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A RESIDUAL A POSTERIORI ERROR ESTIMATOR FOR
ELASTO-VISCOPLASTICITY

JOSÉ R. FERNÁNDEZ AND PATRICK HILD

Abstract. The numerical approximation of an elasto-viscoplastic problem is considered in this
paper. Fully discrete approximations are obtained by using the finite element method to approx-
imate the spatial variable and the forward Euler scheme to discretize time derivatives. We first
recall an a priori estimate result from which the linear convergence of the algorithm is derived
under suitable regularity conditions. Then, an a posteriori error analysis is provided. Upper and
lower error bounds are obtained.
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1. Introduction

Elasto-viscoplastic materials are very common in the real life because some types
of rocks and metals can be modelled using a rate-type viscoplastic law. As noticed
in [9], these materials allow both creep and relaxation phenomena.

In this work, we will consider a semilinear elasto-viscoplastic constitutive law
introduced in [5] and already studied, from both mathematical and numerical point
of views, by Ionescu and Sofonea (see the monograph [9] and the references cited
therein). In particular, fully discrete approximations were considered in [6], where
a priori estimates were obtained for an explicit Euler scheme. In this paper, this
problem is revisited and a posteriori error analysis is performed in the study of that
elasto-viscoplastic problem. This is done extending some arguments already applied
in the study of the heat equation (see, e.g., [10, 11, 13]), some parabolic equations
([1]) or the Stokes equation ([2]). Recently, contact problems involving this kind of
materials were studied (see the monograph [7] and the numerous references cited
therein), and this work can be seen as a first step to deal with this interesting kind
of contact problems (see [8] for an early study in the linear elasticity case).

The paper is structured as follows. In Section 2, the mechanical model and
its variational formulation are described following the notation and assumptions
introduced in [7]. Then, fully discrete approximations are provided in Section 3,
by using the finite element method to approximate the spatial variable and the
forward Euler scheme to discretize the time derivatives. In Section 4, an a priori
error analysis obtained in [6] is recalled. Finally, using some results obtained in
the study of the heat equation, an a posteriori error analysis is done in Section 5,
providing an upper bound for the error, Theorem 5.1, and a lower bound, Theorem
5.2.
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2. Mechanical problem and its variational formulation

In this section, we present a brief description of the elasto-viscoplastic model
(details can be found in [5, 9]).

Let Ω ⊂ Rd, d = 1, 2, 3, denote a domain occupied by an elasto-viscoplastic
body with a smooth boundary Γ = ∂Ω decomposed into two disjoint parts ΓD and
ΓF such that meas (ΓD) > 0. Moreover, let [0, T ], T > 0, be the time interval of
interest and denote by ν the unit outer normal vector to Γ.

Let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively, and, in
order to simplify the writing, we do not indicate the dependence of the functions
on x and t. Moreover, a dot above a variable represents the derivative with respect
to the time variable.

Let us denote by u = (ui)d
i=1, σ = (σij)d

i,j=1 and ε(u) = (εij(u))d
i,j=1 the

displacement field, the stress tensor and the linearized strain tensor, respectively.
We recall that

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

The body is assumed elasto-viscoplastic and satisfying the following rate-type semi-
linear constitutive law (see [5, 9]),

(1) σ̇ = Eε(u̇) + G(σ, ε(u)),

where E and G denote the fourth-order elastic tensor and the viscoplastic function,
respectively.

We turn now to describe the boundary conditions.
On the boundary part ΓD we assume that the body is clamped and thus the

displacement field vanishes there (and so u = 0 on ΓD × (0, T )). Moreover, we
assume that a density of traction forces, denoted by fF , acts on the boundary part
ΓF ; i.e.

σν = fF on ΓF × (0, T ).
Denote by Sd the space of second order symmetric tensors on Rd and by “·” and

| · | the inner product and the Euclidean norms on Rd and Sd.
The mechanical problem of the quasistatic deformation of an elasto-viscoplastic

body is then written as follows.
Problem P. Find a displacement field u : Ω × (0, T ) → Rd and a stress field

σ : Ω× (0, T ) → Sd such that,

σ̇ = Eε(u̇) + G(σ, ε(u)) in Ω× (0, T ),(2)
−Divσ = f0 in Ω× (0, T ),(3)
u = 0 on ΓD × (0, T ),(4)
σν = fF on ΓF × (0, T ),(5)
u(0) = u0, σ(0) = σ0 in Ω.(6)

Here, u0 and σ0 represent initial conditions for the displacement field and the
stress tensor, respectively, and f0 denotes the density of body forces. Moreover, we
notice that equilibrium equation (3) does not include the acceleration term because
the problem is assumed quasistatic.

