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FRONT TRACKING ALGORITHM FOR THE
LIGHTHILL-WHITHAM-RICHARDS TRAFFIC FLOW MODEL

WITH A PIECEWISE QUADRATIC, CONTINUOUS,
NON-SMOOTH, AND NON-CONCAVE FUNDAMENTAL

DIAGRAM

WENQIN CHEN, S.C. WONG, CHI-WANG SHU, AND PENG ZHANG

Abstract. We use a front tracking algorithm to explicitly construct entropy solutions for the
Lighthill-Whitham-Richards traffic flow model with a flow-density relationship that is piecewise
quadratic, continuous, non-smooth, and non-concave. The solution is exact if the initial condition
is piecewise linear and the boundary conditions are piecewise constant. The algorithm serves as
a fast and accurate solution tool for the prediction of spatio-temporal traffic conditions and as a
diagnostic tool for testing the performance of numerical schemes. Numerical examples are used to
illustrate the effectiveness and efficiency of the proposed method relative to numerical solutions
that are obtained using a fifth-order weighted essentially non-oscillatory scheme.

Key words. LWR model, traffic flow, piecewise quadratic fundamental diagram, front tracking
algorithm, WENO scheme.

1. INTRODUCTION

Lighthill and Whitham [23] provided one of the first published theories of the
macroscopic modeling of highway traffic flow. Their theory was based on two
relationships: a continuity equation and the fundamental relationship between the
flow and density of a traffic stream. The continuity equation can easily be derived
by considering the conservation of vehicles between any two locations on a road,
which is why it is often called a conservation equation. As an assumed speed-density
relationship is needed to solve and apply the continuity equation for traffic flow,
studies on the relationships between the fundamental traffic stream variables are
vital, and have been provided throughout the history of traffic flow study. With
the continuity equation, a speed-density relationship, and the initial and boundary
conditions of the traffic stream, the density at any location along a road can be
determined. Richards [30] independently proposed the same continuum approach,
albeit in a slightly different form. The key difference is that Richards focused on the
derivation of shock waves with respect to density, whereas Lighthill and Whitham
considered the same from the perspective of disruptions to traffic flow. Another
difference between the two methods is that Richards adopted a linear speed-density
relationship, whereas Lighthill and Whitham used a more general speed-density
relationship. Because of the nearly simultaneous and independent development of
the theory, the model has become known in the literature as the LWR model.

The LWR model, as a scalar hyperbolic conservation law, can be solved by ap-
proximating the fundamental diagram (or flux function) as a piecewise linear func-
tion [3], in which the solution of the Riemann problem is a step function (piecewise
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constants). If the initial data falls within the class of step functions, then an an-
alytical solution of the Cauchy problem can be constructed by the superposition
of simple Riemann problems. The solution will always remain piecewise constant,
and will therefore always be within the same class of functions, because all wave
interactions lead to new Riemann problems. By solving the Riemann problems that
arise each time two or more waves interact, a global solution can be established.
In the general case, approximating the flux function by a sequence of piecewise
linear functions and the initial data by a sequence of step functions gives a com-
pact sequence of approximate solutions that converge to the solution of the Cauchy
problem. Similarly, Newell [27–29] assumed a triangular or trapezoidal shape of
the fundamental diagram and proposed a simple graphical procedure to derive the
analytical solution to the LWR model on incident detection using the concept of cu-
mulative flow. These studies unintentionally share the same rationale as Dafermos’
method. More recently, and inspired by Dafermos, Henn [6, 7] proposed a solution
algorithm for the LWR model known as the wave tracking scheme that is based
both on the piecewise linear approximation of the fundamental flow-density rela-
tionship and on an explicit tracking of waves, and further implemented the scheme
to evaluate the impact of incidents on the road.

Lucier [26] extended Dafermos’ method to approximate the flux function us-
ing a parabolic spline approximation, in which the piecewise quadratic functions
are continuously differentiable with discontinuous second derivatives at the break-
points. Holden et al. [8, 9] enhanced Dafermos’ method and showed that even in
infinite time, there are only a finite number of constant states. They also proved
that the construction is well defined for non-convex flux functions. They called
the method front tracking – front referring to the discontinuities and tracking to
the process of computing collisions and resolving interactions. Front tracking has
proved to be a very robust numerical method for scalar, one-dimensional conser-
vation laws. Kunick [21] proved an explicit representation formula for the solution
of a one-dimensional hyperbolic conservation law with a non-convex flux function
but monotone initial data based on the polygonal method of Dafermos. Other
developments and applications of the front tracking method can also be found
in [1, 11,14–17].

Unaware of the earlier development of the front tracking method [10], Wong
and Wong [35] rediscovered the method of Lucier [26] for solving a scalar hyper-
bolic conservation law, and determined the formation and propagation of shocks
on a homogeneous highway subject to general boundary conditions assuming a lin-
ear speed-density relationship (or parabolic flux function). The method of Wong
and Wong [35] can therefore be considered to be a special case of the method of
Lucier [26] in which the solution is exact if the fundamental diagram is a parabolic
flux function, the initial condition is piecewise linear, and the boundary conditions
are piecewise constant. In both Wong and Wong [35] and Lucier [26], explicit ex-
pressions that describe the relationship between the density, space, and time of dif-
ferent scenarios (characteristics, fan, and shock) were derived to allow the evolution
of traffic density in space and time to be precisely determined, although Lucier’s
focus was on the theoretical proof of the convergence rate of the algorithm when a
general flux function is approximated by a number of piecewise quadratic functions.
More recently, Lu et al. [25] proposed an improved front tracking algorithm that
adopts a piecewise quadratic, continuous, and concave fundamental diagram. As
their algorithm does not require the piecewise quadratic function to be continu-
ously differentiable at the junction points, they improved on the method proposed
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both by Lucier and by Wong and Wong by relaxing the restrictive differentiability
assumptions on the fundamental diagram.

