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A RESIDUAL A POSTERIORI ERROR ESTIMATOR FOR
ELASTO-VISCOPLASTICITY
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Abstract. The numerical approximation of an elasto-viscoplastic problem is considered in this
paper. Fully discrete approximations are obtained by using the finite element method to approx-
imate the spatial variable and the forward Euler scheme to discretize time derivatives. We first
recall an a priori estimate result from which the linear convergence of the algorithm is derived
under suitable regularity conditions. Then, an a posteriori error analysis is provided. Upper and
lower error bounds are obtained.
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1. Introduction

Elasto-viscoplastic materials are very common in the real life because some types
of rocks and metals can be modelled using a rate-type viscoplastic law. As noticed
in [9], these materials allow both creep and relaxation phenomena.

In this work, we will consider a semilinear elasto-viscoplastic constitutive law
introduced in [5] and already studied, from both mathematical and numerical point
of views, by Ionescu and Sofonea (see the monograph [9] and the references cited
therein). In particular, fully discrete approximations were considered in [6], where
a priori estimates were obtained for an explicit Euler scheme. In this paper, this
problem is revisited and a posteriori error analysis is performed in the study of that
elasto-viscoplastic problem. This is done extending some arguments already applied
in the study of the heat equation (see, e.g., [10, 11, 13]), some parabolic equations
([1]) or the Stokes equation ([2]). Recently, contact problems involving this kind of
materials were studied (see the monograph [7] and the numerous references cited
therein), and this work can be seen as a first step to deal with this interesting kind
of contact problems (see [8] for an early study in the linear elasticity case).

The paper is structured as follows. In Section 2, the mechanical model and
its variational formulation are described following the notation and assumptions
introduced in [7]. Then, fully discrete approximations are provided in Section 3,
by using the finite element method to approximate the spatial variable and the
forward Euler scheme to discretize the time derivatives. In Section 4, an a priori
error analysis obtained in [6] is recalled. Finally, using some results obtained in
the study of the heat equation, an a posteriori error analysis is done in Section 5,
providing an upper bound for the error, Theorem 5.1, and a lower bound, Theorem
5.2.
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2. Mechanical problem and its variational formulation

In this section, we present a brief description of the elasto-viscoplastic model
(details can be found in [5, 9]).

Let Q ¢ R? d = 1,2,3, denote a domain occupied by an elasto-viscoplastic
body with a smooth boundary I" = 92 decomposed into two disjoint parts I'p and
I'r such that meas (I'p) > 0. Moreover, let [0,T], T > 0, be the time interval of
interest and denote by v the unit outer normal vector to I'.

Let x € Q and ¢ € [0, T] be the spatial and time variables, respectively, and, in
order to simplify the writing, we do not indicate the dependence of the functions
on x and t. Moreover, a dot above a variable represents the derivative with respect
to the time variable.

Let us denote by u = (u;)l,, o = (aij)ﬁjzl and e(u) = (eij(u))ﬁjzl the
displacement field, the stress tensor and the linearized strain tensor, respectively.

We recall that
&ij a 2 al‘j 8.731' '

The body is assumed elasto-viscoplastic and satisfying the following rate-type semi-
linear constitutive law (see [5, 9]),

(1) & = Ee(it) + (o, e(u)),
where £ and G denote the fourth-order elastic tensor and the viscoplastic function,
respectively.

We turn now to describe the boundary conditions.

On the boundary part I'p we assume that the body is clamped and thus the
displacement field vanishes there (and so u = 0 on I'p x (0,77)). Moreover, we
assume that a density of traction forces, denoted by f, acts on the boundary part
T'p;ie.

ov=Ffp on T'px(0,7T).

Denote by S? the space of second order symmetric tensors on R? and by
| - | the inner product and the Euclidean norms on R? and S%.

The mechanical problem of the quasistatic deformation of an elasto-viscoplastic
body is then written as follows.

Problem P. Find a displacement field w : Q x (0,T) — R? and a stress field
o:Qx(0,T) — S such that,

(2) 6=Ce(u)+G(o,e(u)) in Qx(0,7),
(3) —Dive =f, in Qx(0,7),

(4) u=0 on I'px(0,T),
(5)

(6)

W

and

ov=Ffr on Tpx(0T),
u(0) =ug, o(0)=09 in .

Here, ug and o represent initial conditions for the displacement field and the
stress tensor, respectively, and f, denotes the density of body forces. Moreover, we
notice that equilibrium equation (3) does not include the acceleration term because
the problem is assumed quasistatic.