In order to obtain the variational formulation of Problem P, let H = [L2(Ω)]d

and we define the following variational spaces:

V = {w ∈ [H1(Ω)]d ; w = 0 on ΓD},
Q = {τ = (τij)d

i,j=1 ∈ [L2(Ω)]d×d ; τij = τji, i, j = 1, . . . , d}.
The following assumptions are required on the problem data.
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The elastic tensor E(x) = (eijkl(x))d
i,j,k,l=1 : τ ∈ Sd → E(x)(τ ) ∈ Sd satisfies:

(7)

(a) eijkl = eklij = ejikl for i, j, k, l = 1, . . . , d.
(b) eijkl ∈ L∞(Ω) for i, j, k, l = 1, . . . , d.
(c) There exists mE > 0 such that E(x)τ · τ ≥ mE |τ |2

∀ τ ∈ Sd, a.e. x ∈ Ω.

The viscoplastic function G : Ω× Sd × Sd → G(x)(τ ) ∈ Sd satisfies:

(8)

(a) There exists LG > 0 such that
|G (x, σ1, ε1)− G (x, σ2, ε2)| ≤ LG (|ε1 − ε2|+ |σ1 − σ2|)
for all ε1, ε2, σ1, σ2 ∈ Sd, a.e. x ∈ Ω.

(b) The function x → G (x,σ, ε) is measurable.
(c) The mapping x → G (x,0,0) belongs to Q.

The following regularity is assumed on the density of volume forces and tractions:

(9) f0 ∈ C1([0, T ]; H), fF ∈ C1([0, T ]; [L2(ΓF )]d).

Using Riesz’ theorem, from (9) we can define the element f(t) ∈ V given by

(f(t), w)V =
∫

Ω

f0(t) ·w dx +
∫

ΓF

fF (t) ·w dΓ ∀w ∈ V,

and then f ∈ C1([0, T ];V ).
Finally, we assume that the initial displacement and stress fields satisfy the

following regularity and compatibility conditions,

(10) u0 ∈ V, σ0 ∈ Q,
(σ0, ε(u0))Q = (f(0), u0)V .

Using the previous boundary conditions and applying Green’s formula, we obtain
the following variational formulation of Problem P.

Problem VP. Find a displacement field u : [0, T ] → V and a stress field σ :
[0, T ] → Q such that u(0) = u0, σ(0) = σ0 and for a.e. t ∈ (0, T ),

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))),(11)
(σ(t), ε(w))Q = (f(t),w)V ∀w ∈ V.(12)

The existence of a unique weak solution to Problem VP has been considered in
[9]. The following theorem, which establishes the existence of a unique solution to
Problem VP, was proved there by using Banach’s fixed point theorem.

Theorem 2.1. Let assumptions (7)-(10) hold. Therefore, there exists a unique
solution to Problem VP such that u ∈ C1([0, T ];V ), σ ∈ C1([0, T ];Q).

3. Fully discrete approximations

In this section, we now introduce a finite element algorithm to approximate
solutions to Problem VP.

The discretization of Problem VP is done as follows. First, we assume that Ω
is a polyhedral domain and we consider the finite dimensional spaces V h ⊂ V and
Qh ⊂ Q, approximating variational spaces V and Q, respectively, and given by

V h = {wh ∈ [C(Ω)]d ; wh
|T r

∈ [P1(Tr)]d Tr ∈ T h, wh = 0 on ΓD},(13)

Qh = {τh ∈ Q ; τh
|T r

∈ [P0(Tr)]d×d Tr ∈ T h},(14)

where Pq(Tr), q = 0, 1, represents the space of polynomials of global degree less
or equal to q in Tr and we denote by T h a triangulation of Ω compatible with
the partition of the boundary Γ = ∂Ω into ΓD and ΓF ; i.e. the finite element
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space V h is composed of continuous and piecewise affine functions and the finite
element space Qh is made of piecewise constant functions. Here, h > 0 is the spatial
discretization parameter. Moreover, we assume that the discrete initial conditions,
denoted by uh

0 and σh
0 , are given by

(15) uh
0 = ΠV hu0, σh

0 = ΠQhσ0,

where ΠV h : [C(Ω)]d → V h and ΠQh : Q → Qh are the standard finite element L2-
projection operator onto V h and the L2-projection operator onto the finite element
space Qh, respectively (see, e.g., [3]).

