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DYNAMICS AND VARIATIONAL INTEGRATORS
OF STOCHASTIC HAMILTONIAN SYSTEMS

LIJIN WANG1, JIALIN HONG2, RUDOLF SCHERER3 AND FENGSHAN BAI4

Abstract. Stochastic action integral and Lagrange formalism of stochastic

Hamiltonian systems are written through construing the stochastic Hamilton-

ian systems as nonconservative systems with white noise as the nonconserv-

ative ’force’. Stochastic Hamilton’s principle and its discrete version are de-

rived. Based on these, a systematic approach of producing symplectic numeri-

cal methods for stochastic Hamiltonian systems, i.e., the stochastic variational

integrators are established. Numerical tests show validity of this approach.

Key Words. Hamilton’s principle, stochastic Hamiltonian systems, symplec-
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1. Introduction

The Hamiltonian formalism of a deterministic mechanical system is

dp = −∂H

∂q
dt, p(0) = p0,(1)

dq =
∂H

∂p
dt, q(0) = q0,(2)

where H(p, q) is Hamiltonian function. A stochastic Hamiltonian system is a Hamil-
tonian system under certain random disturbances, represented as (Milstein et al.,
[18])

dp = −∂H

∂q
dt−

m∑

k=1

∂Hk

∂q
◦ dWk(t), p(0) = p0,(3)

dq =
∂H

∂p
dt +

m∑

k=1

∂Hk

∂p
◦ dWk(t), q(0) = q0,(4)

where Wk(t) (k = 1, · · · ,m) are m independent standard Wiener processes, called
noises. The small circle ’◦’ before dWk(t) denotes stochastic differential equations
of Stratonovich sense.
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Both the deterministic and stochastic Hamiltonian systems have an intrinsic
property-the symplecticity, i.e., the preservation of the symplectic structure (Hairer
et al., [7], Milstein et al., [18], [19], Poincaré, [21])

(5) dp(t) ∧ dq(t) = dp0 ∧ dq0, ∀t ≥ 0.

Geometrically, it means the preservation of area along phase flow of the system
(Hairer, [7]).

In numerical simulation, property (5) of the theoretical solution (p(t), q(t)) is
expected to be preserved by the numerical solution (pn, qn), that is

(6) dpn+1 ∧ dqn+1 = dpn ∧ dqn, ∀n ≥ 1.

Such numerical methods are called symplectic methods. Since the qualitative be-
havior (5) is preserved, symplectic methods show significant superiority than non-
symplectic methods, especially in long-time simulation. Pioneering work on de-
terministic symplectic methods goes back to de Vogelaere ([28] 1956), Ruth ([23]
1983) and Feng Kang et al. ([4] 1985, [5] 1986, [6] 1989). Since then, there has
been an accelerating interest and effort on the study of such methods, which is now
an important subject of computational mathematics and scientific computing. On
the contrary, although there has been much effort on numerical methods for SDEs,
e.g. [1], [2], [10], [11], [12], [13] etc., systematic research on stochastic symplectic
methods, marked by the work of Milstein et al. ([18], [19], 2002), is still rare. In
these works, they gave some symplectic Runge-Kutta type methods. Systematic
construction of stochastic symplectic methods is still an open problem.

Variational integrators ([7], [14], [17], [25], [29]) have been an important approach
of creating symplectic methods. They are tightly connected with the Hamilton’s
principle and its discrete version ([15], [16], [27]). For stochastic Hamiltonian sys-
tems, however, the main difficulty in constructing the variational integrators is the
formulation of the stochastic Hamilton’s principle.

In this article, we start from the point of view of construing the stochastic
Hamiltonian systems as nonconservative systems, for which the white noise is a
nonconservative ’force’. We then propose the formulation of the stochastic action
integral, Euler-Lagrange equations of motion, as well as the stochastic Hamilton’s
principle. Based on these, the theory of stochastic variational integrators is con-
structed.

The second section derives the stochastic Hamilton’s principle. Stochastic varia-
tional integrators are constructed in section 3. Section 4 are examples and numerical
experiments.

2. Stochastic Hamilton’s Principle

The Hamiltonian system (1)-(2) is a conservative mechanical system. Its La-
grangian formalism is ([7])

(7)
∂L

∂q
=

d

dt

∂L

∂q̇
,

where p = ∂L
∂q̇ , called the Legendre transform, and L(q(t), q̇(t)) is the Lagrangian

function.
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Theorem 2.1 (Deterministic Hamilton’s Principle) ([7]). The q(t) satis-
fying the Lagrange equation of motion (7) minimizes the action integral

(8) S(q) =
∫ t1

t0

L(q(t), q̇(t))dt

among all curves q(t) that connect q(t0) = q0 and q(t1) = q1 with δq(t0) = δq(t1) =
0.

