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N-SIMPLEX CROUZEIX-RAVIART ELEMENT FOR THE
SECOND-ORDER ELLIPTIC/EIGENVALUE PROBLEMS

YIDU YANG, FUBIAO LIN, AND ZHIMIN ZHANG

Abstract. We study the n-simplex nonconforming Crouzeix-Raviart element in approximating
the n-dimensional second-order elliptic boundary value problems and the associated eigenvalue
problems. By using the second Strang Lemma, optimal rate of convergence is established under
the discrete energy norm. The error bound is also valid for the eigenfunction approximations. In
addition, when eigenfunctions are singular, we prove that the Crouzeix-Raviart element approxi-
mates exact eigenvalues from below. Moreover, our numerical experiments demonstrate that the
lower bound property is also valid for smooth eigenfunctions, although a theoretical justification
is lacking.
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1. Introduction

Nonconforming finite elements have attracted much attention in scientific com-
puting community. In some recent works, Morley element, Adini element, Bogner-
Fox-Schmit element, and Zienkiewicz-type element have been extended into arbi-
trary dimensions by Wang, Shi, and Xu [13, 14]. In this paper, we study the
n-simplex nonconforming Crouzeix-Raviart element.

The triangular Crouzeix-Raviart element was first introduced in 1973 [6] to solve
the stationary Stokes equation. This element was also used to solve the second-order
elliptic problems [12] and linear elasticity equations [3, 7]. Recently, Armentano
and Durán proved that the triangular Crouzeix-Raviart element approximates the
eigenvalue of the Laplace operator from below under certain conditions [1]. All
above mentioned works are in the two dimensional setting. Indeed, the Crouzeix-
Raviart element has its n-dimensional extension [5]. We shall apply it to solve
higher-dimensional second-order elliptic equations here. With help of the second
Strang lemma, we establish the optimal rate of convergence in the discrete energy
norm. This result is then extended to eigenfunctions of the associated eigenvalue
problems. We prove that when the eigenfunction is singular, the numerical eigen-
value obtained by the Crouzeix-Raviart element approximates the exact one from
below. This theoretical result is illustrated by numerical examples. Moreover,
our numerical experiments indicate that the lower bound property is also valid for
smooth eigenfunctions, at least for the Laplace operator on the cube.

By the min-max principle, a conforming finite element results in an upper bound
for eigenvalue problems associated with second-order elliptic operators. The fact
that the nonconforming Crouzeix-Raviart element provides a lower bound has a
significant impact from the a posteriori error control view point. By comparing
the two, we are able to control the error by a given tolerance. That is why the
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subject of non-conforming elements approximating exact eigenvalues from below
has attracted much attention in scientific community. Other than [1] mentioned
above, Rannacher [11] gave numerical examples about Morley element and Adini
element in approximating the exact eigenvalues from below for a plate vibration
problem; Yang [15] proved that Adini element approximates the exact eigenvalues
from below for the plate vibration problem; Lin and Lin [9] proved that the non-
conforming EQrot

1 approximates the exact eigenvalues of the Laplace operator from
below; Zhang, Yang and Chen [17] proved that the non-conforming Wilson element
approximates the exact eigenvalues of the Laplace operator from below. Again,
all above works are for the two dimensions. The results in this paper are for any
n-dimension.

2. Approximation of second-order elliptic problems

Consider the second-order elliptic boundary value problem on a polygonal do-
main Ω ⊂ Rn,

(2.1) Lu ≡ −
n∑

i,j=1

∂i(aij∂ju) + au = f, in Ω; u = 0, on ∂Ω.