To discretize the time derivatives, we consider a uniform partition of the time
interval [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T and let k be the time step
size, k = T/N . For a continuous function f(t), let fn = f(tn) and for a sequence
{wn}N

n=0 we let δwn = (wn − wn−1)/k be its corresponding divided differences.
In order to simplify the writing and the calculations, we assume, without loss

of generality, that G(Qh, Qh) ⊂ Qh. It is straightforward to extend the results
presented in the next two sections to more general situations by using the operator
ΠQh .

Therefore, using a hybrid combination of backward and forward Euler schemes,
we obtain the following fully discrete approximation of Problem VP.

Problem VPhk. Find a discrete displacement field uhk = {uhk
n }N

n=0 ⊂ V h and
a discrete stress field σhk = {σhk

n }N
n=0 ⊂ Qh such that uhk

0 = uh
0 , σhk

0 = σh
0 and

for all n = 1, . . . , N ,

δσhk
n = Eε(δuhk

n ) + G(σhk
n−1, ε(uhk

n−1)),(16)

(σhk
n , ε(wh))Q = (fn, wh)V ∀wh ∈ V h.(17)

Using Lax-Milgram lemma, it is easy to obtain the following theorem which states
the existence of a unique discrete solution uhk ⊂ V h and σhk ⊂ Qh to Problem
VPhk.

Theorem 3.1. Let assumptions (7)-(10) hold. Therefore, there exists a unique
solution to Problem VPhk.

4. An a priori error analysis

In this section, we recall an a priori error estimate for Problem V Phk, which was
derived in [6] for a particular case of the viscoplastic function G (see also [7] for a
recent proof in the case including contact and the general constitutive law (1)).

We have the following.

Theorem 4.1. Let assumptions (7)-(10) hold. Let us denote by (u, σ) and (uhk, σhk)
the respective solutions to problems V P and V Phk. Therefore, there exists a posi-
tive constant c > 0, independent of the discretization parameters h and k, such that
for all {wh

n}N
n=0 ⊂ V h,

(18)
max

0≤n≤N

{‖un − uhk
n ‖2V + ‖σn − σhk

n ‖2Q
} ≤ c

(
max

0≤n≤N
‖un −wh

n‖2V
+ max

0≤n≤N
IGn + ‖u0 − uh

0‖2V + ‖σ0 − σh
0‖2Q

)
,

where the integration error IGn is given by

IGn =

∥∥∥∥∥∥

∫ tn

0

G(σ(s), ε(u(s))) ds−
n∑

j=1

kG(σj−1, ε(uj−1))

∥∥∥∥∥∥

2

Q

.
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Proof. First, we integrate the ordinary differential equation (11) between 0 and tn
to obtain

(19) σn = Eε(un) + σ0 − Eε(u0) +
∫ tn

0

G(σ(s), ε(u(s))) ds.

Then, we rewrite equation (16) in the form,

(20) σhk
n = Eε(uhk

n ) + σh
0 − Eε(uh

0 ) + k

n∑

j=1

G(σhk
j−1, ε(uhk

j−1)).

Plugging (19) into (12), for w = wh ∈ V h ⊂ V , and (20) into (17) and subtracting
them, we have

(
Eε(un − uhk

n ) +
∫ tn

0

G(σ(s), ε(u(s))) ds− k

n∑

j=1

G(σhk
j−1, ε(uhk

j−1))

+σ0 − σh
0 − Eε(u0 − uh

0 ), ε(wh)
)

Q
= 0 ∀wh ∈ V h.

Therefore,
(
Eε(un − uhk

n ) +
∫ tn

0

G(σ(s), ε(u(s))) ds− k

n∑

j=1

G(σhk
j−1, ε(uhk

j−1))

+σ0 − σh
0 − Eε(u0 − uh

0 ), ε(un − uhk
n )

)
Q

=
(
Eε(un − uhk

n ) +
∫ tn

0

G(σ(s), ε(u(s))) ds− k

n∑

j=1

G(σhk
j−1, ε(uhk

j−1))

+σ0 − σh
0 − Eε(u0 − uh

0 ), ε(un −wh)
)

Q
= 0 ∀wh ∈ V h.