Proof of the theorem can be found in [7].

Now the question is, is there a stochastic version of the Hamilton’s principe,
and what is the formulation of the stochastic action integral and the stochastic
Lagrange equation of motion? For answer of these questions, we consider noncon-
servative mechanical systems.

Suppose the nonconservative force is F. Under the influence of F, the action
integral is generalized to the form ([20], [22])

(9) S̃ =
∫ t1

t0

(L−A)dt,

where A is the work done by the nonconservative force F, and

(10) A = −F · r
with r = r(q, t) being the position vector. Let δ be a variation. Since a nonconser-
vative force is independent of position q, it holds ([20], [22])

(11) δA = −F · δr = −F · ∂r
∂q

δq.

Thus, the variation of S̃ is

δS̃ =
∫ t1

t0

(
∂L

∂q
δq +

∂L

∂q̇
δq̇ − δA)dt

= [
∂L

∂q̇
δq]t1t0 +

∫ t1

t0

[− d

dt
(
∂L

∂q̇
) +

∂L

∂q
+ FT ∂r

∂q
]δqdt.(12)

From δq(t0) = δq(t1) = 0, it follows that

δS̃ = 0

⇔ d

dt
(
∂L

∂q̇
) =

∂L

∂q
+ FT ∂r

∂q
.(13)

The equation (13) is the Lagrange equation of motion of a nonconservative system.

In (13), the Lagrangian function L is considered as a function with independent
variables q, q̇ and t. It is pointed out in [26] that the Lagrange equation of motion
can also be represented with generalized independent variables p, q, ṗ, q̇ and t, where
the position vector r = r(p, q, t). This is called the redundancy of the Lagrange
equation of motion. In this case, the Lagrange equations of motion are

d

dt
(
∂L

∂q̇
) =

∂L

∂q
+ FT ∂r

∂q
,(14)

d

dt
(
∂L

∂ṗ
) =

∂L

∂p
+ FT ∂r

∂p
,(15)
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which can contain linearly dependent equations due to the redundancy of the vari-
able set {p, q, ṗ, q̇, t}.

Based on (14)-(15) and a variational principle, it is derived in [26] that the
generalized Hamiltonian equations of motion of a nonconservative system under
the nonconservative force F are

ṗ = −∂H

∂q

T

+
∂r
∂q

T

F,(16)

q̇ =
∂H

∂p

T

− ∂r
∂p

T

F.(17)

Formally, dW (t) in a stochastic differential equation can be regarded as equal to
Ẇ (t)dt, although W (t) is nowhere differentiable, and Ẇ (t) = ξ(t) is the white noise
([3],[10]). Under this consideration, a stochastic Hamiltonian system with one noise
(m = 1 in (3)-(4)) can also be written as

ṗ = −∂H

∂q

T

− ∂H1

∂q

T

◦ Ẇ ,(18)

q̇ =
∂H

∂p

T

+
∂H1

∂p

T

◦ Ẇ .(19)

For the linear stochastic oscillator

ṗ = −q + σẆ (t), p(0) = p0,(20)
q̇ = p, q(0) = q0,(21)

where σ > 0 is a constant, let H(p, q) = 1
2 (p2 + q2) and H1(p, q) = −σq, we have

ṗ = −∂H

∂q
− ∂H1

∂q
◦ Ẇ (t), p(0) = p0,(22)

q̇ =
∂H

∂p
+

∂H1

∂p
◦ Ẇ (t), q(0) = q0.(23)

Thus the linear stochastic oscillator (20)-(21) is a stochastic Hamiltonian system
([8], [9]). It is studied in [24] that, with initial conditions p0 = 0, q0 = 1, the second
moment of the solution of (20)-(21) satisfies

(24) E(p(t)2 + q(t)2) = 1 + σ2t,

i.e., the Hamiltonian function H(p, q) grows linearly with respect to time t. This
is different from the deterministic Hamiltonian systems, for which the Hamiltonian
function is preserved for all t, if t is not explicitly contained in H. This indicates
that the stochastic Hamiltonian systems are Hamiltonian systems in certain gen-
eralized sense, or to say, that they are disturbed by certain nonconservative force.
This force, different from usual nonconservative forces which dissipate energy of
the system, may also ’add’ energy to the system, as shown by the linear stochastic
oscillator. We call it the random force. A natural association with the random force
is the white noise ξ(t), since it is the source of the disturbance, and independent of
the position q.