We assume that aij = aji, aij ∈ W1,∞(Ω), a ∈ L∞(Ω), a ≥ 0, f ∈ L2(Ω), and

there exists a constant β > 0, such that
n∑

i,j=1

aijξjξi ≥ β
n∑

i=1

ξ2
i a.e. in Ω for all

(ξ1, ξ2, · · · , ξn) ∈ Rn.
The weak form of (2.1) is to seek u ∈ H1

0 (Ω) such that

(2.2) a(u, v) = b(f, v), ∀v ∈ H1
0 (Ω),

where,

a(u, v) =
∫

Ω

{
n∑

i,j=1

aij∂ju∂iv + auv}dx, b(f, v) =
∫

Ω

fvdx, ‖u‖b = ‖u‖0,2.

Then the bilinear form a(·, ·) is H1
0 (Ω)-elliptic, continuous, and symmetric over the

product space H1
0 (Ω)×H1

0 (Ω).
In the sequel, we need the following a prior estimate:

(2.3) ‖u‖2,p ≤ C(p)‖f‖0,p, p ∈ (1,∞).

Remark. It is well known that (2.3) is valid when ∂Ω is C1,1. When Ω is an
n-cube, (2.3) is valid for c(p) = max(p, p/(p − 1)), see [4, Theorem 2.3.4], for the
proof.

Let πh be an n-simplex partition for Ω, and let the barycenters of the n+1-faces
of an n-simplex be z1, z2, z3, · · · , zn+1. Then the non-conforming Crouzeix-Raviart
finite element space is,

Sh = {v ∈ L2(Ω) : v |K∈ P1(K), ∀K ∈ πh, v is continuous at zj , and v = 0 at
barycenters on ∂Ω}. Clearly, Sh 6⊂ H1

0 (Ω).
In this paper, we suppose that the family of triangulations πh is regular (see [5,

P131]).

The non-conforming Crouzeix-Raviart finite element approximation of (2.1) is
to seek uh ∈ Sh such that

(2.4) ah(uh, v) = b(f, v), ∀v ∈ Sh,
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where,

ah(uh, v) =
∑

K∈πh

∫

K

{
n∑

i,j=1

aij∂juh∂iv + auhv}dx.

Define ‖ · ‖h = (
∑

K∈πh

| · |21,K)
1
2 for a(x) = 0, and ‖ · ‖h = (

∑
K∈πh

‖ · ‖21,K)
1
2 for

a(x) ≥ δ > 0. Then ‖ · ‖h is a norm over the finite element space Sh, and it is not
difficult to verify that ah(·, ·) is continuous and uniformly Sh-elliptic, namely there
exists constants M,α > 0 independent of Sh such that

| ah(u, v) |≤ M‖u‖h‖v‖h, ∀u, v ∈ Sh.

ah(v, v) ≥ α‖v‖2h, ∀v ∈ Sh.

Now we turn to error estimates.
Lemma 1. Let W1,l(K̂) ↪→ Lg(∂K̂), ŵ ∈ W1,l(K̂), then the following inequality is
valid. ∫

∂K

|w|gds ≤ C{hn− gn
l −1

K ‖w‖g
0,l,K + h

g+n− gn
l −1

K |w|g1,l,K}, ∀K ∈ πh,

where K̂ is a reference element, K and K̂ are affine-equivalent, C is a positive
constant independent of w, the diameter of K.
Proof. It is an application of the trace theorem (see, e.g., [12]). ¤

Define

(2.5) PF
0 f =

1
meas(F )

∫

F

fds, RF
0 f = f − PF

0 f,

(2.6) PK
0 f =

1
meas(K)

∫

K

fdx, RK
0 f = f − PK

0 f,

where K ∈ πh and F is an arbitrary element side of πh.
Lemma 2. Let f ∈ W1,p(K), then it holds

(2.7) ‖RK
0 f‖0,p,K ≤ ChK |f |1,p,K .