Keeping in mind that

(Eε(un − uhk
n ), ε(un − uhk

n ))Q ≥ mE‖un − uhk
n ‖2V ,

by using assumptions (7)-(10) and applying several times the inequality

(21) ab ≤ εa2 +
1
4ε

b2, a, b, ε ∈ R, ε > 0,

it follows that,

(22)

‖un − uhk
n ‖2V ≤ c

(
‖un −wh‖2V + IGn + ‖u0 − uh

0‖2V + ‖σ0 − σh
0‖2Q

+k

n∑

j=1

[‖σj−1 − σhk
j−1‖2Q + ‖uj−1 − uhk

j−1‖2V ]
)

∀w ∈ V h.

Finally, let us estimate the numerical error on the stress field. Substracting (19)
and (20) we easily find that

(23)

‖σn − σhk
n ‖Q ≤ c

(
‖un − uhk

n ‖V + ‖u0 − uh
0‖V + ‖σ0 − σh

0‖Q + IGn

+k

n∑

j=1

[‖σj−1 − σhk
j−1‖2Q + ‖uj−1 − uhk

j−1‖2V ]
)
.

Combining now (22) and (23) and using a discrete version of Gronwall’s inequality
(see [7]), we deduce (18). ¤

We notice that the above error estimates are the basis for the analysis of the
convergence rate of the algorithm. Hence, under additional regularity assumptions,
we obtain the linear convergence of the algorithm that we state in the following.
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Corollary 4.2. Let the assumptions of Theorem 4.1 hold. Under the additional
regularity conditions

u ∈ C([0, T ]; [H2(Ω)]d), σ0 ∈ [H1(Ω)]d×d,

there exists a positive constant c > 0, independent of the discretization parameters
h and k, such that

(24) max
0≤n≤N

{‖un − uhk
n ‖V + ‖σn − σhk

n ‖Q

} ≤ c(h + k).

The proof of the above corollary is obtained by using the well-known result on
the approximation by finite elements (see [3]),

max
wh

n∈V h
‖un −wh

n‖V ≤ ch‖u‖C([0,T ];[H2(Ω)]d),

an straightforward estimate implies that

max
0≤n≤N

IGn ≤ ck[‖u‖C1([0,T ];V ) + ‖σ‖C1([0,T ];Q)],

and, finally, by using the definition of the operators ΠV h and ΠQh :

‖u0 − uh
0‖V ≤ ch‖u0‖[H2(Ω)]d , ‖σ0 − σh

0‖Q ≤ ch‖σ0‖[H1(Ω)]d×d .

5. An a posteriori error analysis

In this section, we will use the finite element spaces and the notations introduced
in the previous two sections. Moreover, throughout this section, we will assume that
the mesh of the domain Ω may change during the time, and so, for any 0 < h < 1
and for any n = 0, 1, . . . , N , let T hn be a mesh of Ω composed of finite elements
Tr with diameter less than h. We will also assume that, for each n = 1, . . . , N ,
the mesh {(tn−1, tn)×Tr ; Tr ∈ T hn} is regular in the sense of [3] and, to simplify
the calculations, that T hn ⊂ Th(n−1). Thus, for any n = 1, . . . , N and for any
Tr ∈ T hn, let hn

Tr
(respectively ρn

Tr
) be the diameter of the smallest (resp. largest)

ball containing (resp. contained in) (tn−1, tn)×Tr. Therefore, there exists a positive
constant β such that

hn
Tr

ρn
Tr

≤ β ∀Tr ∈ T hn, n = 1, . . . , N.

In order to simplify the writing and the calculations, in this section we assume that
fF = 0 and therefore (f , w)V = (f , w)H , where f = f0 ∈ C([0, T ];H). It is
straightforward to extend the results presented below to more general situations.
Moreover, the notation a . b means that there exists a positive constant c inde-
pendent of a and b (and of the discretization parameters) such that a ≤ c b. The
notation a ∼ b means that a . b and b . a hold simultaneously.

Let us define the continuous and piecewise linear approximations in time given
by

uhτ (x, t) =
t− tn−1

k
uhk

n (x) +
tn − t

k
uhk

n−1(x) tn−1 ≤ t ≤ tn, x ∈ Ω,

σhτ (x, t) =
t− tn−1

k
σhk

n (x) +
tn − t

k
σhk

n−1(x) tn−1 ≤ t ≤ tn, x ∈ Ω.