On the other hand, compare (18)-(19) with (16)-(17), we find that, formally, the
associations between Ẇ and F, as well as −H1 and r are reasonable. Under this
consideration, stochastic Hamiltonian systems are a special kind of nonconservative
systems, whereby Ẇ (t) functions as a nonconservative force.
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According to (10), formally, the ’work’ done by Ẇ (t) is

(25) Ā = H1 ◦ Ẇ (t).

Consider (9), the action integral of the stochastic Hamiltonian system (18)-(19)
should be

S̄ =
∫ t1

t0

(L− Ā)dt

=
∫ t1

t0

Ldt−
∫ t1

t0

H1 ◦ dW (t),(26)

where L is the Lagrangian function with respect to the deterministic (drift) part of
the stochastic system, and is connected with the deterministic Hamiltonian function
H through the equation

(27) L = pT q̇ −H.

The last equation of (26) applies the relation Ẇ (t)dt = dW (t) once more.

For a stochastic Hamiltonian system with m noises (3)-(4), (25) should be mod-
ified to

(28) Ā =
m∑

k=1

Hk ◦ Ẇk(t),

which is the sum of the ’work’ done by each Ẇk(t). Consequently,

S̄ =
∫ t1

t0

(L− Ā)dt

=
∫ t1

t0

Ldt−
m∑

k=1

∫ t1

t0

Hk ◦ dWk(t).(29)

We call it the stochastic action integral. It follows from (14)-(15) that the Lagrange
equations of motion of the stochastic Hamiltonian system (18)-(19) are

d

dt
(
∂L

∂q̇
) =

∂L

∂q
− ∂H1

∂q
◦ Ẇ (t),(30)

d

dt
(
∂L

∂ṗ
) =

∂L

∂p
− ∂H1

∂p
◦ Ẇ (t).(31)

We call them the stochastic Lagrange equations of motion. When the number of
noises is m, they have the form

d

dt
(
∂L

∂q̇
) =

∂L

∂q
−

m∑

k=1

∂Hk

∂q
◦ Ẇk(t),(32)

d

dt
(
∂L

∂ṗ
) =

∂L

∂p
−

m∑

k=1

∂Hk

∂p
◦ Ẇk(t).(33)

Lemma 2.2. If ∫ b

a

n∑

i=1

Fi(t)gi(t)dt = 0

for any functions gi(t) (1 ≤ i ≤ n), then Fi(t) = 0 almost everywhere for t ∈ [a, b]
and 1 ≤ i ≤ n.
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Proof. We make induction on n. If n = 1,
∫ b

a
F1(t)g1(t)dt = 0. Since g1(t) can be

any function, take g1(t) = F1(t). Thus
∫ b

a

F1(t)2dt = 0.

F1(t)2 ≥ 0 implies that F1(t) = 0 almost everywhere for t ∈ [a, b].
Suppose Fi(t) = 0 almost everywhere for t ∈ [a, b] and 1 ≤ i ≤ k. When i = k+1,

∫ b

a

k+1∑

i=1

Fi(t)gi(t)dt =
∫ b

a

(
k∑

i=1

Fi(t)gi(t) + Fk+1(t)gk+1(t))dt = 0.

Take gi(t) = Fi(t), (i = 1, · · · , k + 1), we have
∫ b

a

(
k∑

i=1

F 2
i + F 2

k+1)dt = 0.

By the induction hypothesis, it holds
∫ b

a

F 2
k+1(t)dt = 0 almost everywhere for t ∈ [a, b],

which implies that Fk+1(t) = 0 almost everywhere for t ∈ [a, b]. ¤

Theorem 2.3 (Stochastic Hamilton’s Principle). The stochastic Lagrange
equations of motion (32)-(33) minimize the stochastic action integral (29).

Proof. The variation of S̄ in (29) is

δS̄ =
∫ t1

t0

(
∂L

∂p
δp +

∂L

∂q
δq +

∂L

∂ṗ
δṗ +

∂L

∂q̇
δq̇)dt

−
m∑

k=1

∫ t1

t0

(
∂Hk

∂p
δp +

∂Hk

∂q
δq) ◦ Ẇk(t)dt

= [
∂L

∂ṗ
δp]t1t0 + [

∂L

∂q̇
δq]t1t0 +

∫ t1

t0

(
∂L

∂p
− d

dt
(
∂L

∂ṗ
)−

m∑

k=1

∂Hk

∂p
◦ Ẇk(t))δpdt

+
∫ t1

t0

(
∂L

∂q
− d

dt
(
∂L

∂q̇
)−

m∑

k=1

∂Hk

∂q
◦ Ẇk(t))δqdt.(34)