Proof. By [5, Theorem 15.3], or by [8, (7.45)], we can obtain (2.7).¤
Lemma 3. For q ∈ [1,∞], there hold

‖PF
0 f‖0,q,F ≤ ‖f‖0,q,F ,(2.8)

‖RF
0 f‖0,q,F ≤ 2‖f − v‖0,q,F , ∀v ∈ P0(K).(2.9)

Proof. a) 1 ≤ q < ∞. By the definition, we have,

| PF
0 f |q =

1
meas(F )q

|
∫

F

fds |q≤ 1
meas(F )q

(
∫

F

|f |qds)
1
q×q(

∫

F

1pds)
1
p×q

≤ meas(F )−qmeas(F )
q
p |f |q0,q,F ,

perform integration on both sides yields,

‖PF
0 f‖q

0,q,F =
∫

F

| PF
0 f |q ds ≤

∫

F

meas(F )−qmeas(F )
q
p |f |q0,q,F ds = |f |q0,q,F .
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b) q = ∞. Again, from the definition,

‖PF
0 f‖0,∞,F = |PF

0 f | = | 1
meas(F )

∫

F

fds| ≤ ‖f‖0,∞,F .

Therefore, we establish (2.8).
Note that RF

0 v = 0 for v ∈ P0(K). The estimate (2.9) follows from (2.8) by
replacing f with f − v. ¤
Lemma 4. Let E be a simplex in Rs, z is the barycenter of E, P1(x) is a polynomial
of degree 1 on E, then we have

∫

E

P1(x)dx = P1(z)meas(E).

Proof. See [5,P187]. ¤

Define A = [ 2n
n+2 , 2] for n ≥ 3 and A = (1, 2] for n = 2.

Next we will use Lemma 1 and the error estimate of interpolation. In order
to satisfy the conditions of Lemma 1 and [5,Theorem 15.3], therefore we suppose
p ∈ A in the rest of the paper.

Theorem 1. Let u ∈ W2,p(Ω) be the solution of (2.2), p ∈ A. Then the consistent
term Eh(u,wh) = ah(u, wh)− (f, wh) (for the Crouzeix-Raviart finite element) can
be estimated by

| Eh(u,wh) |≤ Ch1+ n
2−n

p | u |2,p ‖wh‖h, ∀wh ∈ H1
0 (Ω)⊕ Sh.(2.10)

Proof. We extend the proof for the triangular Crouzeix-Raviart element (cf., e.g.,
[12, §7.2.1]) to the n-dimensional setting. By Green’s formula, we obtain

Eh(u,wh) = ah(u,wh)− (f, wh)

=
∑

K∈πh

∫

K

{
n∑

i,j=1

aij∂ju∂iwh + auwh}dx−
∫

Ω

fwhdx

=
∫

Ω

(Lu− f)whdx +
∑

K∈πh

∫

∂K

∂u

∂ν
whds,

∂u

∂ν
=

n∑

i,j=1

aij∂juνi.

Since u is a solution of (2.1), we have
∫
Ω

(Lu− f)whdx = 0, therefore,

Eh(u,wh) =
∑

K∈πh

∫

∂K

∂u

∂ν
whds =

∑

K∈πh

∫

∂K

n∑

i,j=1

aij∂juwhνids

=
n∑

i,j=1

∑

F 6⊂∂Ω

∫

F

(aij∂juwh |K+ −aij∂juwh |K−)ν+
i ds(2.11)

+
n∑

i,j=1

∑

F⊂∂Ω

∫

F

aij∂juwhνids.

We denote that wh|K+ = w+
h , wh|K− = w−h and the jump of wh on F as [wh]F =

(w+
h − w−h ) |F .
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We estimate
∫
F

aij∂ju[wh]ν+
i ds for F 6⊂ ∂Ω first. By (2.6),

∫

F

aij∂ju[wh]ν+
i ds = ν+

i

∫

F

aij∂ju[wh]ds

= ν+
i

∫

F

RK
0 (aij∂ju)[wh]ds + ν+

i

∫

F

PK
0 (aij∂ju)[wh]ds.(2.12)

Applying Lemma 4 and the trace theorem, we obtain

∫

F

PK
0 (aij∂ju)[wh]ds = PK

0 (aij∂ju)
∫

F

[wh]ds = 0.