In order to obtain the variational formulation of Problem P, let H = [L?(2)]¢

and we define the following variational spaces:

V={we[H Q)] w=0 on TIp},

Q = {'T = (Tij)g,jzl € [L2(Q)]d><d 5 Tij = Tjiy tig=1,... ,d}
The following assumptions are required on the problem data.
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The elastic tensor &(x) = (eijkl(w))gj7k,l:1 :1 €S — E(x) (1) € S? satisfies:

(a) €ijkl = €klij = €jikl for i,j7 k‘,l = 17 N ,d.

(b) eijr € L*(Q) for 4,5,k 1=1,...,d

(c) There exists mg > 0 such that £(x)T - 7 > mg |7]?
Vrest ac xzeq.

(7)

The viscoplastic function G :  x S x S¢ — G(x)(7) € S? satisfies:

(a) There exists Lg > 0 such that
|G (w,01,61) — G (w,02,62)| < Lg (le1 — 2| + |01 — 02)
(8) for all €1,e9,01,02 €S?,  ae. x Q.
(b) The function x — G (x,0,¢€) is measurable.
(¢) The mapping  — G (x,0,0) belongs to Q.

The following regularity is assumed on the density of volume forces and tractions:
(9) foe CH0, T H), fpeC([0,T];[L*(TF)]%.
Using Riesz’ theorem, from (9) we can define the element f(t) € V given by

(f(t)vw)V:/Qfo(t)~wdw+ [ fr(0)wir vwev.

and then f € C([0,T); V).
Finally, we assume that the initial displacement and stress fields satisfy the
following regularity and compatibility conditions,

up €V, o9€Q,
(00,€(wo))q = (£(0),uo)v.
Using the previous boundary conditions and applying Green’s formula, we obtain
the following variational formulation of Problem P.
Problem VP. Find a displacement field w : [0,T] — V and a stress field o :
[0,T] — Q such that w(0) = ug, o(0) = o and for a.e. t € (0,T),
(11) o(t) = Ee(u(t)) + G(o(t),e(u(t))),
(12) (o(t),e(w))q = (f(t), w)y VYwelV.
The existence of a unique weak solution to Problem VP has been considered in

[9]. The following theorem, which establishes the existence of a unique solution to
Problem VP, was proved there by using Banach’s fixed point theorem.

(10)

Theorem 2.1. Let assumptions (7)-(10) hold. Therefore, there exists a unique
solution to Problem VP such that u € C*([0,T];V), o € C1([0,T]; Q).

3. Fully discrete approximations

In this section, we now introduce a finite element algorithm to approximate
solutions to Problem VP.

The discretization of Problem VP is done as follows. First, we assume that €
is a polyhedral domain and we consider the finite dimensional spaces V* € V and
Q" C @, approximating variational spaces V and @, respectively, and given by

(13) V' ={w" € [C(Q))¢; thTr e[P(Tr)]? TreTh, wh=0onTp},
(14) Q" ={r"eQ; 7] €[R(Tr))™* TreT"},

where P,(Tr), ¢ = 0,1, represents the space of polynomials of global degree less
or equal to ¢ in Tr and we denote by 7" a triangulation of Q compatible with
the partition of the boundary I' = 99 into I'p and I'p; i.e. the finite element
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space V" is composed of continuous and piecewise affine functions and the finite
element space Q" is made of piecewise constant functions. Here, h > 0 is the spatial
discretization parameter. Moreover, we assume that the discrete initial conditions,
denoted by u? and o, are given by

(15) uf =yrug, of =Tgroo,

where s : [C(Q)]? — V" and s : @ — Q" are the standard finite element L*-
projection operator onto V" and the L2-projection operator onto the finite element
space Q" respectively (see, e.g., [3]).

To discretize the time derivatives, we consider a uniform partition of the time
interval [0, 7], denoted by 0 = tg < t1 < ... <ty = T and let k be the time step
size, k = T/N. For a continuous function f(t), let f,, = f(¢,) and for a sequence
{w, 3N we let dw,, = (w, — w,_1)/k be its corresponding divided differences.

In order to simplify the writing and the calculations, we assume, without loss
of generality, that G(Q", Q") C Q". It is straightforward to extend the results
presented in the next two sections to more general situations by using the operator
HQh, .

Therefore, using a hybrid combination of backward and forward Euler schemes,
we obtain the following fully discrete approximation of Problem VP.