The calculations in (34) can be put forward successfully because the stochastic
integrals involved are of Stratonovich sense, which enables the application of the
classical differential chain rule. Since δq(t0) = δq(t1) = δp(t0) = δp(t1) = 0, it
follows from Lemma 2.2 that δS̄ = 0 is equivalent to

d

dt
(
∂L

∂q̇
) =

∂L

∂q
−

m∑

k=1

∂Hk

∂q
◦ Ẇk(t),

d

dt
(
∂L

∂ṗ
) =

∂L

∂p
−

m∑

k=1

∂Hk

∂p
◦ Ẇk(t).

¤

Example 2.1. This example is aimed to show that the stochastic Lagrangian
and Hamiltonian formalism are equivalent.
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The Kubo oscillator

dp = −aqdt− σq ◦ dW (t), p(0) = p0,(35)
dq = apdt + σp ◦ dW (t), q(0) = q0(36)

is a stochastic Hamiltonian system with

(37) H(p, q) =
a

2
(p2 + q2), H1(p, q) =

σ

2
(p2 + q2),

where a and σ are constants, and p, q are of one dimension. According to (27), we
have

(38) L(p, q, ṗ, q̇) = pq̇ −H(p, q) = pq̇ − a

2
(p2 + q2).

Thus the Lagrange equations of motion of the Kubo oscillator should, according to
(30)-(31), have the form

ṗ = −aq − σq ◦ Ẇ (t),(39)

0 = q̇ − ap− σp ◦ Ẇ (t),(40)

which are, with initial conditions p(0) = p0, q(0) = q0, equivalent to the Hamilton-
ian equations of motion (35)-(36).

3. Stochastic Variational Integrators

We first introduce the deterministic variational integrators ([7], [14], [17], [25],
[29]). Regarding the action integral (8)

S(q) =
∫ t1

t0

L(q(t), q̇(t))dt

as a function of (q0, q1), and finding partial derivatives of S with respect to q0 and
q1, one gets

∂S
∂q0

=
∫ t1

t0

(
∂L

∂q

∂q

∂q0
+

∂L

∂q̇

∂q̇

∂q0
)dt

=
∂L

∂q̇

∂q

∂q0
|t1t0 +

∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇
)

∂q

∂q0
dt

= −∂L

∂q̇
(q0, q̇(t0))

= −pT
0 ,(41)

where the last two equalities apply the Lagrange equation of motion (7) and the
Legendre transform p = ∂L

∂q̇

T
, respectively.

Similarly, it holds

(42)
∂S
∂q1

= pT
1 .

Thus, one can write

(43) dS =
∂S
∂q0

dq0 +
∂S
∂q1

dq1 = −pT
0 dq0 + pT

1 dq1.

Theorem 3.1 ([7]) A mapping g : (p, q) 7→ (P,Q) is symplectic if and only if there
exists locally a function S(p, q) such that

PT dQ− pT dq = dS.
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According to (43) and Theorem 3.1, the mapping (p0, q0) 7→ (p1, q1) generated
by S through the relations (41)-(42) is symplectic.

Think of the discrete Lagrangian ([7], [15], [16], [27]) as

(44) Lh(qn, qn+1) ≈
∫ tn+1

tn

L(q(t), q̇(t))dt,

where qn
.= q(tn), qn+1

.= q(tn+1), and h = tn+1 − tn. It approximates the local
action integral on the small time interval [tn, tn+1], and produces the symplectic
mapping (pn, qn) 7→ (pn+1, qn+1) through the relations ([7], [14], [15], [25], [27])

(45) pn = −∂Lh

∂qn
(qn, qn+1), pn+1 =

∂Lh

∂qn+1
(qn, qn+1).

The next problem is how to compute Lh. In fact, it can be approximated through
applying different quadrature formulae, such as the trapezoidal or the midpoint
rule ([14], [29]). The q̇(t) in the integrand of (44) can be approximated by qn+1−qn

tn+1−tn
.

Different quadrature formulae lead to different methods. For example, Gaussian
quadrature gives the Gauss collocation method, and Lobatto quadrature gives the
Lobatto IIIA-IIIB pair ([17]).