Since u̇hτ = δuhk
n and σ̇hτ = δσhk

n , we can write discrete problem V Phk in the
following more general problem, for n = 1, . . . , N ,

σ̇hτ = Eε(u̇hτ ) + G(σhk
n−1, ε(uhk

n−1)),(25)

(σhτ (t), ε(wh))Q = (f(t), wh)H ∀wh ∈ V h, tn−1 ≤ t ≤ tn.(26)
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Theorem 5.1. Let assumptions (7)-(10) hold. Denote by (u, σ) the solution to
Problem VP and by (uhτ ,σhτ ) the continuous piecewise linear approximation of
the solution to Problem VPhk. Then
‖u− uhτ‖C([0,T ];V ) + ‖σ − σhτ‖C([0,T ];Q) . ‖u0 − uh

0‖V + ‖σ0 − σh
0‖Q

+
N∑

n=1

kηn
1 + max

1≤n≤N
max

t∈[tn−1,tn]
ηn
2 (t) + max

1≤n≤N
max

t∈[tn−1,tn]
ηn
3 (t),

where the error estimators ηn
1 , ηn

2 and ηn
3 are given by

ηn
1 = ‖σhk

n − σhk
n−1‖Q + ‖uhk

n − uhk
n−1‖V ,(27)

ηn
2 (t) =


 ∑

Tr∈T hn

|Tr|2‖f(t)‖2[L2(Tr)]d




1/2

,(28)

ηn
3 (t) =


 ∑

Tr∈T hn

∑

E∈Ehn
T r

|E|‖[σhτ (t)νE ]‖2[L2(E)]d




1/2

,(29)

and Ehn
Tr

is the set of interior points, edges or faces of the element Tr, and [τν]
denotes the jump of τν across the point, edge or face E.

Proof. First, let us estimate the error on the stress field. We then integrate (11)
and (25) between tn−1 and t ∈ (tn−1, tn] to obtain

σ(t) = Eε(u(t)) + σn−1 − Eε(un−1) +
∫ t

tn−1

G(σ(s), ε(u(s))) ds,

σhτ (t) = Eε(uhτ (t)) + σhk
n−1 − Eε(uhk

n−1) +
∫ t

tn−1

G(σhk
n−1, ε(uhk

n−1)) ds,

and therefore, by induction it follows that

σ(t) = Eε(u(t)) + σ0 − Eε(u0) +
n−1∑

j=1

∫ tj

tj−1

G(σ(s), ε(u(s))) ds

+
∫ t

tn−1

G(σ(s), ε(u(s))) ds,(30)

σhτ (t) = Eε(uhτ (t)) + σh
0 − Eε(uh

0 ) +
n−1∑

j=1

∫ tj

tj−1

G(σhk
j−1, ε(uhk

j−1)) ds

+
∫ t

tn−1

G(σhk
n−1, ε(uhk

n−1)) ds.(31)

By subtracting now (30) and (31), we find that

‖σ(t)− σhτ (t)‖Q .
(
‖u(t)− uhτ (t)‖V + ‖σ0 − σh

0‖Q + ‖u0 − uh
0‖V

+
n−1∑

j=1

∫ tj

tj−1

[‖σ(s)− σhk
j−1‖Q + ‖u(s)− uhk

j−1‖V ] ds

+
∫ t

tn−1

[‖σ(s)− σhk
n−1‖Q + ‖u(s)− uhk

n−1‖V ] ds
)

∀t ∈ (tn−1, tn].

Keeping in mind that

‖σ(s)− σhk
n−1‖Q ≤ ‖σ(s)− σhτ (s)‖Q + ‖σhτ (s)− σhk

n−1‖Q,

‖u(s)− uhk
n−1‖V ≤ ‖u(s)− uhτ (s)‖V + ‖uhτ (s)− uhk

n−1‖V ,
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∫ t

tn−1

‖σhτ (s)− σhk
n−1‖Q ds +

n−1∑

j=1

∫ tj

tj−1

‖σhτ (s)− σhk
j−1‖Q ds

≤
n∑

j=1

k‖σhk
j − σhk

j−1‖Q,

∫ t

tn−1

‖uhτ (s)− uhk
n−1‖V ds +

n−1∑

j=1

∫ tj

tj−1

‖uhτ (s)− uhk
j−1‖V ds

≤
n∑

j=1

k‖uhk
j − uhk

j−1‖V ,

we immediately get

‖σ(t)− σhτ (t)‖Q .
(
‖u(t)− uhτ (t)‖V + ‖σ0 − σh

0‖Q + ‖u0 − uh
0‖V

+
∫ t

0

[‖σ(s)− σhτ (s)‖Q + ‖u(s)− uhτ (s)‖V ] ds

+
n∑

j=1

k[‖σhk
j − σhk

j−1‖Q + ‖uhk
j − uhk

j−1‖V ]
)

∀t ∈ (tn−1, tn].

