2 .

We define

c1 = cn +
1
2
∆tk1 − 1

2
∆tk2

c2 = cn +
1
2
∆tk1 +

1
2
∆tk2
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so that k1 = F (c1), k2 = F (c2) and

c1 = cn +
1
2
∆tF (c1)− 1

2
∆tF (c2) (33)

c2 = cn +
1
2
∆tF (c1) +

1
2
∆tF (c2) (34)

with cn+ 1
2 = c2. Reformulate the system by subtracting (33) from (34) to get the

first new equation and add (33) and (34) to get the second, i.e.

c2 = c1 + ∆tF (c2) (35)

c2 = 2cn − c1 + ∆tF (c1) . (36)

We start by observing that the right hand side of F in (20) satisfies

F ′(c) = −0.07− 13.0287 · 10−4Y
n+ 1

2
si

c
< 0 , for all c > 0 (37)

so F is a strictly monotone function. Moreover we calculate

F (c−) = 0.07(10−4 − c−)− 10−4Y
n+ 1

2
si (vn+ 1

2 − E(c−))

= 0.07(10−4 − c−)− 10−4Y
n+ 1

2
si (vn+ 1

2 − v+) ≥ 0.07(10−4 − c−) > 0

and

F (c+) = 0.07(10−4 − c+)− 10−4Y
n+ 1

2
si (vn+ 1

2 − E(c+))

≤ 0.07(10−4 − c+)− 0.09 · 10−4(v− − E(c+)) ≈ −6.5 · 10−3 < 0. (38)

We shall use these facts to prove that also the calcium concentrations stay within
the desired bounds for all time, regardless of the time step chosen. In order to do
so we need to show that, for cn ∈ [c−, c+], the graphs of c2 versus c1, originating
from the above equations, intersect at a point (c∗1, c

∗
2) with c∗1, c

∗
2 ∈ [c−, c+]. Then

we will have cn+1 = c∗2 in the correct interval. Taking the derivative of (35) with
respect to c1 we find

dc2

dc1
=

1
1−∆tF ′(c2)

> 0 ,

for c2 > 0. Similarly, for (36)
dc2

dc1
= −1 + ∆tF ′(c1) < 0 ,

for c1 > 0.

We begin by showing that (35) has a solution c2 = c∗ ∈ [c−, c+] for all c1 ∈
[c−, c+]. Let

A(c2) = c1 − c2 + ∆tF (c2)
such that A(c∗) = 0 solves (35). The derivative of A fulfills

A′(c2) = −1 + ∆tF ′(c2) < 0 , for all c2 > 0 .

Assume now that c1 = c−. Then

A(c−) = ∆tF (c−) > 0

A(c+) = c− − c+ + ∆tF (c+) < ∆tF (c+) < 0 ,
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so we have a solution c∗ ∈ [c−, c+] for c1 = c−. Now, let instead c1 = c+ and find

A(c−) = c+ − c− + ∆tF (c−) > ∆tF (c−) > 0

A(c+) = ∆tF (c+) < 0 ,

so we have another solution c∗ ∈ [c−, c+] for c1 = c+. Since the derivative of (35)
with respect to c1 is positive, we will always have a solution c∗ ∈ [c−, c+] for all
c1 = [c−, c+].

Next, we write equation (36) as

c̄ = 2cn − c1 + ∆tF (c1)

and view c̄ as a function of c1, c̄ = c̄(c1). Similarly the solution to (35) is c∗ = c∗(c1).

Since
dc̄

dc1
< 0 for all c1 > 0 and c∗ ∈ [c−, c+] with

dc∗

dc1
> 0 for all c1 ∈ [c−, c+], we

want to show that

(i) c̄(c−) ≥ c∗(c−)
(ii) c̄(c+) ≤ c∗(c+)

because then the two graphs intersect at the point (c∗1, c
n+1), with c∗1, c

n+1 ∈
[c−, c+]. That (i) holds follows from

c̄(c−)− c∗(c−) = 2cn − c− + ∆tf(c−)− (c− + ∆tF (c∗))

= 2(cn − c−) + ∆t(F (c−)− F (c∗)) ≥ ∆t(F (c−)− F (c∗)) ≥ 0

since c∗, cn ∈ [c−, c+] and F ′(x) < 0 for all positive x. Similarly, we find that the
second statement holds since

c∗(c+)− c̄(c+) = c+ + ∆tF (c∗)− (2cn − c+ + ∆tF (c+))

= 2(c+ − cn) + ∆t(F (c∗)− F (c+)) ≥ ∆t(F (c∗)− F (c+)) ≥ 0 .

Thus we have a unique solution cn+1 ∈ [c−, c+], where the bounds are as defined
in (25). In view of the above lines of argument, we state that the entire solution
set at time tn+1 satisfies

v− ≤ vn+1 ≤ v+,

c− ≤ cn+1 ≤ c+,

0 ≤ yn+1 ≤ 1, y = m,h, j, f, d, X.