However, the algorithm of Lu et al. requires the piecewise quadratic fundamen-
tal diagram to be globally concave, although it can be non-smooth at the junction
points. This is still too strong for representing realistic traffic conditions, because
it is often observed from field data that the fundamental diagram is not globally
concave, but only locally concave and even convex in different density regimes (see
early works by Underwood [32] and Drake et al. [4] for calibrated non-concave fun-
damental diagrams based on observed data). Non-concave fundamental diagrams
have also been widely used by theoreticians for modeling traffic flow [4, 18, 19, 34].
It will therefore be useful to investigate the entropy solutions to the LWR model
with a non-smooth and non-concave flow-density relationship.

In this paper, we present explicit formulae for entropy solutions with a piecewise
quadratic, continuous, non-smooth and non-concave flow-density relationship and a
piecewise linear initial condition and piecewise constant boundary conditions. The
remainder of the paper is organized as follows. Sections 2 and 3 develop explicit
formulas for the entropy solutions with the aforementioned flow-density relation-
ship and with a piecewise linear initial condition and piecewise constant boundary
conditions. In Section 4, we summarize the solution procedure, concentrating on
finding the earliest time when the waves (characteristics or shocks) from the pre-
vious initial condition intersect with one another, at which point the construction
of the entropy solution must be restarted based on a new piecewise linear initial
data. Section 5 gives numerical examples to illustrate the effectiveness and effi-
ciency of the front tracking algorithm. We compare the results obtained with the
analytical expressions with those obtained using the fifth-order weighted essentially
non-oscillatory (WENO) scheme [31]. Section 6 presents some concluding remarks.

2. FORMULATION

2.1. Definition of the problem. As we can postulate, density variation within
the concave regime results in the same expressions as those described in Lu et
al. [25]. In contrast, density evolution within the convex regime results in the
opposite behavior, with a positive jump generating a fan or fans and a negative
jump generating a shock structure when the variation of the wave speed is reversed.
Nevertheless, the expressions and characteristics of the shock are the same as those
in the concave regime. The main task in the construction of the entropy solution
is therefore to develop explicit expressions to capture the density variation across
the inflection point, where the whole diagram is split into a concave shape on the
left and a convex shape on the right.

We consider a homogenous highway that consists of a set of piecewise linear
density functions as initial conditions at t = 0. The governing equation for the
LWR model is the following scalar hyperbolic conservation law

(1) ρt + f(ρ)x = 0,

where ρ ∈ (0, ρjam) is the density, ρjam is the jam density, and f(ρ) is the traffic
flow on a homogenous highway. In the literature, f(ρ) is known as the fundamental
diagram of road traffic. The relationship among speed u, density ρ, and flow f is

f(ρ) = u(ρ)ρ.

The flow f(ρ) is considered to be piecewise quadratic, continuous, and not globally
concave. Without loss of generality, we focus on the situation in which the flow
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f(ρ) is defined by two quadratic functions in different regimes.

f(ρ) =
{

f1(ρ) 0 ≤ ρ < ρc,
f2(ρ) ρc ≤ ρ ≤ ρjam,

where

(2) Flux I : f1(ρ) = d0 + d1ρ + d2ρ
2; Flux II : f2(ρ) = e0 + e1ρ + e2ρ

2

are different functions that are continuous at the junction f1(ρc) = f2(ρc), concave
in Flux I f ′′1 (ρ) < 0, and convex in Flux II f ′′2 (ρ) > 0, and where ρc is the critical
density that separates the two fluxes. A typical fundamental diagram with this
setup is shown in FIGURE 1. The general situation of the fundamental diagram
f(ρ) with more than two quadratic functions can be considered using the same
procedure for each neighboring pair of quadratic flow functions.

 

1( )f ρ  

2 ( )f ρ  

Flow ( )f ρ  

Density (ρ) 
cρ  

FIGURE 1. A typical fundamental diagram with two quadratic functions (concave on the left, convex

on the right) that join continuously at the critical density ρc.

We then start to construct explicit solutions to the conservation law with the
flows f(ρ) when the initial condition is piecewise linear. We begin with the gener-
alized Riemann problem

(3) ρ(x, 0) =
{

α1 + β0,1x x < 0,
α2 + β0,2x x ≥ 0,

where the initial density α0,i + β0,ix is completely contained in the regime ρ ≤ ρc

or ρ ≥ ρc for i = 1 and 2. We again note that we do not need to consider the case
in which both linear functions α0,i + β0,ix are contained in the same regime ρ ≤ ρc

or ρ ≥ ρc, because this case is already covered by the results in Lu et al. [25].
Again, for the scalar conservation law with a quadratic flux f(ρ) = a + bρ + cρ2

and a linear initial condition ρ(x, 0) = α0 +β0x, the solution stays linear (see [35]),

(4) ρ(x, t) = α(t) + β(t)x,

with

(5) α(t) =
α0 − bβ0t

1 + 2cβ0t
, β(t) =

β0

1 + 2cβ0t
.