Problem VP"*. Find a discrete displacement field u"* = {u"*}N_ c V" and
a discrete stress field o"* = {ghk}N_ - C Q" such that ul* = ul, olb* = ol and
foralln=1,...,N,

(16) Sopt = Ee(dul’) + G(ont | e(ult ),
(17) (aﬁkﬁ(wh))Q = ( n,wh)v vl e VI

Using Lax-Milgram lemma, it is easy to obtain the following theorem which states
the existence of a unique discrete solution u"* C V" and o"* C Q" to Problem
VPhk,

Theorem 3.1. Let assumptions (7)-(10) hold. Therefore, there exists a unique
solution to Problem VP,

4. An a priori error analysis

In this section, we recall an a priori error estimate for Problem V P** which was
derived in [6] for a particular case of the viscoplastic function G (see also [7] for a
recent proof in the case including contact and the general constitutive law (1)).

We have the following.

Theorem 4.1. Let assumptions (7)-(10) hold. Let us denote by (u,o) and (u"*, o)
the respective solutions to problems VP and V P" . Therefore, there exists a posi-

tive constant ¢ > 0, independent of the discretization parameters h and k, such that

for all {wh}N_ cvh,

18) Jmas (o, —wl¥ 3+ o —ol¥2 ) < o
_ b2 __hyj2

+ max, Ig, + luo — uglly + lloo Uo||Q),

_ a2
pnax lun —wny

where the integration error Ig, is given by

2
tn

Io.=||| G(o(s),e(u(s)))ds — > kG(oj-1,(u; 1))
Jj=1 Q



A RESIDUAL A POSTERIORI ERROR ESTIMATOR FOR ELASTO-VISCOPLASTICITY 607

Proof. First, we integrate the ordinary differential equation (11) between 0 and ¢,
to obtain

tn
(19) o, =Ee(uy) + oo — Ee(ug) + / G(o(s),e(u(s)))ds.
0
Then, we rewrite equation (16) in the form,
(20) ot = Ee(ul) 1 ok — Eelul) + kS G0, (k).
J=1

Plugging (19) into (12), for w = w" € V" € V, and (20) into (17) and subtracting
them, we have

(Eetun —ulh)+ [ Glo(s),eluls ds—kzg e e(ulk)

0

tog— o) — Ee(ug — ul), e(wh))Q =0 Vw'evh

Therefore,

(ee(u, / G(o ds—kzg M e(ult )

+og — 0'0 Ee(up — ug) e(u, — uﬁ’ﬂ)@

~ (ee(u / G(o ds—kzg oty e(ulty)

oo — ol — Ee(ug — ub), e(u, — wh))Q = O V' € V.

Keeping in mind that
(Ee(un —up),e(un —up®))g = mellu, —up®|?,
by using assumptions (7)-(10) and applying several times the inequality
(21) ab < ea2+4i€b2, a,be €R, e >0,
it follows that,

lwn — w3 < C(Ilun —w"|[}, + Ig, +|luo — uf|l}, + [loo — afl3

n
13 Mg = oI+ g — wl2]) Ve e VR

Jj=1

(22)

Finally, let us estimate the numerical error on the stress field. Substracting (19)
and (20) we easily find that

o = ¥l < o fun = wblv + lluo = wlv + o0 = fllo + 1o,

(23)

k> Ml = I + e = ul 13])-
Combining now (22) and (23) and using a discrete version of Gronwall’s inequality
(see [7]), we deduce (18). O

We notice that the above error estimates are the basis for the analysis of the
convergence rate of the algorithm. Hence, under additional regularity assumptions,
we obtain the linear convergence of the algorithm that we state in the following.
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Corollary 4.2. Let the assumptions of Theorem 4.1 hold. Under the additional
reqularity conditions

w e O([0, T [H*(Q)]Y), oo € [H'(Q)]™,

there exists a positive constant ¢ > 0, independent of the discretization parameters
h and k, such that

hk hk
_ _ < .
(24) Jmax {Jlun — wltly + o~ otFlo} < elh+ )
The proof of the above corollary is obtained by using the well-known result on
the approximation by finite elements (see [3]),

o h
wﬂzlg‘)jh [un — wyllv < chllulleqo, ;a2 (@)

an straightforward estimate implies that

pnax Ig, < ckl|ullcro,mvy + llollcr o))

and, finally, by using the definition of the operators Ily» and Ilgn:
|wo — U(})LHV < chlluollzz)e,  lloo — 0'3”@ < chllooll(m (q)axa.
5. An a posteriori error analysis