Substituting this into (2.12), we get

∫

F

aij∂ju[wh]ν+
i ds = ν+

i

∫

F

RK
0 (aij∂ju)[wh]ds

= ν+
i

∫

F

RK
0 (aij∂ju)RF

0 ([wh])ds + ν+
i

∫

F

RK
0 (aij∂ju)PF

0 ([wh])ds.(2.13)

Since

PF
0 ([wh]) =

1
meas(F )

∫

F

[wh]ds = 0,

by (2.13), we have

|
∫

F

aij∂ju[wh]ν+
i ds |=| ν+

i

∫

F

RK
0 (aij∂ju)RF

0 ([wh])ds |

≤ {
∫

F

| RK
0 (aij∂ju) |q′ ds} 1

q′ {
∫

F

| RF
0 ([wh]) |q ds} 1

q ,(2.14)

where 1
q′ + 1

q = 1, q′ = max{p, 2− 2
n}.

Using Lemma 1 with g = q′, l = p and (2.7), we derive

∫

F

| RK
0 (aij∂ju) |q′ ds

≤ C{hn− q′n
p −1

K ‖RK
0 (aij∂ju)‖q′

0,p,K + h
q′+n− q′n

p −1

K |RK
0 (aij∂ju)|q′1,p,K}(2.15)

≤ Ch
q′+n− q′n

p −1

K |u|q′2,p,K .
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On the other hand, from (2.9), Lemma 1 with g = q, l = 2 and (2.7), we have
∫

F

| RF
0 ([wh]) |q ds =

∫

F

| [wh]− PF
0 ([wh]) |q ds

=
∫

F

| (w+
h − PF

0 w+
h )− (w−h − PF

0 w−h ) |q ds

≤ 2q{
∫

F

| (w+
h − PF

0 w+
h ) |q ds +

∫

F

| (w−h − PF
0 w−h ) |q ds}

≤ 2q+q{
∫

F

| (w+
h − PK+

0 w+
h ) |q ds +

∫

F

| (w−h − PK−
0 w−h ) |q ds}(2.16)

≤ C{(hn− qn
2 −1

K+ ‖RK+

0 w+
h ‖q

0,2,K+ + h
q+n− qn

2 −1

K+ |RK+

0 w+
h |q1,2,K+)

+ (hn− qn
2 −1

K− ‖RK−
0 w−h ‖q

0,2,K− + h
q+n− qn

2 −1

K− |RK−
0 w−h |q1,2,K−)}

≤ C{hq+n− qn
2 −1

K+ |w+
h |q1,2,K+ + h

q+n− qn
2 −1

K− |w−h |q1,2,K−}.
Combining (2.14)-(2.16) yields

|
∫

F

aij∂ju[wh]ν+
i ds |≤ Ch

1+ n
2−n

p

K |u|2,p,K |wh|1,2,K+∪K− .(2.17)

The second term on the right hand side of (2.11) can be estimated analogously.
Observe that

∫
F

whds = 0 for F ⊂ ∂Ω, and we have

|
∫

F

aij∂juwhνids| ≤ Ch
1+ n

2−n
p

K |u|2,p,K |wh|1,2,K .(2.18)

Substituting (2.17) and (2.18) into the right-hand side of (2.11), and then ap-
plying the Hölder inequality and the Jensen inequality on the right hand side of
(2.11), we prove (2.10). ¤

We define an interpolation operator of face average IK : H1
0 (K) → P1(K):

∫

F

IKu =
∫

F

u ∀F, ∀u ∈ H1
0 (K),

where F is a face of an arbitrary element K in πh, and define an interpolation
operator Ih : H1

0 (Ω) → Sh:

(Ihu) |K= IK(u |K), ∀K ∈ πh.