Secondly, we estimate the numerical error on the displacement field. Then, we
subtract equation (12) for w = wh ∈ V h ⊂ V and equation (26) to obtain

(σ − σhτ , ε(wh))Q = 0 ∀wh ∈ V h.

Therefore,

(32) (σ − σhτ , ε(u− uhτ ))Q = (σ − σhτ , ε(u−wh))Q ∀wh ∈ V h.

We consider the left-hand side of the previous equation. Using again equations (30)
and (31) it leads to the following,

(σ − σhτ , ε(u− uhτ ))Q = (Eε(u− uhτ )), ε(u− uhτ ))Q

+(σ0 − σh
0 − Eε(u0 − uh

0 ), ε(u− uhτ ))Q

+(
∫ t

tn−1

[G(σ(s), ε(u(s)))− G(σhk
n−1, ε(uhk

n−1))] ds, ε(u− uhτ ))Q

+
n−1∑

j=1

(
∫ tj

tj−1

[G(σ(s), ε(u(s)))− G(σhk
j−1, ε(uhk

j−1))] ds, ε(u− uhτ ))Q,

and taking into account property (7) and the previous algebra, we have

(Eε(u− uhτ )), ε(u− uhτ ))Q ≥ mE‖u− uhτ‖2V ,
|(σ0 − σh

0 − Eε(u0 − uh
0 ), ε(u− uhτ ))Q|

. (‖σ0 − σh
0‖Q + ‖u0 − uh

0‖V )‖u− uhτ‖V ,

∣∣∣
( ∫ t

tn−1

[G(σ(s), ε(u(s)))− G(σhk
n−1, ε(uhk

n−1))] ds, ε(u− uhτ )
)

Q

∣∣∣

+
∣∣∣
( n−1∑

j=1

∫ tj

tj−1

[G(σ(s), ε(u(s)))− G(σhk
j−1, ε(uhk

j−1))] ds, ε(u− uhτ )
)

Q

∣∣∣

.
( ∫ t

0

[‖u(s)− uhτ (s)‖V + ‖σ(s)− σhτ (s)‖Q] ds

+
n∑

j=1

k[‖σhk
j − σhk

j−1‖Q + ‖uhk
j − uhk

j−1‖V ]
)
‖u− uhτ‖V .
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Let w ∈ V and let Πh
C be the Clément’s interpolant on the triangulation T hn (see

[4]). We recall that this operator satisfies:

‖w −Πh
Cw‖[L2(Tr)]d . |Tr|‖w‖[H1(∆Tr)]d ,

‖w −Πh
Cw‖[L2(E)]d . |E|1/2‖w‖[H1(∆Tr)]d ,

where ∆Tr denotes the set of elements having a common vertex, edge or face with
Tr, and E being a point, an edge or a face of Tr.

We consider now the right-hand side of equation (32) which equals to

(f , u−wh)H − (σhτ , ε(u−wh))Q.

Taking wh = uhτ + Πh
C(u − uhτ ) in the previous expression, applying Green’s

formula on each triangle, and using the approximation properties of Πh
C , we get

(f ,u−wh)H − (σhτ , ε(u−wh))Q

=
∑

Tr∈T hn

∫

Tr

(f + Div (σhτ )) · (u− uhτ −Πh
C(u− uhτ )) dx

−
∑

Tr∈T hn

∑

E∈Ehn
T r

σhτνE · (u− uhτ −Πh
C(u− uhτ ))

.
∑

Tr∈T hn

‖f + Div (σhτ )‖[L2(Tr)]d‖u− uhτ −Πh
C(u− uhτ )‖[L2(Tr)]d

+
∑

Tr∈T hn

∑

E∈Ehn
T r

‖[σhτνE ]‖[L2(E)]d‖u− uhτ −Πh
C(u− uhτ )‖[L2(E)]d

.
( ∑

Tr∈T hn

|Tr|2‖f + Div (σhτ )‖2[L2(Tr)]d

)1/2( ∑

Tr∈T hn

‖u− uhτ‖2[H1(∆Tr)]d

)1/2

+
( ∑

Tr∈T hn

∑

E∈Ehn
T r

|E|‖[σhτνE ]‖2[L2(E)]d

)1/2( ∑

Tr∈T hn

‖u− uhτ‖2[H1(∆Tr)]d

)1/2

. (ηn
2 (t) + ηn

3 (t))‖u− uhτ‖V ,

where we take into account that Div (σhτ ) = 0 in Tr. Combining the previous
estimates, we conclude that