In stochastic case, we construct variational integrators based on the stochastic
Hamilton’s principle. Its discrete version includes finding {pn, qn}N−1

1 that mini-
mizing the sum

(46) S̄h({pn, qn}N
0 ) =

N−1∑
n=0

L̄h(pn, qn, pn+1, qn+1)

for given (p0, q0) and (pN , qN ). Let ∂S̄h

∂qn
= 0 and ∂S̄h

∂pn
= 0, it follows the discrete

stochastic Euler-Lagrange equations

∂L̄h

∂qn
(pn−1, qn−1, pn, qn) +

∂L̄h

∂qn
(pn, qn, pn+1, qn+1) = 0,(47)

∂L̄h

∂pn
(pn−1, qn−1, pn, qn) +

∂L̄h

∂pn
(pn, qn, pn+1, qn+1) = 0(48)

for n = 1, · · · , N − 1. This gives a three-term recurrence formula for determining
q1, · · · , qN−1 and p1, · · · , pN−1.

For a stochastic system with m noises (3)-(4), think of the stochastic discrete
Lagrangian L̄h as

(49) L̄h(pn, qn, pn+1, qn+1) ≈
∫ tn+1

tn

Ldt−
m∑

k=1

∫ tn+1

tn

Hk ◦ dWk(t).

When equality holds in (49), the solution {pn, qn}N−1
1 of the discrete Euler-Lagrange

equations (47)-(48) should equal {p(tn), q(tn)}N−1
1 , where p(t) and q(t) satisfy the

continuous stochastic Lagrange equations (32)-(33). This is due to the stochastic
Hamilton’s principle stated in Theorem 2.3. Consequently, under the consideration
in (49), solutions of (47)-(48) should approximately equal {p(tn), q(tn)}N−1

1 , and
therefore become a numerical simulation of p(t) and q(t).
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Denote

(50) Sh =
∫ tn+1

tn

Ldt−
m∑

k=1

∫ tn+1

tn

Hk ◦ dWk(t),

where Sh is considered as a function of p(tn), q(tn), p(tn+1) and q(tn+1). We find

∂Sh

∂q(tn)
=

∫ tn+1

tn

(
∂L

∂q

∂q

∂q(tn)
+

∂L

∂p

∂p

∂q(tn)
+

∂L

∂q̇

∂q̇

∂q(tn)
+

∂L

∂ṗ

∂ṗ

∂q(tn)
)dt

−
m∑

k=1

∫ tn+1

tn

(
∂Hk

∂q

∂q

∂q(tn)
+

∂Hk

∂p

∂p

∂q(tn)
) ◦ dWk(t)

= [
∂L

∂q̇

∂q

∂q(tn)
]tn+1
tn

+
∫ tn+1

tn

(
∂L

∂q
− d

dt

∂L

∂q̇
−

m∑

k=1

∂Hk

∂q
Ẇk(t))

∂q

∂q(tn)
dt

+ [
∂L

∂ṗ

∂p

∂q(tn)
]tn+1
tn

+
∫ tn+1

tn

(
∂L

∂p
− d

dt

∂L

∂ṗ
−

m∑

k=1

∂Hk

∂p
Ẇk(t))

∂p

∂q(tn)
dt

= −p(tn)T ,(51)

where the last equality is due to (32)-(33) and the Legendre transform p = ∂L
∂q̇ .

Similarly,

(52)
∂Sh

∂p(tn)
(p(tn), q(tn), p(tn+1), q(tn+1)) = −∂L

∂ṗ
(p(tn), q(tn), p(tn+1), q(tn+1)).

Motivated by (51)-(52) and (49), as well as the deterministic discrete Legendre
transform ([7] and references therein), we introduce the stochastic discrete Legendre
transform

pn = −∂L̄h

∂qn
(pn, qn, pn+1, qn+1),(53)

∂L

∂ṗ
|tn = −∂L̄h

∂pn
(pn, qn, pn+1, qn+1).(54)

Thus

pn+1 = − ∂L̄h

∂qn+1
(pn+1, qn+1, pn+2, qn+2),(55)

∂L

∂ṗ
|tn+1 = − ∂L̄h

∂pn+1
(pn+1, qn+1, pn+2, qn+2).(56)

Substituting (55)-(56) into (47)-(48) gives

pn+1 =
∂L̄h

∂qn+1
(pn, qn, pn+1, qn+1),(57)

∂L

∂ṗ
|tn+1 =

∂L̄h

∂pn+1
(pn, qn, pn+1, qn+1).(58)

Since L = pT q̇ −H(p, q), it follows that

(59)
∂L

∂ṗ
= 0,

which, together with (53)-(54) and (57)-(58) implies

(60) dL̄h = −pndqn + pn+1dqn+1.