Lemma 5. Let u ∈ W2,p(Ω), p ∈ A, then the following inequalities are valid:

‖u− Ihu‖0,2 ≤ Ch2+ n
2−n

p ‖u‖2,p,(2.19)

‖u− Ihu‖0,p ≤ Ch2‖u‖2,p,(2.20)

‖u− Ihu‖h ≤ Ch1+ n
2−n

p ‖u‖2,p,(2.21)
‖Ihu‖0,q ≤ C‖u‖2,p,(2.22)

where 1
q + 1

p = 1.

Proof. Let K and K̂ be two affine-equivalent bounded open subsets of Rn, and let
F̂i, i = 1, 2, · · · , n + 1, be faces of K̂. For any f ∈ W2,p(K), by the definition of IK
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and the trace theorem, we deduce that

∫

K̂

| IK̂ f̂ |q dx̂ =
∫

K̂

|
n+1∑

i=1

1

meas(F̂i)

∫

F̂i

f̂ |F̂i
dŝφ̂i |q dx̂ ≤ C‖f̂‖q

2,p,K̂
,

where the functions φ̂i, 1 ≤ i ≤ n + 1, are the basis functions of the Crouzeix-
Raviart finite element. In other words, IK̂ : W2,p(K̂) → Lq(K̂) is a linear bounded
operator. Since embedding theorem, if 1

p − 2
n > 0, we obtain

W2,p(K̂) ↪→ Lp∗(K̂) (
1
p∗

=
1
p
− 2

n
),

and according to assumption p ∈ A, we see that

2
p
− 2

n
− 1 ≤ 0, i.e.,−1

q
+

1
p
− 2

n
≤ 0, namely q ≤ p∗,

therefore

W2,p(K̂) ↪→ Lq(K̂).(2.23)

In addition, (2.23) is obviously valid as to 1
p − 2

n ≤ 0.
Observe that

IK̂ P̂ =
n+1∑

i=1

1
meas(F̂i)

∫

F̂i

P̂ |F̂i
dŝφ̂i = P̂ ∀P̂ ∈ P1(K̂).

Therefore, note p ≤ 2 ≤ q, from [5, Theorem 15.3], we obtain (2.19), (2.20) and

‖u− Ihu‖0,q ≤ Chn+2− 2n
p ‖u‖2,p.(2.24)

Recalling the following inequality

‖Ihu‖0,q ≤ ‖Ihu− u‖0,q + ‖u‖0,q,

we see that the proposition (2.22) is proved.
The (2.21) is able to be concluded analogously. ¤

Lemma 6. Let u ∈ W2,p(Ω), p ∈ A, then the following inequality is valid:

| ah(u− Ihu, v) |≤ Ch2+ n
2−n

p |u|2,p‖v‖′1,2, ∀v ∈ Sh.(2.25)

Proof. By the definition of IK , for any constant CF , we see that

∫

K

∂j(u− Ihu)CF dx =
∫

∂K

(u− Ihu)CF νjds = 0.
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Given v ∈ Sh, ∂v is a constant over an arbitrary element K. Therefore,

| ah(u− Ihu, v) |

=
∑

K∈πh

∫

K

{
n∑

i,j=1

aij∂j(u− Ihu)∂iv + a(u− Ihu)v}dx

=
∑

K∈πh

∫

K

{
n∑

i,j=1

(aij − I0aij)∂j(u− Ihu)∂iv + a(u− Ihu)v}dx

+
∑

K∈πh

∫

K

{
n∑

i,j=1

I0aij∂j(u− Ih(u))∂ivdx

=
∑

K∈πh

∫

K

{
n∑

i,j=1

(aij − I0aij)∂j(u− Ihu)∂iv + a(u− Ihu)v}dx

≤ C(‖aij − I0aij‖0,∞‖∂j(u− Ihu)‖0,2 + ‖u− Ihu‖0,2)‖v‖′1,2

≤ Ch2+ n
2−n

p |u|2,p‖v‖′1,2,

where I0 is the piecewise constant projection operator. ¤

Theorem 2. Let u ∈ W2,p(Ω) be the solution of (2.2), p ∈ A, and uh ∈ Sh be the
solution of (2.4), then

(2.26) ‖uh − u‖h ≤ Ch1+ n
2−n

p | u |2,p,

further, let (2.3) be valid, then

(2.27) ‖uh − u‖0,2 ≤ Ch2+n− 2n
p | u |2,p .