‖u(t)− uhτ (t)‖V + ‖σ(t)− σhτ (t)‖Q . ‖σ0 − σh
0‖Q + ‖u0 − uh

0‖V

+
∫ t

0

[‖u(s)− uhτ (s)‖V + ‖σ(s)− σhτ (s)‖Q] ds

+
n∑

j=1

k[‖σhk
j − σhk

j−1‖Q + ‖uhk
j − uhk

j−1‖V ] + ηn
2 (t) + ηn

3 (t),

for all t ∈ (tn−1, tn]. Using Gronwall’s inequality we find that

‖u− uhτ‖C([0,T ];V ) + ‖σ − σhτ‖C([0,T ];Q) . ‖u0 − uh
0‖V + ‖σ0 − σh

0‖Q

+
N∑

n=1

kηn
1 + max

1≤n≤N
max

t∈[tn−1,tn]
ηn
2 (t) + max

1≤n≤N
max

t∈[tn−1,tn]
ηn
3 (t),

which concludes the proof. ¤

Finally, we prove a lower bound for these error estimators that we provide in the
following.
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Theorem 5.2. Let assumptions (7)-(10) hold. For all elements Tr ∈ T hn, the
following local lower error bounds are obtained for n = 1, . . . , N :

ηhn
1Tr . ‖σ − σhτ‖C([tn−1,tn];[L2(Tr)]d×d) + ‖u− uhτ‖C([tn−1,tn];[H1(Tr)]d)

+‖un − un−1‖[H1(Tr)]d + ‖σn − σn−1‖[L2(Tr)]d×d ,
ηhn
2Tr(t) . ‖σ(t)− σhτ (t)‖[L2(Tr)]d×d t ∈ (tn−1, tn],

ηhn
3Tr(t) . ‖σ(t)− σhτ (t)‖[L2(∆Tr)]d×d t ∈ (tn−1, tn],

where we denote by ηhn
1Tr, ηhn

2Tr and ηhn
3Tr the local errors given by

ηhn
1Tr = ‖σhk

n − σhk
n−1‖[L2(Tr)]d×d + ‖uhk

n − uhk
n−1‖[H1(Tr)]d ,

ηhn
2Tr(t) = |Tr|‖f(t)‖[L2(Tr)]d ,

ηhn
3Tr(t) =

( ∑

E∈Ehn
T r

|E|‖[σhτ (t)νE ]‖2[L2(E)]d

)1/2

.

Obviously, we have

ηn
1 ∼

( ∑

Tr∈T hn

(ηhn
1Tr)

2
)1/2

,

ηn
2 =

( ∑

Tr∈T hn

(ηhn
2Tr)

2
)1/2

,

ηn
3 =

( ∑

Tr∈T hn

(ηhn
3Tr)

2
)1/2

.

Proof. First, let us bound the error estimator ηn
1 . We have

ηn
1 = ‖σhk

n − σhk
n−1‖Q + ‖uhk

n − uhk
n−1‖V

≤ ‖σhτ (tn)− σ(tn)‖Q + ‖σn − σn−1‖Q + ‖σ(tn−1)− σhτ (tn−1)‖Q

+‖uhτ (tn)− u(tn)‖V + ‖un − un−1‖V + ‖u(tn−1)− uhτ (tn−1)‖V

≤ ‖σhτ − σ‖C([tn−1,tn];Q) + ‖uhτ − u‖C([tn−1,tn];V )

+‖un − un−1‖V + ‖σn − σn−1‖Q,

and therefore,

(ηn
1 )2 .

∑

Tr∈T hn

(
‖σhτ − σ‖2C([tn−1,tn];[L2(Tr)]d×d) + ‖uhτ − u‖2C([tn−1,tn];[H1(Tr)]d)

+‖un − un−1‖2[H1(Tr)]d + ‖σn − σn−1‖2[L2(Tr)]d×d

)
.