This can be easily obtained using the characteristics method, and we can easily
verify that the solution is a smooth fit using the conservation law with the initial
condition ρ(x, 0) = α0 + β0x until the equation becomes singular.

Starting from a particular time (say t = 0), the spatial axis is first discretized into
a small number of elements, with each pair of adjacent elements being connected by
a node. Within each of the pairs the initial density is given by the linear function
ρ(x, 0) = α0 + β0x, which is completely contained in the regime ρ ≤ ρc or ρ ≥ ρc.
We consider the solution to the generalized Riemann problem (1) with the initial
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condition (3) for each of the inner boundary points that separate two piecewise
linear initial conditions. The left and right intervals to the inner boundary point
under consideration are respectively denoted by e = (xl, xr) and ē = (x̄l, x̄r),
where xr = x̄l. The density values of this initial condition at the relevant interval
boundaries are denoted by

ρl = ρ(x+
l , 0), ρr = ρ(x−r , 0), ρ̄l = ρ(x̄+

l , 0), ρ̄r = ρ(x̄−r , 0).

Notice that the exact solution is obtained only to the smallest time when the waves
(characteristics or shocks) from the initial condition intersect with one another. It
is at this time that the new piecewise linear initial condition is formed and the
procedure repeated.

2.2. Natural break time for an element. For an element e in which the wave
speed of the initial linear density profile is decreasing, the natural break time (see
FIGURE 2) can be determined by the following formula [33].

τb = − 1
f ′′(ρ)ρx

.

For an increasing density that falls within the concave regime of the fundamental
diagram (i.e., ρx > 0 and f ′′(ρ) < 0) or a decreasing density that falls within the
convex regime (i.e., ρx < 0 and f ′′(ρ) > 0), the denomination is negative, and thus
the wave breaks in a positive finite time. Assuming that the flux function in element
e is f(ρ) = a + bρ + cρ2, we can obtain the natural break time as τb = xr−xl

2c(ρl−ρr) for
c < 0 and ρl < ρr, or for c > 0 and ρl > ρr.

 

e  

Characteristic Characteristic 

lx  rx  

(
lρ ) (

rρ ) 

bτ  

FIGURE 2. Natural break time of an element.

2.3. Propagation of a characteristic. Consider a nodal point between two ad-
jacent elements. When ρr = ρ̄l and f ′e(ρr) = f ′ē(ρ̄l), the density variation is contin-
uous across the elements and a simple characteristic of constant density ρr (= ρ̄l)
is generated. The densities on both sides along the characteristic are constant, and
the trajectory can be expressed as xr + f ′e(ρr)t or x̄l + f ′ē(ρ̄l)t (see FIGURE 3).

 t∆  

e  e  

( )l lx ρ  ( )r rx ρ  ( )l lx ρ  ( )
r r

x ρ  

FIGURE 3. Propagation of a characteristic from a nodal point.

2.4. Propagation of a positive-jump shock. If the density jump is contained
within the same flux regime, then the analysis and solution given by Wong and
Wong [35] and Lu et al. [25] can be used. The case that we are concerned with
here is the concave-convex smooth flow diagram with f ′′1 < 0 and f ′′2 > 0, as shown
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in FIGURE 1. We first consider a positive density jump from ρr to ρ̄l across the
critical density ρc at a node. As shown in FIGURE 4, we first construct the convex
hull of the set {(ρ, y): ρr ≤ ρ ≤ ρ̄l and y ≥ f(ρ)} and use this to find the density
pattern that satisfies the Lax entropy condition (see LeVeque [22]).

 

rρ  lρ  
∗
ρ  cρ  

1( )f ρ  
2 ( )f ρ  

 

1( )f ρ  

2 ( )f ρ  

rρ  lρ  
∗
ρ  cρ  

FIGURE 4. Propagation of a characteristic from a nodal point.

We then construct a tangent at the point of tangency ρ∗ that connects (ρr, f1(ρr))
and (ρ∗, f2(ρ∗)). The slope of this tangent is s∗ = f2(ρ∗)−f1(ρr)

ρ∗−ρr
. If ρ̄l ≤ ρ∗, then

the shock speed is greater than s∗, as shown in FIGURE 4, and the positive jump
will move as a single shock. In this case, the formulae for the trajectory of the
shock and edge densities are identical to those that were derived in Lu et al. [25],
although Lu et al. considered both flux functions to be concave, whereas the flux
functions in our case are concave-convex.