Proof. Recall the second Strang Lemma (see [5, 10]),

(2.28) ‖u− uh‖h ≤ C( inf
v∈Sh

‖u− v‖h + sup
wh∈Sh,wh 6=0

| Eh(u,wh) |
‖wh‖h

).

According to the interpolation error estimate (2.21), we have

(2.29) inf
v∈Sh

‖u− v‖h ≤ Ch1+ n
2−n

p |u|2,p.

Recalling (2.10), we derive

| Eh(u,wh) |≤ Ch1+ n
2−n

p | u |2,p ‖wh‖h.

Therefore,

sup
wh∈Sh,wh 6=0

| Eh(u,wh) |
‖wh‖h

≤ Ch1+ n
2−n

p | u |2,p .(2.30)

Applying (2.29) and (2.30) to (2.28) yields (2.26).
Next, we establish the L2 error bound using the duality argument used by Nitsche

(1974), Lascaux and Lesaint (1975), see, e.g., [5].

‖u− uh‖0,2 ≤ C‖u− uh‖h sup
ζ∈L2(Ω)

{ 1
‖ζ‖0,2

inf
ϕh∈Sh

‖ϕ− ϕh‖h}

+ sup
ζ∈L2(Ω)

{ 1
‖ζ‖0,2

inf
ϕh∈Sh

(Eh(u, ϕ− ϕh) + Eh(ϕ, u− uh))},(2.31)

where ϕ ∈ W2,p(Ω) is the unique solution of the following variational problem:

a(v, ϕ) = (ζ, v), ∀v ∈ H1
0 (Ω).
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Combining the error estimate of interpolation with (2.3), we derive

‖ϕ− Ihϕ‖h ≤ Ch1+ n
2−n

p |ϕ|2,p ≤ Ch1+ n
2−n

p ‖ζ‖0,p.(2.32)

Substituting above the inequality into (2.10), we obtain ∀ζ ∈ L2(Ω)

| Eh(u, ϕ− Ihϕ) | ≤ Ch1+ n
2−n

p | u |2,p ‖ϕ− Ihϕ‖h

≤ Ch2+n− 2n
p | u |2,p ‖ζ‖0,p.(2.33)

By (2.10) and (2.26) we derive

| Eh(ϕ, u− uh) |≤ Ch2+n− 2n
p | u |2,p ‖ζ‖0,p.(2.34)

Therefore, applying (2.26), (2.32), (2.33) and (2.34) to (2.31) gives (2.27). ¤

3. Approximation of the eigenvalue problem

Consider the corresponding eigenvalue problem of (2.1)

Lu = λρu, inΩ; u = 0, on∂Ω.(3.1)

Here ρ ∈ L∞(Ω), and there exists a constant d > 0, such that ρ ≥ d > 0 a.e. in Ω.
The weak form of (3.1) is: Find λ ∈ R and u ∈ H1

0 (Ω) with ‖u‖b = 1, such that

a(u, v) = λb(u, v), ∀v ∈ H1
0 (Ω),(3.2)

where a(u, v) is defined by (2.2), b(u, v) =
∫
Ω

ρuvdx, ‖ · ‖b = b(·, ·) 1
2 .

The Crouzeix-Raviart finite element approximation for (3.1) is: Find λh ∈ R
and uh ∈ Sh with ‖uh‖b = 1, such that

ah(uh, v) = λhb(uh, v), ∀v ∈ Sh,(3.3)

where ah(u, v) is defined by (2.4).
It is clear that ‖ · ‖b and ‖ · ‖0,2 are two equivalent norms on L2(Ω). Introduce

the operators T and Th by T : L2(Ω) → L2(Ω) and Th : L2(Ω) → Sh, respectively:

a(Tf, v) = b(f, v), ∀f ∈ L2(Ω), ∀v ∈ H1
0 (Ω),

ah(Thf, v) = b(f, v), ∀f ∈ L2(Ω), ∀v ∈ Sh.