It is important to note that, in the derivation, the classical differential chain rule
is applied because the stochastic integrals involved are of Stratonovich sense.
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Theorem 3.2. Suppose that L and Hk (k = 1, · · · ,m) are sufficiently smooth
with respect to p and q, then the mapping (pn, qn) 7→ (pn+1, qn+1) determined by
(53)-(54) and (57)-(59) is symplectic.

Proof. From (53)-(54) and (57)-(59) it follows

dpn+1 ∧ dqn+1 = d(
∂L̄h

∂qn+1
) ∧ dqn+1 =

∂2L̄h

∂qn+1∂qn
dqn ∧ dqn+1,

dpn ∧ dqn = d(−∂L̄h

∂qn
) ∧ dqn =

∂2L̄h

∂qn∂qn+1
dqn ∧ dqn+1,

Smoothness of L and Hk with respect to p and q implies ∂2L̄h

∂qn+1∂qn
= ∂2L̄h

∂qn∂qn+1
.

Consequently,

dpn+1 ∧ dqn+1 = dpn ∧ dqn.

¤

Quadrature formulae applied to the integrals in (49) will give approximations of
L̄h. Next, stochastic symplectic mappings (pn, qn) 7→ (pn+1, qn+1) can be generated
through (53)-(54) and (57)-(59). We call this process the stochastic variational
integrator.

4. Examples and Numerical Tests

We apply the stochastic variational integrator to construct symplectic schemes
for different stochastic Hamiltonian systems. The resulted methods are either
known methods, which show the validity of the stochastic variational integrator
theory, or new methods, effectiveness of which are tested through numerical exper-
iments.

Example 4.1. This example is aimed to show that a known symplectic scheme
can be produced by the variational integrator.

For the Kubo oscillator (35)-(36), (37)-(38) implies that the discrete Lagrangian
is

L̄h ≈
∫ tn+1

tn

Ldt−
∫ tn+1

tn

H1 ◦ dW (t)

=
∫ tn+1

tn

[pq̇ − a

2
(p2 + q2)]dt−

∫ tn+1

tn

σ

2
(p2 + q2) ◦ dW (t)

≈ h[
pn+1 + pn

2
· qn+1 − qn

h
− a

2
((

pn+1 + pn

2
)2 + (

qn+1 + qn

2
)2)](61)

− σ

2
∆Wn[(

pn+1 + pn

2
)2 + (

qn+1 + qn

2
)2],(62)

where, in (61)-(62) the midpoint quadrature formula is applied to approximate the
integrals, q̇ ≈ qn+1−qn

h , and ∆Wn = W (tn+1)−W (tn).
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Substituting the expression of L̄h (61)-(62) into the relations

∂L̄h

∂pn
=

∂L̄h

∂pn+1
= 0,(63)

∂L̄h

∂qn
= −pn,(64)

∂L̄h

∂qn+1
= pn+1,(65)

which is the equivalent and concise form of (53)-(54) and (57)-(59), we get

ah + σ∆Wn

2
(pn+1 + pn) = qn+1 − qn,(66)

pn+1 + pn

2
+

ah + σ∆Wn

4
(qn+1 + qn) = pn,(67)

pn+1 + pn

2
− ah + σ∆Wn

4
(qn+1 + qn) = pn+1,(68)

respectively. According to (66), replacing the pn+1+pn

2 in (67) and (68) by qn+1−qn

ah+σ∆Wn
,

whereby ah + σ∆Wn is assumed to be nonzero, which can be ensured by suitably
controlling ∆Wn in numerical simulation ([19]), we obtain

qn+1 − qn +
(ah + σ∆Wn)2

4
(qn+1 + qn) = pn(ah + σ∆Wn),(69)

qn+1 − qn − (ah + σ∆Wn)2

4
(qn+1 + qn) = pn+1(ah + σ∆Wn).(70)

Taking sum and difference of the two equations (69) and (70) gives

pn+1 = pn − ah
qn+1 + qn

2
− σ∆Wn

qn+1 + qn

2
,(71)

qn+1 = qn + ah
pn+1 + pn

2
+ σ∆Wn

pn+1 + pn

2
,(72)

which is just the midpoint rule proposed by Milstein et al. in [19]. Here we repro-
duce it through variational integrator.

Example 4.2. Now we illustrate through another example the approach of vari-
ational integrators in constructing stochastic symplectic schemes. The resulted
method is again the midpoint rule, while in fact there could arise many other
methods by applying different quadrature formulae to the integration of L̄(h), as
well as using different forms of stochastic integrals.