We then focus on the case ρ̄l > ρ∗, the convex hull of which is shown in FIGURE
4. The lower boundary of this set consists of the tangent from (ρr, f1(ρr)) to
(ρ∗, f2(ρ∗)), and then follows y = f2(ρ) down to (ρ̄l, f2(ρ̄l)). In this case, the
tangent represents a shock jumping from ρr to ρ∗, and the remaining segment
where the boundary follows y = f2(ρ) represents a rarefaction wave. As ρ∗ is the
point of tangency, we have s∗ = f ′2(ρ∗), and thus the shock moves at the same
speed as the characteristic on this edge of the rarefaction fan.

tδ  

lx  
rx  

lx  
rx x+ δ  

lx x−δ  

rρ  
c
ρ

c
ρ lρ

Α  Β  

lρ  

 

FIGURE 5. The decomposition of a node with a positive density jump across ρc into two infinitesimal

linear segments.

2.4.1. Explicit trajectory expressions. We now derive the explicit expressions
for the trajectories of the shock and rarefaction wave for the case ρ̄l > ρ∗. For the
expressions for the single shock that is generated in the case ρ̄l ≤ ρ∗, readers are
referred to Lu et al. [25].

According to the relationship s∗ = f ′2(ρ∗), we have

2e2ρ ∗+e1 =
(e0 + e1ρ ∗+e2ρ∗2)− (d0 + d1ρr + d2ρ

2
r)

ρ ∗ −ρr
.
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By solving this equation, the tangency density ρ∗ can be explicitly determined by

ρ∗ =
e2ρr +

√
(e2ρr)2 + e2(e0 − d0 − d1ρr + e1ρr − d2ρ2

r)
e2

.

First, xr and x̃l that are initially in the same location are expected to separate each
other with xr < x̃l due to the development of two waves between the two adjacent
elements, thus we slightly displace the location of the right-hand element to form
two infinitesimal linear segments A and B that are separated by the critical density
ρc and have an equal width δx, as shown in FIGURE 5. Two new virtual elements
A and B are thereby generated, each of which belongs to a separate flux regime.
For element A with ρr → ρc on the concave regime, there is a natural break after
δt. The flux functions for elements A and B are d0 +d1ρ+d2ρ

2 and e0 +e1ρ+e2ρ
2,

respectively, where d2 < 0 and e2 > 0. The natural break time δt can therefore
be determined by δx

2d2(ρr−ρc)
, and the coordinates of these elements after δt then

become

(6) x̃l = xl + (d1 + 2d2ρl)
δx

2d2(ρr − ρc)
,

(7) x̃r = xr + (d1 + 2d2ρr)
δx

2d2(ρr − ρc)
,

(8) x̃′l = x̄l − δx + (e1 + 2e2ρc)
δx

2d2(ρr − ρc)
= x̃r,

(9) x̃′r = x̄l + (e1 + 2e2ρ̄l)
δx

2d2(ρr − ρc)
.

We can deduce the resultant shock trajectory expression using the same method
that was adopted in Wong and Wong [35] based on the conservation principle, as
illustrated in FIGURE 6. Because ρc > ρr and element e′ belongs to Flux I and
ē′ to Flux II, a shock that satisfies the Lax entropy condition is generated from
point x̃′l = x̃r that will move forward or backward along a curve that is determined
by the Rankine-Hugoniot jump condition. We here assume that the shock moves
forward, such that its location x̃′l +∆x after time ∆t can be determined by the flow
conservation in the rectangular region Ω, with (x̃′l, 0) and (x̃′l + ∆x, ∆t) as the end
points of the diagonal. As we only consider the time ∆t that is earlier than the
earliest time when the waves from the initial condition interact with one another,
we can safely assume that the left and top boundaries of this rectangle, ∂Ωl and
∂Ωt, belong to Flux I, and the right and bottom boundaries of the rectangle, ∂Ωr

and ∂Ωb, belong to Flux II.
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FIGURE 6. Propagation of a right-moving shock from the virtual node.
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The flux at the left boundary ∂Ωl, which is the number of vehicles coming into
the region Ω from the left boundary during the period ∆t, is
(10)

f̂l =
∫ ∆t

0

f1 |x=x̃r dt =
∫ ∆t

0

[d0 + d1(α1(t) + β1(t)x̃r) + d2(α1(t) + β1(t)x̃r)2]dt.

Likewise, the flux at the right boundary ∂Ωr, which is the number of vehicles leaving
the region Ω at the right boundary, is

f̂r =
∫ ∆t

0

fr

∣∣∣x=x̃′l dt =
∫ ∆t

0

[e0 + e1(α1(t) + β1(t)x̃′l) + e2(α1(t) + β1(t)x̃′l)
2]dt.

The initial number of vehicles within region Ω at time t = 0 is

(11) f̂b =
∫ x̃′l+∆x

x̃′l

(α2(0) + β2(0)x)dx.

The final number of vehicles within region Ω at time t = ∆t is

(12) f̂t =
∫ x̃r+∆x

x̃r

(α1(0) + β1(0)x)dx.

From the flow conservation principle, we deduce that

f̂l − f̂r + f̂b − f̂t = 0.