In the rest of this paper, we denote λj as the jth eigenvalue (counting multiplic-
ities) of (3.1).

Lemma 7. Let the a prior estimate (2.3) be valid and (λj,h, uj,h) be the jth eigen-
pair of (3.3) with ‖uj,h‖b = 1. Then there is a eigen-pair (λj , uj) of (3.1) with
‖uj‖b = 1 such that λj,h → λj as h → 0, and

| λj,h − λj | ≤ C‖Tuj − Thuj‖b,(3.4)
‖uj,h − uj‖b ≤ C‖Tuj − Thuj‖b,(3.5)
‖uj,h − uj‖h ≤ λj‖Tuj − Thuj‖h + C‖Tuj − Thuj‖b.(3.6)

Proof. See [16]. ¤
Lemma 7 estimates the errors in the Crouzeix-Raviart element for eigenvalue

problems in terms of error estimates for the associated source problem.

Theorem 3. Let uj ∈ W2,p(Ω), p ∈ A, then we have

| λj,h − λj | ≤ Ch2+n− 2n
p | uj |2,p,(3.7)

‖uj − uj,h‖0,2 ≤ Ch2+n− 2n
p | uj |2,p,(3.8)

‖uj − uj,h‖h ≤ Ch1+ n
2−n

p | uj |2,p .(3.9)
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Proof. The above error bounds are direct consequence of Lemma 7 and Theorem
2. ¤

4. Eigenvalue Approximation from below

In this section, we extend the result in [1] for the two dimensional case to the
n-dimensional simplex Crouzeix-Raviart element in approximating the model eigen-
value problem (3.2). Towards this end, we need the following fundamental identities
for non-conforming finite elements, see, [17], also see [1] for a special case of this
identity.

Lemma 8. Let (λ, u) ∈ R×H1
0 (Ω) be an eigenpair of (3.2) and (λh, uh) ∈ R× Sh

be an eigenpair of (3.3), respectively. Then the following identity is valid:

λ− λh = ‖u− uh‖2h − λh‖wh − uh‖2b
+ λh(‖wh‖2b − ‖u‖2b) + 2ah(u− wh, uh), ∀wh ∈ Sh.(4.1)

Proof. The proof can be given using the similar method as in the proof of Lemma
1 in [1]. ¤

Theorem 4. Let λj be the jth eigenvalue of (3.2) and λj,h be the jth Crouzeix-
Raviart finite element eigenvalue of (3.3), respectively. Assume that uj ∈ W2,p(Ω),
p ∈ A, p < p0 < 2 and the p arbitrarily approaches p0, uj 6∈ W2,p0(Ω), and
‖uj − uj,h‖h ≥ Ch1+ n

2− n
p0 . When h is sufficiently small, we have

λj,h ≤ λj .(4.2)

Proof. We set wh = Ihu in (4.1). The first and fourth terms on the right-hand-side
are estimated by (3.9) and (2.25), respectively. Using (3.8) and (2.19), we conclude
that

‖Ihuj − uj,h‖0,2 ≤ ‖Ihuj − uj‖0,2 + ‖uj − uj,h‖0,2 ≤ Ch2+n− 2n
p ‖uj‖2,p.(4.3)

A direct consequence of (2.20) and (2.22) is the following

| ‖Ihuj‖20,2 − ‖uj‖20,2 | = |
∫

Ω

(uj − Ihuj)(uj + Ihuj)dx |

≤ C‖uj‖2,p‖uj − Ihuj‖0,p ≤ Ch2‖uj‖22,p.(4.4)

In light of (4.3), (4.4) and (2.25), we observe that the second, third, and fourth
terms on the right hand sides of (4.1) are of higher orders comparing with the
first term with the assumption ‖uj − uj,h‖h ≥ Ch1+ n