In this section, we will use the finite element spaces and the notations introduced
in the previous two sections. Moreover, throughout this section, we will assume that
the mesh of the domain 2 may change during the time, and so, for any 0 < h < 1
and for any n = 0,1,..., N, let 7" be a mesh of Q composed of finite elements
Tr with diameter less than h. We will also assume that, for each n = 1,... N,
the mesh {(t,_1,t,) x Tr; Tr € T"} is regular in the sense of [3] and, to simplify
the calculations, that 7"* ¢ T""=1)_ Thus, for any n = 1,..., N and for any
Tr e Thm, let hi. (respectively p7TLT) be the diameter of the smallest (resp. largest)
ball containing (resp. contained in) (¢,—1,t,)xTr. Therefore, there exists a positive
constant ( such that

h’ﬂ
% <B VIreTh n=1,...,N.

T,

In order to simplify the writing and the calculations, in this section we assume that
fr = 0 and therefore (f,w)y = (f,w)n, where f = f, € C([0,T]; H). It is
straightforward to extend the results presented below to more general situations.
Moreover, the notation a < b means that there exists a positive constant ¢ inde-
pendent of a and b (and of the discretization parameters) such that a < ¢ b. The
notation a ~ b means that a < b and b < @ hold simultaneously.

Let us define the continuous and piecewise linear approximations in time given
by

t—tn_ by —t —
ul (e, t) = — 2 Lulb (@) + Tl (@)t <t<t, =xe€Q,

koo koot
o (x,t) = %azk(w) + tnk_ ta’Z’il(w) tho1 <t<t,, xzecl.
Since 4" = dul* and 6" = do!*, we can write discrete problem VP in the
following more general problem, forn =1,..., N,
(25) o' = Ee(W"T) + Gty e(unty)),

(26) (" (), e(w"))g = (F(t), w")y Yw" eV t, 1 <t <t,.
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Theorem 5.1. Let assumptions (7)-(10) hold. Denote by (u,o) the solution to
Problem VP and by (u"™,a"7) the continuous piecewise linear approzimation of
the solution to Problem VP . Then

lu— " qo.mv) + o — 0" lleqorie) S llwe — udllv + lloo — agllo
N
+an{” + max max 7y(t)+ max  max ny(t),

—~ 1<n<N t€ltn—1,tn] 1<n<N t€ltn—1,tn]

where the error estimators ny, ny and n§ are given by

(27) = llont —ontillo + lun —up®y v,
1/2
(28) @) = > 1TrPUFOIF e |
TreThn

1/2

(29) 3 (t) = Z Z |E\H[O'hT(t)VE]”[QLz(E)]d )

TreThn EES%;L

and 5%:‘ is the set of interior points, edges or faces of the element Tr, and [TV]
denotes the jump of Tv across the point, edge or face E.

Proof. First, let us estimate the error on the stress field. We then integrate (11)
and (25) between t,_1 and t € (t,—1, ] to obtain

o(t)=ECe(ut)) +opn_1—Ee(up—_1) / G(o(s),e(u(s))) ds,

o7 (1) = Ee(u (1)) + oM | — Ee(ul® ) / Gl | e(ul ) ds,

and therefore, by induction it follows that

() = Ee(u(t)) + oo — Ee(ug) + i: /t G(o(s), e(uls))) ds

t

(30) + G(o(s),e(uls)))ds,

tn—l
n—1 t;
o"”(t) = Ee(uhT(t)) + 0'8 — Es(ug) + Z g a?kl, s(u?kl)) ds

j=17ti—1

(31) / G(ah* | e(ul* ) ds.

By subtracting now (30) and (31), we find that

lor(t) — ( )IIQ S (IIU( ) —u"()|lv + oo — aglle + luo — uglly

+Z [llo(s) = o1 llq + Ilu(s) — uj®y[v]ds

tJ1

' / lor(s) = o o + u(s) —whtyIv)ds) Vi € (taosstal
tn—1
Keeping in mind that
o)~ o 1o < [7(5) ~ " (3)lg + |o"(5) ~ ot o
luls) —upyllv < fluls) —w™(s)]lv + [u""(s) — w24 lv,
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t
[l >—ahk1||st+Z " (s) - ot ds
tn—1 tj-1
< Zk\ldhk — i q.
t
/ Huhr( ) _ uhk 1HVd3 + Z Huhr _ uhk HVdS
tn—1 tj—1