Using (5), we obtain the explicit equation that determines ∆x to be

(13) F1(∆t)∆x2 + F2(∆t)∆x + F3(∆t) = 0,

where for the case ρl = ρr,
F1(∆t) = ρ̄l − ρc,

F2(∆t) = 2[e1(ρc − ρ̄l)∆t + 2e2ρr(ρc − ρ̄l)∆t + (ρr − ρc)δx],

F3(∆t) = −t{[e2
1 + 4(d0 − e0)e2](ρc − ρ̄l)∆t + 2(d0 − e0 − e1ρc − e2ρ

2
c)δx

+2d1ρr[2e2(ρc − ρ̄l)∆t + δx] + 2d2ρ
2
r[2e2(ρc − ρ̄l)∆t + δx]},

and for the case ρl 6= ρr,

F1(∆t) = {2∆t(d2 − e2)(ρr − ρl)(ρ̄l − ρc) + (xr − xl)(ρ̄l − ρc)− δx(ρr − ρl)}/
{2[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρc − ρ̄l)− δx]},

F2(∆t) = {−(xl − xr)[∆t(e1 + 2e2ρr)(ρc − ρ̄l) + (ρc − ρr)δx]
+d1∆t(ρl − ρr)[2e2∆t(ρc − ρ̄l)− δx]
−2d2∆t(ρl − ρr)[∆te1(ρc − ρ̄l) + ρcδx]}/
{[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρc − ρ̄l)− δx]},

F3(∆t) = {∆t{(xl − xr){∆t[e2
1 + 4(d0 − e0)e2](ρc − ρ̄l)

−2(d0 − e0 − e1ρc − e2ρ
2
c)δx}

+2d2{∆t2[e2
1 + 4(d0 − e0)e2](ρl − ρr)(ρc − ρ̄l)

+2∆t{e2[ρcρ
2
r(xl − xr) + ρ2

r ρ̄l(xr − xl) + ρ2
c(ρl − ρr)δx]

−(d0 − e0 − e1ρc)(ρl − ρr)δx} − ρ2
r(xl − xr)δx}

−d2
1∆t(ρl − ρr)[2∆te2(ρc − ρ̄l)− δx]

+2d1ρr(xl − xr)(2∆te2(ρc − ρ̄l)− δx)}}/
{2[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρc − ρ̄l)− δx]}.
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FIGURE 7. Time-space diagram of a positive jump across the critical density at a node.

The shock trajectory can therefore be determined by solving the quadratic equa-
tion

∆x =
−F2(∆t) +

√
F 2

2 (∆t)− 4F1(∆t)F3(∆t)
2F1(∆t)

.

Letting δx → 0 gives the resultant time-space diagram of a positive density jump
across the critical density, as shown in FIGURE 7. The explicit expressions are
given as follows.

For the case ρl = ρr,

(14) F1(∆t) = ρ̄l − ρc,

(15) F2(∆t) = 2[e1(ρc − ρ̄l)∆t + 2e2ρr(ρc − ρ̄l)∆t],

(16)
F3(∆t) = −∆t{[e2

1 + 4(d0 − e0)e2](ρc − ρ̄l)∆t + 2d1ρr[2e2(ρc − ρ̄l)∆t]
+2d2ρ

2
r[2e2(ρc − ρ̄l)∆t]}.

For the case ρl 6= ρr,

(17) F1(∆t) = {2∆t(d2 − e2)(ρr − ρl)(ρ̄l − ρc) + (xr − xl)(ρ̄l − ρc)}/
{2[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρc − ρ̄l)]},

(18)
F2(∆t) = {−(xl − xr)[∆t(e1 + 2e2ρr)(ρc − ρ̄l)] + d1∆t(ρl − ρr)[2e2∆t(ρc − ρ̄l)]

−2d2∆t(ρl − ρr)[∆te1(ρc − ρ̄l)]}/
{[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρc − ρ̄l)]},

(19)
F3(∆t) = {∆t{(xl − xr){∆t[e2

1 + 4(d0 − e0)e2](ρc − ρ̄l)}
+2d2{∆t2[e2

1 + 4(d0 − e0)e2](ρl − ρr)(ρc − ρ̄l)
+2∆t{e2[ρcρ

2
r(xl − xr) + ρ2

rρ̄l(xr − xl)]}}
−d2

1∆t(ρl − ρr)[2∆te2(ρc − ρ̄l)] + 2d1ρr(xl − xr)(2∆te2

(ρc − ρ̄l))}}/{2[2d2∆t(ρl − ρr) + xl − xr][2e2∆t(ρc − ρ̄l)]}.

2.4.2. Explicit edge density expressions. We now show the density expres-
sions along the shock generated from the positive jump. From (4) and (5), we
have

ρr(∆x−, ∆t) = α1(∆t) + β1(∆t)(x̃r + ∆x),
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where α1(∆t) = α0,1−d1β0,1∆t
1+2d2β0,1∆t , β1(∆t) = β0,1

1+2d2β0,1∆t , α0,1 = x̃rρl−x̃lρr

x̃r−x̃l
, and β0,1 =

ρr−ρl

x̃r−x̃l
, and

ρ̄l(∆x+, ∆t) = α2(∆t) + β2(∆t)(x̃′l + ∆x),

where α2(∆t) = α0,2−e1β0,2∆t
1+2e2β0,2∆t , β2(∆t) = β0,2

1+2e2β0,2∆t , α0,2 = x̃′rρc−x̃′lρ̄l

x̃′r−x̃′l
, and β0,2 =

ρ̄l−ρc

x̃′r−x̃′l
.
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FIGURE 8. Time-space diagram of a positive jump across the critical density at a node with ρl = ρr .