2− n
p0 . Therefore, the sign is

determined by the first term on the right hand side of (4.1), and hence λj−λj,h > 0.
¤

5. Numerical experiments

Consider the eigenvalue problem of the Laplace operator

−∆u = λu, in Ω; u = 0, on ∂Ω.(5.1)

Here, Ω ⊂ R3 is the unit cube [0, 1]× [0, 1]× [0, 1], or an L-shaped domain [0, 1]×
[0, 1]× [0, 1

2 ]∪ [0, 1
2 ]× [0, 1]× [ 12 , 1], or a cracked domain [0, 1]× [0, 1]× [0, 1]− [ 12 , 1]×

[ 12 , 1
2 ]× [0, 1].
The three-dimensional domain Ω is first decomposed into uniform cubes with

edge length l, then each cube is divided into six congruent tetrahedrons as demon-
strated in Fig.1.
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We compute some eigenvalues of the Laplace operator by the non-conforming

Crouzeix-Raviart element. Numerical results are demonstrated in Tables 1, 2, and
3.

Table 1: Approximated eigenvalues on the cube domain

length of edge l 1
4

1
8

1
12

1
16

1
18 trend

unitary number 384 3072 10368 24576 48000
λ1,h 28.3875 29.2948 29.4685 29.5297 29.5463 ↗
λ2,h 52.0958 57.3250 53.3662 58.7366 58.8371 ↗
λ3,h 53.2861 57.6705 58.5246 58.8267 58.9085 ↗
λ4,h 53.2861 57.6705 58.5246 58.8267 58.9085 ↗
λ5,h 75.2561 85.2691 87.2252 87.9215 88.1105 ↗
λ6,h 77.1959 85.7913 87.4633 88.0568 88.2177 ↗
λ7,h 77.1959 85.7913 87.4633 88.0568 88.2177 ↗
λ8,h 83.0006 101.522 105.379 106.763 107.139 ↗
λ9,h 83.0006 101.522 105.379 106.763 107.139 ↗
λ10,h 83.4117 101.550 105.386 106.764 107.139 ↗

The exact eigenvalues: λ1 = 3π2 ≈ 29.6088, λ2 = λ3 = λ4 = 6π2 ≈ 59.2176,
λ5 = λ6 = λ7 = 9π2 ≈ 88.8264, and λ8 = λ9 = λ10 = 11π2 ≈ 108.566.

Table 2: Approximated eigenvalues of the L-shaped domain

length of edge l 1
4

1
8

1
12

1
16

1
20 trend

unitary number 288 2304 7776 18432 36000
λ1,h 41.8851 46.3055 47.3317 47.7376 47.9434 ↗
λ2,h 62.7537 68.4872 69.6698 70.0961 70.2962 ↗
λ3,h 65.8143 74.4059 76.2614 76.9627 77.3062 ↗
λ4,h 76.7974 85.6299 87.3865 88.0125 88.3043 ↗

Table 3: Approximated eigenvalues of the crack domain

length of edge l 1
4

1
8

1
12

1
16

1
20 trend

unitary number 384 3072 10368 24576 48000
λ1,h 36.8840 40.5919 41.6454 41.9242 42.1262 ↗
λ2,h 52.8762 57.5546 58.4716 58.6684 58.7966 ↗
λ3,h 61.1370 68.7727 70.6103 71.0583 71.3707 ↗
λ4,h 66.8307 73.8079 75.2495 75.5632 75.7685 ↗

It can be seen from Tables 2 and 3 that the non-conforming Crouzeix-Raviart
element for the L-shaped domain and crack domain approximates eigenvalues from
below as predicted by Theorem 4, when eigenfunctions are singular. However,
when eigenfunctions are smooth for the cube domain, Table 1 shows that the non-
conforming Crouzeix-Raviart element approximates eigenvalues also from below,
although the theoretical proof is still an open problem.
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