Now, since the solutions are within these bounds initially, the proof is concluded
by induction on n. ¤

5. Numerical experiments

In order to illustrate that our proposed method is second order accurate and
that it actually provides unconditional stability, we will in this section present
some numerical experiments. The system of ODEs, (8)-(10), that constitutes the
original LR1 model is solved with the two steps outlined in Section 3. Since it is
impossible to obtain an analytical solution of the ODE model, we find a reference
solution by computing an extremely fine solution set denoted by u = (v, c, y), y =
m,h, j, f, d,X. To calculate this we use a built-in Matlab solver, ode15s. The
solution obtained with the second order method is denoted by u∆ = (v, c, y)∆, y =
m,h, j, f, d,X. Then we measure the l2-norm of the difference between u and u∆
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at time t = 10ms. We define the l2-norm to be

‖u− u∆‖2 =
(
(v − v∆)2 + (c− c∆)2 +

∑
y

(y − y∆)2
) 1

2 , (39)

for y = m,h, j, f, d, X. Tables 1 and 2 show convergence results for the method

∆t 1.order scheme 2.order scheme
(ms) error rate constant error rate constant
2−3 1.097e-01 2.8251 0.88 2.27e-01 2.78 74.1
2−4 5.80e-02 0.92 0.93 7.33e-02 1.63 6.71
2−5 8.20e-02 -0.50 2.63 1.85e-02 1.99 18.1
2−6 5.72e-02 0.52 3.67 4.67e-03 1.99 18.0
2−7 2.93e-02 0.97 3.74 1.18e-03 1.99 18.0
2−8 1.74e-02 0.75 4.46 2.96e-04 1.99 18.5
2−9 9.20e-03 0.95 4.58 7.43e-05 2.00 18.9
2−10 4.80e-03 0.94 4.92 1.86e-05 2.00 19.2

Table 1. Errors at t = 10 (ms) for the initial data (v = −40, c =
0.0002,m = 0, h = 1, j = 1, X = 0, d = 0, f = 1).

under consideration. For comparison, we have included convergence results for
our first order accurate method described in [4]; Table 1 displays the error for
several values of ∆t. The solution is initially set to (v, c,m, h, j, f, d,X)t=0 =
(−40, 2 · 10−4, 0, 1, 1, 1, 0, 0), and the cell kinetics are due to normal physiological
conditions. The order of the method is calculated from

‖u− u∆‖2 = C∆tα,

where C is the proportionality factor and α is the rate. Table 2 shows sim-
ulations for initial values that typically occur during shock, i.e. we have set
(v, c, m, h, j, f, d, X)t=0 = (800, 3.9 · 10−27, 1, 1, 1, 1, 0, 1). Observe that the con-
vergence is satisfactory for these initial conditions as well.

∆t 1.order scheme 2.order scheme
(ms) error rate constant error rate constant
2−3 27.51 0.72 220 1.59 2.17 144
2−4 15.60 0.82 249.5 3.86e-01 2.04 111
2−5 8.34 0.90 267.3 9.60e-02 2.01 101
2−6 4.32 0.95 276.7 2.40e-02 2.00 99.1
2−7 2.20 0.97 281.7 5.99e-03 2.00 98.4
2−8 1.11 0.99 284.4 1.50e-03 2.00 98.2
2−9 0.56 1.03 278.6 3.74e-04 2.00 98.1

Table 2. Errors at t = 10 (ms) for the initial data (v = 800, c =
3.9 · 10−27,m = 1, h = 1, j = 1, X = 1, d = 0, f = 1).

As a final convergence test, we run the simulations for an entire action potential,
i.e. for t ∈ [0, 400] ms, to see whether the order of convergence is preserved. Table
3 contains the convergence results for several ∆t and we observe that the scheme
shows its designed second order accuracy for small time steps as expected.

Finally we illustrate the accuracy of the solver by plotting the action potential
from t ∈ [0, 400]ms, with ∆t = 2.0ms. Figure 1, left part, shows plots of v using the
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∆t
10 (ms) l2-error l2-order error-constant
2−1 2.42e-01 3.34 1.12e-3
2−2 5.59e-02 2.12 8.05e-3
2−3 1.07e-02 2.38 6.28e-3
2−4 2.64e-03 2.02 6.82e-3
2−5 5.98e-03 -1.18 1.51e-3
2−6 2.75e-03 1.12 2.20e-2
2−7 1.23e-04 4.48 11.2
2−8 3.76e-05 1.71 9.69e-3
2−9 7.83e-06 2.26 5.82e-2
2−10 2.15e-06 1.87 1.22e-2
2−11 5.96e-07 1.85 1.11e-2
2−12 1.59e-07 1.91 1.55e-2
2−13 4.10e-08 1.95 2.00e-2

Table 3. Errors at t = 400 (ms) for the initial data (v = −40, c =
0.0002,m = 0, h = 1, j = 1, X = 0, d = 0, f = 1).

scheme studied in this paper compared to the fine solution (dotted line), as well as
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Figure 1. The transmembrane potential, fine solution (−−) and
the second order scheme scheme (−) using ∆t = 2.0ms. A first
order scheme is included for comparison.

that of an unconditionally stable first order scheme presented in [4]. In the right
plot we have zoomed in on the up-stroke, and we observe how closely the solution
computed with the second order method follows the fine solution.