Substituting (6), (7), (8) and (9) into these density functions for case ρl = ρr

gives

ρr(∆x−,∆t) = ρr,

ρ̄l(∆x+,∆t) = α2(∆t) + β2(∆t)(x̃′l + ∆x)
= −∆te1+x̄l

2∆te2
+ 1

2∆te2
[x̄l + ∆te1 + 2∆te2ρr

− 2∆t
ρc−ρ̄l

√
e2(e0 − d0 + ρr(e1 − d1 + (e2 − d2)ρr))(ρc − ρ̄l)2]

= ρr − 1
e2(ρc−ρ̄l)

√
e2(e0 − d0 + ρr(e1 − d1 + (e2 − d2)ρr))(ρc − ρ̄l)2.

Note that ρ̄l(∆x+, ∆t) is constant in this case. The resultant time-space diagram
is shown in FIGURE 8.
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FIGURE 9. Time-space diagram of a positive jump across the critical density at a node with ρl 6= ρr .
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For the case ρl 6= ρr,

ρr(∆x−, ∆t) = α1(∆t) + β1(∆t)(x̃r + ∆x)
= −xrρl+xlρr+∆td1(ρr−ρl)

xl−xr+2∆td2(ρl−ρr)

+ ρl−ρr

xl−xr+2∆td2(ρl−ρr)

(
x̄l + −F2(∆t)+

√
F 2

2 (∆t)−4F1(∆t)F3(∆t)

2F1(∆t)

)
,

ρ̄l(∆x+, ∆t) = α2(∆t) + β2(∆t)(x̃′l + ∆x)

= −∆te1+x̄l

2∆te2
+ 1

2∆te2

(
x̄l + −F2(∆t)+

√
F 2

2 (∆t)−4F1(∆t)F3(∆t)

2F1(∆t)

)
,

where the functions F1(∆t), F2(∆t), and F3(∆t) are evaluated by (17)-(19). The
resultant time-space diagram is shown in FIGURE 9, in which the right-hand edge
density is time dependent.

2.5. Propagation of a negative-jump shock. Similar to Section 2.4, we con-
sider only a negative density jump from ρr to ρ̄l across the critical density ρc at a
node, where ρr and ρ̄l belong to Flux II and Flux I, respectively. In this sub-section,
we construct the convex hull of the set {(ρ, y): ρr ≥ ρ ≥ ρ̄l and y ≤ f(ρ)} for the
case ρ̄l < ρ∗, because, similar to the cases presented in Section 2.4, the trajectory
reduces to a single shock for the case ρ̄l ≥ ρ∗ and the explicit expressions of the
trajectory and edge densities are identical to those given in Lu et al. [25].

 

∗
ρ  

1( )f ρ  
2 ( )f ρ  

lρ  rρ  cρ  

FIGURE 10. Convex hull (shaded region) for {(ρ, y): ρr ≥ ρ ≥ ρ̄l and y ≤ f(ρ)} with ρ̄l < ρ∗.

We now focus on the case ρ̄l < ρ∗ and construct the convex hull as shown in
FIGURE 10, in which the tangent at ρ∗ meets the fundamental diagram at ρr. This
tangent represents a shock that jumps fromρr to ρ∗, and the remaining segment
where the boundary follows f1(ρ) represents a rarefaction wave. According to the
relationship s∗ = f ′1(ρ∗), we have

(20) 2d2ρ ∗+d1 =
(d0 + d1ρ ∗+d2ρ∗2)− (e0 + e1ρr + e2ρ

2
r)

ρ ∗ −ρr
.

The tangential density ρ∗ can be directly determined by solving (20) to give

ρ∗ =
d2ρr +

√
(d2ρr)2 − d2(e0 − d0 − d1ρr + e1ρr + e2ρ2

r)
d2

.

Using the same approach as that discussed in Section 2.4, the explicit expressions
for the evolution of a negative jump in time and space are shown as follows. The
trajectory of the shock is

∆x =
−F2(∆t) +

√
F 2

2 (∆t)− 4F1(t)F3(∆t)
2F1(∆t)

.

For the case ρl = ρr, we have

F1(∆t) = ρ̄l − ρc,
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F2(∆t) = 2[d1(ρc − ρ̄l)∆t + 2d2ρr(ρc − ρ̄l)∆t],
F3(∆t) = −∆t{[d2

1 + 4(e0 − d0)d2](ρc − ρ̄l)∆t + 2e1ρr[2d2(ρc − ρ̄l)∆t]
+2e2ρ

2
r[2d2(ρc − ρ̄l)∆t]},

and the edge densities
ρr(∆x−,∆t) = ρr,

ρ̄l(∆x+, ∆t) = α2(∆t) + β2(∆t)(x̃′l + ∆x)
= −∆td1+x̄l

2∆td2
+ 1

2∆td2
[x̄l + ∆td1 + 2∆td2ρr

− 2∆t
ρc−ρ̄l

√
d2(d0 − e0 + ρr(d1 − e1 + (d2 − e2)ρr))(ρc − ρ̄l)2]

= ρr − 1
d2(ρc−ρ̄l)

√
d2(d0 − e0 + ρr(d1 − e1 + (d2 − e2)ρr))(ρc − ρ̄l)2.