For the model of synchrotron oscillations of particles in storage rings ([19])

dp = −ω2 sin qdt− σ1 cos q ◦ dW1(t)− σ2 sin q ◦ dW2(t), p(0) = 0,(73)
dq = pdt, q(0) = 0,(74)

where ω, σ1 and σ2 are constants, and p, q are scalars. It is a stochastic Hamiltonian
system with

H =
1
2
p2 − ω2 cos q, H1 = σ1 sin q, H2 = −σ2 cos q,(75)

L = pq̇ −H = pq̇ + ω2 cos q − p2

2
.(76)
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Thus

L̄h ≈
∫ tn+1

tn

Ldt−
2∑

k=1

∫ tn+1

tn

Hk ◦ dWk(t)

=
∫ tn+1

tn

(pq̇ + ω2 cos q − p2

2
)dt−

∫ tn+1

tn

σ1 sin q ◦ dW1(t)

+
∫ tn+1

tn

σ2 cos q ◦ dW2(t)

≈ h[
pn+1 + pn

2
· qn+1 − qn

h
+ ω2 cos(

qn+1 + qn

2
)− 1

2
(
pn+1 + pn

2
)2](77)

− σ1∆nW1 sin(
qn+1 + qn

2
) + σ2∆nW2 cos(

qn+1 + qn

2
),(78)

where, in (77) and (78), midpoint quadrature formula is applied, q̇ ≈ qn+1−qn

h , and
∆nWi = Wi(tn+1)−Wi(tn) for i = 1, 2.

Substituting the expression of L̄h (77)-(78) into the relations (63)-(65), we obtain

pn+1 + pn

2
=

qn+1 − qn

h
,(79)

pn+1 + pn

2
= pn − hω2 + σ2∆nW2

2
sin(

qn+1 + qn

2
)

− σ1∆nW1

2
cos(

qn+1 + qn

2
),(80)

pn+1 + pn

2
= pn+1 +

hω2 + σ2∆nW2

2
sin(

qn+1 + qn

2
)

+
σ1∆nW1

2
cos(

qn+1 + qn

2
).(81)

Replacing pn+1+pn

2 in (80) and (81) by the right-hand side of (79), and then taking
sum and difference of the two obtained equations, it follows

pn+1 = pn − (hω2 + σ2∆nW2) sin(
qn+1 + qn

2
)

− σ1∆nW1 cos(
qn+1 + qn

2
),(82)

qn+1 = qn + h
pn+1 + pn

2
,(83)

which is just the midpoint rule applied to (73)-(74). Figure 4.1 illustrates a sample
trajectory produced by the scheme (82)-(83).
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Figure 4.1: A sample trajectory of (82)-(83).

The solid line is produced by the scheme (82)-(83), and the dash-dotted reference
line is a highly accurate simulation of the true solution q(t) given in [19], i.e.

pn+1 = pn − hω2 sin(qn+1)− (σ1 cos(qn+1)∆nW1 + σ2 sin(qn+1)∆nW2),
qn+1 = qn + hpn.

The two sample paths coincide visually. This shows the effectiveness of the numer-
ical scheme (82)-(83). Data for the numerical test are σ1 = 0.2, σ2 = 0.1, ω = 2,
t ∈ [0, 100], and the step-size is h = 0.02.

Since the scheme (82)-(83) is implicit, we applied fixed-point iteration to realize
it. The number of iterations performed in each step is 100.

Example 4.3. The system with two additive noises ([18])

dp = −qdt + γ ◦ dW2(t), p(0) = 0,(84)
dq = pdt + σ ◦ dW1(t), q(0) = 0,(85)

is a stochastic Hamiltonian system with

H =
1
2
(p2 + q2), H1 = σp, H2 = −γq,

L = pq̇ −H = pq̇ − 1
2
(p2 + q2).(86)

Here σ and γ are constants, and p, q are scalars. The discrete Lagrangian is

L̄h ≈
∫ tn+1

tn

Ldt−
2∑

k=1

∫ tn+1

tn

Hk ◦ dWk(t)

=
∫ tn+1

tn

[pq̇ − 1
2
(p2 + q2)]dt−

∫ tn+1

tn

σp ◦ dW1(t) +
∫ tn+1

tn

γq ◦ dW2(t)(87)
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The (λ)-integrals ([10]), denoted with (λ)
∫ T

0
f(X(t), t)dW (t), (0 ≤ λ ≤ 1),

are defined as the mean-square limit of the sums (as n →∞)

Sn =
n∑

j=1

f((1− λ)X(t(n)
j ) + λX(t(n)

j+1))(W (t(n)
j+1)−W (t(n)

j ))

for partitions 0 = t
(n)
1 < t

(n)
2 < · · · < t

(n)
n+1 = T , for which δ(n) = max1≤j≤n(t(n)

j+1 −
t
(n)
j ) → 0 as n →∞.