Proceeding in a similar way we also obtain that

ηnh
1Tr . ‖σhτ − σ‖2C([tn−1,tn];[L2(Tr)]d×d) + ‖uhτ − u‖2C([tn−1,tn];[H1(Tr)]d)

+‖un − un−1‖2[H1(Tr)]d + ‖σn − σn−1‖2[L2(Tr)]d×d .

We estimate now ηn
2 . Let wTr be the bubble function associated with the element

Tr (for instance, in the two-dimensional setting, we have wTr = λa1λa2λa3, where
λai, i = 1, 2, 3, denote the barycentric coordinates and a1, a2 and a3 are the
three nodes of the element Tr). We notice that wTr ∈ H1

0 (Tr). Let us define
wTr = (wi)d

i=1 ∈ [H1
0 (Tr)]d which is constructed as wi = wTr for i = 1, . . . , d.

It is easy to check that the function ψTr = wTr · f verifies (see [12]),

‖f‖2[L2(Tr)]d .
∫

Tr

(σ − σhτ ) · ε(ψTr) dx.

Using the inverse inequality, we find that

‖ε(ψTr)‖[L2(Tr)]d×d . |Tr|−1‖ψTr‖[L2(Tr)]d ,
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and therefore,

(33) ‖f‖[L2(Tr)]d . |Tr|−1‖σ − σhτ‖[L2(Tr)]d×d .

Thus, it only remains to estimate ηn
3 . Proceeding in a similar way that in the

previous estimate, let us consider the bubble function wE associated with the point,
edge or face E. Hence, taking now wE = [wE ]d we deduce that (see again [12]),

‖[σhτνE ]‖2[L2(E)]d . |E|−1‖σ − σhτ‖[L2(∆Tr)]d×d‖ψE‖[L2(∆Tr)]d ,

where ψE = wE · [σhτνE ] and ∆Tr stands for the set of elements of T hn sharing
the common point, edge or face E. From the definition of ψE , it follows that
‖ψE‖[L2(∆Tr)]d . |E|1/2‖[σhτνE ]‖[L2(E)]d , and we conclude that

‖[σhτνE ]‖[L2(E)]d . |E|−1/2‖σ − σhτ‖[L2(∆Tr)]d×d ,

which implies, for all Tr ∈ T hn,
( ∑

E∈Ehn
Tr

|E|‖[σhτνE ]‖2[L2(E)]d

)1/2

. ‖σ − σhτ‖[L2(∆Tr)]d×d .

Combining all these results and taking into account the definitions (27), (28) and
(29), we obtain the desired lower error bounds. ¤

We observe that, from Theorem 5.2, we can prove a similar convergence order
than in the a priori error analysis that we state in the following.

Corollary 5.3. Let assumptions (7)-(10) hold. If the continuous solution has the
following additional regularity:

u ∈ C([0, T ]; [H2(Ω)]d), σ0 ∈ [H1(Ω)]d×d,

we have
N∑

n=1

kηn
1 + ‖σ0 − σh

0‖Q + ‖u0 − uh
0‖V + max

1≤n≤N
max

t∈[tn−1,tn]
ηn
2

+ max
1≤n≤N

max
t∈[tn−1,tn]

ηn
3 ≤ c(h + k),

for a positive constant c which depends on the given data and the continuous solution
(u, σ).

Proof. Using estimates (24), under the required regularity we conclude that

(34) ‖u− uhτ‖C([0,T ];V ) + ‖σ − σhτ‖C([0,T ];Q) ≤ c(h + k),

which implies that

max
1≤n≤N

max
t∈[tn−1,tn]

ηn
2 + max

1≤n≤N
max

t∈[tn−1,tn]
ηn
3 ≤ c(h + k).

¿From the regularity u ∈ C1([0, T ];V ) and σ ∈ C1([0, T ];Q) (see Theorem 2.1),
we easily find that

N∑
n=1

k [‖un − un−1‖V + ‖σn − σn−1‖Q] ≤ ck,

and using again (34), it follows that
N∑

n=1

kηn
1 ≤ c(h + k).
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Finally, we only need to estimate the numerical error on the approximation of the
initial conditions. From the definition of the finite element projection operator ΠV h

(see [3]) and the projection operator ΠQh we have,

‖u0 − uh
0‖V ≤ ch‖u0‖[H2(Ω)]d , ‖σ0 − σh

0‖Q ≤ ch‖σ0‖[H1(Ω)]d×d .

This concludes the proof. ¤
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