The resultant time-space diagram of this negative density jump is shown in FIG-
URE 11.
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FIGURE 11. Time-space diagram of a negative jump across the critical density at a node with ρl = ρr .

For the case ρl 6= ρr, we have

F1(∆t) = {2∆t(e2 − d2)(ρr − ρl)(ρ̄l − ρc) + (xr − xl)(ρ̄l − ρc)}/
{2[2e2∆t(ρl − ρr) + xl − xr][2d2∆t(ρc − ρ̄l)]},

F2(∆t) = {−(xl − xr)[∆t(d1 + 2d2ρr)(ρc − ρ̄l)]
+e1∆t(ρl − ρr)[2d2∆t(ρc − ρ̄l)]
−2e2∆t(ρl − ρr)[∆td1(ρc − ρ̄l)]}/
{[2e2∆t(ρl − ρr) + xl − xr][2d2∆t(ρc − ρ̄l)]},

F3(∆t) = {∆t{(xl − xr){∆t[d2
1 + 4(e0 − d0)d2](ρc − ρ̄l)}

+2e2{∆t2[d2
1 + 4(e0 − d0)d2](ρl − ρr)(ρc − ρ̄l)

+2∆t{d2[ρcρ
2
r(xl − xr) + ρ2

r ρ̄l(xr − xl)]}}
−e2

1∆t(ρl − ρr)[2∆td2(ρc − ρ̄l)] + 2e1ρr(xl − xr)(2∆td2(ρc − ρ̄l))}}/
{2[2e2∆t(ρl − ρr) + xl − xr][2d2∆t(ρc − ρ̄l)]}

and the edge densities

ρr(∆x−,∆t) = α1(∆t) + β1(∆t)(x̃r + ∆x)
= −xrρl+xlρr+∆te1(ρr−ρl)

xl−xr+2∆te2(ρl−ρr)

+ ρl−ρr

xl−xr+2∆te2(ρl−ρr)

(
xr + −F2(∆t)+

√
F 2

2 (∆t)−4F1(∆t)F3(∆t)

2F1(∆t)

)
,

ρ̄l(∆x+, ∆t) = α2(∆t) + β2(∆t)(x̃′l + ∆x)

= −∆td1+x̄l

2∆td2
+ 1

2∆td2

(
x̄l + −F2(∆t)+

√
F 2

2 (∆t)−4F1(∆t)F3(∆t)

2F1(∆t)

)
.

The resultant time-space diagram of this negative density is shown in FIGURE 12.
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FIGURE 12. Time-space diagram of a negative jump across the critical density at a node with ρl 6= ρr .

3. BOUNDARY CONDITIONS

3.1. Highway entrance. In this part, we focus on the boundary condition at the
left boundary x = 0, which is the highway entrance. From solution (4)-(5), we
can see that the general solution with a linear initial condition is not linear in t
for a fixed x unless β = 0, in which case the solution is constant in t. Therefore,
within our piecewise linear (in space) framework, we can only consider the piecewise
constant boundary conditions for an exact solution. A typical boundary condition
at x = 0 that is commonly used for engineering applications is shown in FIGURE
13.

We need to consider the situation in which ρr and the linear function in the first
interval with end values ρ̄l and ρ̄r belong to different regimes in 2, as otherwise the
solution is the same as that given in Lu et al. [25].

When ρr < ρc < ρ̄l, the coefficient in the quadratic equation (13) is the same as
the coefficients listed in Section 2.4. Similarly, when ρ̄l < ρc < ρr the solution can
be determined using the expressions in Section 2.5.
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FIGURE 13. A typical boundary condition at the highway entrance x = 0.

3.2. Highway exit. In this section, we discuss the boundary conditions at the
right boundary x = xend, which is the highway exit. We consider a typical exit
setup with a traffic light that switches between red and green lights. This is similar
to the piecewise constant boundary condition considered for the entrance in the
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previous sub-section. The constant values of the density for the green and red
lights are ρ̄l = 0 and ρ̄l = ρjam, respectively.

When ρ̄l = ρjam, which corresponds to a red light, a left-moving shock is gen-
erated. We again only consider ρr < ρc < ρ̄l, which is the situation in which the
density at the left of xend belongs to the regime of Flux I in 2. The value ∆x that
determines the discontinuity location xend +∆x after time ∆t is given by (13). The

right flux
_

f r in (10) is then simplified to

_

f r = 0,

and the bottom flux
_

f b in (12) is simplified to

_

f b = ρjam∆x.

The coefficients in the quadratic equation (13) can thus be simplified to

F̃1(∆t) = ρjam − ρc,

F̃2(∆t) = 2[e1(ρc − ρjam)∆t + 2e2ρr(ρc − ρjam)∆t],

F̃3(∆t) = −∆t{[e2
1 + 4(d0 − e0)e2](ρc − ρjam)∆t + 2d1ρr[2e2(ρc − ρjam)∆t]

+2d2ρ
2
r[2e2(ρc − ρjam)∆t]}.

Whenρ̄l = 0, which corresponds to a green light, the situation that concerns us is
ρ̄l < ρc < ρr, in which the density at the left of xend belongs to the regime of Flux
II in 2, and the trajectory described in Section 2.5 is formed. The expression of the
resultant discontinuity can be simplified to

F̃1(∆t) = −ρc,

F̃2(∆t) = 2[e1ρc∆t + 2e2ρrρc∆t],

F̃3(∆t) = −[e2
1 + 4(d0 − e0)e2]ρc∆t2 − 4e2d1ρrρc∆t2 − 4e2d2ρ

2
rρc∆t2.