< Z kH“?k - ’u’j—lHVa
j=1

we immediately get
lo(t) =" (t)lle < (IIU( ) = utT(W)|lv +lloo — ofllq + lluo — ufllv
+/ llo(s) = a"(s)llq + lluls) — w7 (s)]v] ds

+Zk||a’““—cr o + Il =l v]) V€ (torstl

Secondly, we estimate the numerical error on the displacement field. Then, we
subtract equation (12) for w = w” € V" C V and equation (26) to obtain
(0 — " e(w")g =0 Vw' eV
Therefore,
(32) (0 —a" e(u—u"))g = (6 —0",e(u—wh))g Vw'eV"
We consider the left-hand side of the previous equation. Using again equations (30)
and (31) it leads to the following,
(0 — 0" e(u—u"))g = (Ee(u—u")),e(u—u"))q
+(og — ol — Ee(ug — ub), e(u — uh” )Q

)
+(/ [G(a(s), e(u(s)) = Glanty, e(un )] ds,e(u — u"))q

tnl

20 s),e(u(s)) — Gla®y e(uj® )] ds, e(u — u7))q,

and taking into account property (7) and the previous algebra, we have

(Ee(u - U’”)) e(u—u" e 2 me|u - w3,
(o 0*0'0 EE(UO*MG‘) e(u—u""))g]
< (loo = aglle + lluo — ugllv)llw — u"|lv,

([ Glots)euon) — glolky ety ds, el —wt)

tn—1

o

n—1

(> / " (Go(s).eluls)) - Glat®,, e, )] ds,e(u - u'))

j=17ti—1

< ([ ) = w @)l + ler(s) = 0™ (3) o) ds

hk hk h
+Zk\|a — ol + Il — ) = w7

_|_

o
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Let w € V and let IT% be the Clément’s interpolant on the triangulation 7"" (see
[4]). We recall that this operator satisfies:

lw — T3wll 2 (rrye S ITT 1w (51 areyes

lw — w2 gy S TEM 2wl 2 azm)e,

where ATr denotes the set of elements having a common vertex, edge or face with
Tr, and E being a point, an edge or a face of T'r.
We consider now the right-hand side of equation (32) which equals to

(fou—w")g — (" e(u—w"))q.

Taking w" = w"™ + I%(u — u"7) in the previous expression, applying Green’s
formula on each triangle, and using the approximation properties of Hg, we get

(fiu—w")y — e(u—w"))q
/ f+D1V ")) (u—u" - (u — u'7)) da

Z Z o vg - (u—u" - Tk (u —u7))

S D IF+Div(e" )| @yellu — u" =T (w — w7 || 127y
TreThn

+ Y > e vl eyellu — uT =TI (w — w7l z2 ()
TreThr Beghn

. - 1/2 . 1/2
S mrPIF D@ ) Eery) (X = s s
TTGT’L’IL 1/2 T’I"ET}’” 1/2
> X 1B el ey) (X = s arge)
TreThn Beghn TreThn

< 5 () + 05 () lu — w7y,

where we take into account that Div(¢"”) = 0 in Tr. Combining the previous
estimates, we conclude that

[l u(t) — uthT(t)Ilv +lot) —a" ()l < lloo — aglle + luo — ugllv

+/0 [l(s) = u""(s) v + llor(s) — " (s)ll] ds

+ D kllof® — o g + luf® — V] + 05 () + g (1),

for all ¢t € (t,,—1,t,]. Using Gronwall’s inequality we find that
lw—u""|cqorv) + lo = " lleqorse) S lluo —ulllv + oo — afllo
N

kn? ma ma. ot ma ma o (t
+z:1 e 1§n§XNte[tnftn}772( )+ maxy te[tnjtn]n?’( )

which concludes the proof. O

Finally, we prove a lower bound for these error estimators that we provide in the
following.
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Theorem 5.2. Let assumptions (7)-(10) hold. For all elements Tr € T"™, the
following local lower error bounds are obtained form=1,... N:

Mer S 1o =" o, ez @miixay + 1w — "o,y ta)im @e)a)

Hlwn — wn—1llizr (omye + lon — on-1llip2(zr)jaxa,
775%«@) S.; ||0'(t) - o'hT(t)H[LZ(TT)]dXd te (tnfhtn]a
e (t) S llo(t) — o™ () lp2armjexa t € (bno1,tal,

where we denote by nit., nh and niR the local errors given by

77%%? = |lohk — % L2 ¢rryaxa + [ ulF —wl® g e
772%(15) = |TTH|f(t)||[L2(TT)]da

e = (X 1B Owelle )

Eeghn
Obviously, we have

i~ (Y )

TreThn

1/2

= (> o)?)