According to the definition of the Itô and Stratonovich integrals, they are special
(λ) integrals with λ = 0 and λ = 1

2 , respectively, and can transform to each other
according to the formula

∫ T

0

f(X, t) ◦ dW (t) =
∫ T

0

f(X, t)dW (t) +
1
2

∫ T

0

∂f

∂X
(X, t) · b(X, t)dt,

where b(X, t) is the diffusion coefficient of the stochastic differential equation of X

dX = a(X, t)dt + b(X, t)dW (t).

Characterize the (1)-integral with a ∗ before dW (t), it holds the following trans-
form formula between the Stratonovich integrals and the (1)-integrals (see e.g. the
discussion in [3]):

∫ T

0

f(X, t) ◦ dW (t) =
∫ T

0

f(X, t) ∗ dW (t)− 1
2

∫ T

0

∂f

∂X
(X, t) · b(X, t)dt.

Now we transform the first stochastic integral in (87) to the (1)-integral form
∫ tn+1

tn

σp ◦ dW1(t) =
∫ tn+1

tn

σp ∗ dW1(t)− 1
2

∫ tn+1

tn

σ · 0dt,

and transform the second stochastic integral in (87) to its Itô form
∫ tn+1

tn

γq ◦ dW2(t) =
∫ tn+1

tn

γqdW2(t) +
1
2

∫ tn+1

tn

γ · 0dt,

where the ”0”s in the above two formulae result from the fact that dp does not
contain dW1(t), whereas dq does not contain dW2(t) in (84)-(85).

Thus the integral
∫ tn+1

tn
σp ◦ dW1(t) can be approximated by σpn+1∆nW1, and∫ tn+1

tn
γq ◦dW2(t) by γqn∆nW2. As a result, we obtain the following approximation

of (87)

(88) L̄h ≈ h[pn+1 · qn+1 − qn

h
− 1

2
(p2

n+1 + q2
n)]− σpn+1∆nW1 + γqn∆nW2,

where forward Euler quadrature is applied to p, and backward Euler quadrature to
q in the deterministic integral, and q̇ is again approximated by qn+1−qn

h .

Substituting the expression of L̄h (88) into (63)-(65), we get

pn+1 = pn − hqn + γ∆nW2,(89)
qn+1 = qn + hpn+1 + σ∆nW1,(90)

which is the symplectic Euler-Maruyama method given by Milstein et al. in [18].

In the process above, if we transform the first stochastic integral in (87) to its
Itô form while the second one to its (1)-integral form, and apply forward Euler
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quadrature to q and backward Euler quadrature to p in approximating the two
integrals, we obtain

pn+1 = pn − hqn+1 + γ∆nW2,(91)
qn+1 = qn + hpn + σ∆nW1,(92)

which is the adjoint method of (89)-(90). Its effect can be seen in Figure 4.2.

0 20 40 60 80 100 120 140 160 180 200
−25

−20

−15

−10

−5

0

5

10

15

20

25

t

q
exact solution
method

Figure 4.2: A sample trajectory of (89)-(90).
The solid line is a sample path of the exact solution q(t), which satisfies the formula
([18])

Y (tk+1) = FY (tk) + uk, Y (0) = Y0, k = 0, 1, · · · , N − 1

for the discretization 0 = t0 < t1 < · · · < tN = T , where Y =
(

q
p

)
, F =

(
cosh sinh
− sinh cos h

)
with h = tk+1 − tk, and

uk =

(
σ

∫ tk+1

tk
cos(tk+1 − s)dW1(s) + γ

∫ tk+1

tk
sin(tk+1 − s)dW2(s)

−σ
∫ tk+1

tk
sin(tk+1 − s)dW1(s) + γ

∫ tk+1

tk
cos(tk+1 − s)dW2(s)

)
.

The dash-dotted line is produced by the scheme (91)-(92). The two sample paths
coincide visually. Data for creating the figure are γ = 1, σ = 0, t ∈ [0, 200], and
the step-size is h = 0.02.

Conclusions. The stochastic variational integrators are framed through investi-
gating into the dynamics of stochastic Hamiltonian systems, and validated through
performing several numerical tests. Construction of various concrete methods based
on the stochastic variational integrator theory might be topics for further study.
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