6. Concluding remarks

As we have seen in this paper, it is possible to derive a second order accurate and
unconditionally stable numerical method for an ODE model used in simulations of
cardiac defibrillation. The traditional semi-implicit methods fail both concerning
accuracy since they are only of order O(∆t), and in terms of efficiency due to
the small time steps needed. For instance, the well-established Crank-Nicolson
scheme is impractical for the present application, due to the extremely strict time
step condition. Here we have proposed a method that is fairly straightforward
to implement. We remark that the two steps outlined in Section 3 can easily be
carried over to larger ODE systems with a higher level of realism. State of the art
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models would however, involve more ODEs with complicated nonlinear terms, so
the algorithm implementation would generally require more effort.

Appendix A. Gate variable rate functions and parameters

Below we have listed the rate functions αy, βy, for y = m, h, j, f, d, X. Note that
the opening and closing rates of h and j are smoothed out in order to obtain the
desired level of accuracy, see discussion in Section 2. We have used a least-squares
method in Matlab to fit the new curve to data obtained from the original rate
functions. The new functions are on the form originally standardized by Noble, see
[9], i.e.

αh,j , βh,j(v) =
(c1 exp(c2(v − c6)) + c3(v − c6))

(c4 exp(c5(v − c6)) + 1)
. (40)

The other rate functions appear as follows:

αm =
0.32(v + 47.13)

1− exp[−0.1(v + 47.13)]
βm = 0.08 exp(

−v

11.0
)

αh = 0.085 exp(−0.15(V + 77)) βh =
7.7

exp(−0.1(V + 11.5)) + 1

αj =
0.053 exp(−0.15(V + 78))
exp(−0.047(V + 78)) + 1

βj =
0.3

{exp(−0.1(V + 32)) + 1}
αd =

0.095 exp[−0.01(v − 5)]
1 + exp[−0.072(v − 5)]

βd =
0.07 exp[−0.017(v + 44)]
1 + exp[−0.05(v + 44)]

αf =
0.012 exp[−0.008(v + 28)]

1 + exp[0.15(v + 28)]
βf =

0.0065 exp[−0.02(v + 30)]
1 + exp[−0.2(v + 30)]

αX =
0.0005 exp[−0.083(v + 50)]

1 + exp[0.057(v + 50)]
βX =

0.0013 exp[−0.06(v + 20)]
1 + exp[−0.04(v + 20)]

K1∞ =
αK1

αK1 + βK1
Kp =

1
1 + exp[7.488− v/5.98]

αK1 =
1.02

1 + exp[0.2385(v − EK1)− 59.215]

βK1 =
0.49124 exp[0.08032(v − EK1 + 5.476)] + exp[0.06175(v − EK1 − 594.31)]

1 + exp[−0.5143(v − EK1 + 4.753)]

A note on the inactivation gate of IK

The delayed rectifier current, IK of the LR1 model is, as described above, gov-
erned by

IK = gKXXi(v − EK).

As proposed by Shibasaki [12], X and Xi are respectively the activation and the
inactivation gates. The latter is clamped at Xi = 1, i.e.

Xi =
2.837(exp(0.04(v + 77))− 1.0)

(v + 77) exp(0.04(v + 35))
, v ≥ −100,

Xi = 1.0, otherwise.

Observe that this gate is clamped at v ≤ −100mV. For simulations of electrical pulse
propagation under normal conditions, this singularity will be outside the range of v,
and thus not affect the order of accuracy. However, in simulations of defibrillation,
the tissue will be hyperpolarized down to such an extent that the break point will
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be crossed and the second order accuracy can not be obtained. Therefore we have
chosen to approximate the inactivation gate with a smooth version. Since Xi is set
to its steady state, we propose

Xi =
αXi

αXi + βXi

(41)

where the opening and the closing rates are on the form (40). The parameters in
Table 4 are found by using the same method as was done for the other rate functions.
Figure 2 shows the original Xi function together with the smooth version, left part,

c1 c2 c3 c4 c5 c6

αXi
5.458 · 105 0.04554 −0.046 1.05 · 107 0.0495 166.5

βXi 0.55 0.028 0.001017 1.175 0.0283 −55
Table 4. Coefficients for smooth version of the Xi-gate on the
form given in (41).

and the effect on the AP, right part. Observe the minimal difference in the action
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Figure 2. Left plot: The original Xi gate, (−−), and the smooth
version(−). Right plot: The effect of a smooth Xi on the trans-
membrane potential; original (−−), and smoothed version (−).

potential for the new rate function. Finally, in Table 5 we list the conductivity
constants and the equilibrium potentials of the membrane currents, see [8].
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