TreThn 12

=Y wh?)
TreThn

Proof. First, let us bound the error estimator 7. We have
= llont —ontyflo + [lun® — it v
< ‘|UhT(tvl) - U(tn)”Q + [lon — o'n—1||Q + lo(tn-1) — UhT(tn—l)”Q
Hu" () = w(tn) v + s = wnallv + [[w(tn-1) = w" (ta1)[v
<" = alle @) + 16" = ulon, v
Hlwn = up—1llv + [[on — on-1llq

and therefore,

(n?)? < Z (||UhT - U||2C([tn,1,tn];[m(TT)]dxd) + ||Uh7 - UH%([tn,l,tn];[Hl(Tr)]d)
TreThn

—|—||un - un_1||[2H1(T,.)]d + ”0'" —Op—1 ||[2L2(TT.)]d><d)-
Proceeding in a similar way we also obtain that

nh ht ht
Mite SN0 = Gty bz coroca + 1w _2“||2cqtn_1,tn};m1(TW)
+{lwn — unflll[Hl(Tr)]d + lloy — o'nflll[LQ(Tr)]dXd'

We estimate now n3. Let wr, be the bubble function associated with the element
Tr (for instance, in the two-dimensional setting, we have wr, = Aq1Aa2Aa3, where

Aai, © = 1,2,3, denote the barycentric coordinates and a;, a2 and as are the
three nodes of the element 77). We notice that wr, € H}(Tr). Let us define
wr, = (w;)¢, € [H}(Tr)]? which is constructed as w; = wr, for i =1,...,d.

It is easy to check that the function ¥, = wr, - f verifies (see [12]),

||f||[2L2(T7-)]d S /T (0 — ") e(yrp,) de.
Using the inverse inequality, we find that

le(r)llizacrmaxa S 1TrI b, 2o,
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and therefore,

(33) £ liz2crmye S 1T7[~ o = o™ (2 (gryjaxa

Thus, it only remains to estimate n5. Proceeding in a similar way that in the
previous estimate, let us consider the bubble function wg associated with the point,
edge or face F. Hence, taking now wg = [wg|? we deduce that (see again [12]),

h

" v Ellfe (e S BT o = o™ [z armjexa ¥ gl areme,

where ¥ = wg - [0""vg| and ATr stands for the set of elements of 7" sharing

the common point, edge or face E. From the definition of v, it follows that
||¢E||[L2(AT’I‘)]d 5 |E|1/2||[UhTVE]||[L2(E)]d7 and we conclude that

o vElllir2 e SBT3 )0 — o™ || 2 (armyaxa,

which implies, for all Tr € 7",

1/2
( Z |E|||[UhTVE]||[2L2(E)]d) S o - UhT||[L2(ATr)]dXd~
Ee€ER"

Combining all these results and taking into account the definitions (27), (28) and
(29), we obtain the desired lower error bounds. O

We observe that, from Theorem 5.2, we can prove a similar convergence order
than in the a priori error analysis that we state in the following.

Corollary 5.3. Let assumptions (7)-(10) hold. If the continuous solution has the
following additional reqularity:

u e C([0,T); [H*(Q)]), o0 € [H' ()],
we have

N

k n _ h u —Uh n
> kit + lloo — agllo + lluo ollv + max max n}

r<clh+k
o ax, gmax 05 < e(h+HE),

n=1

for a positive constant c which depends on the given data and the continuous solution
(u,0).

Proof. Using estimates (24), under the required regularity we conclude that
(34) lw —u""lcqo, vy + o — o™ lleqore) < clh + k),
which implies that

max max 75+ max max 0y <c(h+k).
1<n<N t€(tp—1,tn] 1<n<N t€[tn—1,tn)

JFrom the regularity w € C1([0,T];V) and o € C1([0,T];Q) (see Theorem 2.1),
we easily find that

N
Z klllun — wn—1llv + [lon — on_1llq] < ck,
n=1

34), it follows that

N
> knp < c(h+ k).

n=1

and using again (
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Finally, we only need to estimate the numerical error on the approximation of the
initial conditions. From the definition of the finite element projection operator Iy~
(see [3]) and the projection operator Ilgr we have,

[uo — ugllv < chlluollimzye,  lloo = aglle < chlloollm @yaxa-

This concludes the proof. ([
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