4. SOLUTION PROCEDURE

In this section, we present the solution procedure. We concentrate on determin-
ing the earliest time that the waves (characteristic lines or shocks) interact with one
another. At this time, the construction of the entropy solution must be restarted
based on new piecewise linear initial data. This procedure is repeated until the end
of study period is reached.

The x-axis is first divided into several elements, each of which corresponds to a
piecewise linear density function. On the t-axis, a number of preset time epochs are
set, each of which corresponds to the time points at which the constant density on
the highway entrance changes or the traffic signal on the highway exit switches, as
shown in FIGURE 14. We start from t = 0. For each element, we first calculate the
natural break time τb. For each node, we consider several cases of wave interactions
separately, and then take the smallest time from these cases, which serves as the
point at which the solution procedure must be restarted with a new set of piecewise
linear initial data.
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FIGURE 14. Initial spatial discretization and preset time epoch in the solution procedure.

4.1. Intersection between a shock and a characteristic. When two adjacent
trajectories are both characteristics, it is easy to calculate their intersection time.
For the case of a characteristic intersecting with a shock, we develop a cubic equa-
tion to determine the intersection time between the characteristic and shock with
a density jump across the critical density. For cases in which the jump of a shock
does not include the critical density, the intersection time can be determined using
the method in Lu et al. [25], which is also formulated by finding the root of a cubic
equation.

We consider the situation in which a characteristic from the element boundary
xr = x̄l intersects with the shock from the right boundary x̄r. Without loss of
generality, we assume that the flux function in the left element is

f1(ρ) = d0 + d1ρ + d2ρ
2

and the flux function in the right element is

f2(ρ) = e0 + e1ρ + e2ρ
2.

The two trajectories meet at time t, which gives

(21) x̄l +
−F2(∆t) +

√
F 2

2 (∆t)− 4F1(∆t)F3(∆t)
2F1(∆t)

= xr + (2d2ρl + d1)∆t.

By simplifying (21), we obtain

(22)
(xl − xr + 2∆td2(ρl − ρr))
{[(d1 − e1)2 + 4(d0 − e0)e2 + 4d2(d1 − e1)ρl + 4d2(d2 − e2)ρ2

l ]∆t2

+2(xl − xr)(d1 − e1 + 2d2ρl − e2(ρl + ρr))∆t + (xl − xr)2} = 0.

From (22), we can easily find the roots of the equation. As equation (22) may
include some redundant roots that do not satisfy (21), we need to substitute all
of the determined roots back into (21) to ascertain the validity of the solutions.
We can then determine the earliest intersection point of the characteristic and the
shock by choosing the smallest positive feasible root in equation (22). A similar
procedure can also be applied for the case of a left-hand shock that interacts with
a right-hand characteristic.

4.2. Intersection between two adjacent shocks. This section considers a typ-
ical case in which two shocks meet at time t∗, as shown in FIGURE 15. The inner
element has two edge densities, ρ1 on Shock 1 and ρ2 on Shock 2, at t= 0. The
density function along the inner edge is denoted as D1(t) for Shock 1 and as D2(t)
for Shock 2. Chen et al. [2] showed that the density variation alongside the shock
is linear and monotonic, and corresponds to the initial density variation in a hy-
perbolic system. From the monotonic property of the density variation along the
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shock, Chen et al. [2] were able to prove that the two neighboring shocks will in-
tersect if either the rightmost characteristic meets Shock 1 at t1 or the leftmost
characteristic meets Shock 2 at t2, or both. In this case, the intersection time t∗ is
less than min(t1, t2) and is unique. An example is shown in FIGURE 16.
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FIGURE 15. Trajectories of two neighboring shocks.
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FIGURE 16. The rightmost characteristic meets Shock 1 at time t1, and the leftmost characteristic

meets Shock 2 at time t2.

We can apply the same rationale as described in Wong and Wong [35] to de-
termine the interaction between two adjacent shocks based on their trajectories.
However, the efficiency of the procedure can be further improved using the the-
orem in Chen et al. [2]. As t1 and t2 can be readily found by solving the cubic
equation (22), we can efficiently define the search range of the intersection point
so that the overall computing time can be reduced. When we encounter scenar-
ios in which the density varies across the critical density within an element at the
beginning of the study period, then the x-axis needs to be divided into a number
of intervals, the initial density within each of which is given by a linear function
ρ(x, 0) = α + βx that is completely contained in the regime ρ ≤ ρc or ρ ≥ ρc.
From [2], we know that the density of any element that does not include the critical
density will not include the critical density at any future time before it breaks. To
determine the trajectory of a density jump across the critical density, we can infer
from the density evolution equations that the density along the resultant shock is
linear within the range of the initial density span. Hence, the method in [2] can
also be used for cases involving such trajectories, as follows.

As the density alongside a shock varies monotonically, when each pair of trajec-
tories intersects, the right-hand edge density of the trajectory on the left is equal
to the left-hand edge density of the trajectory on the right. We therefore use the
difference between the corresponding edge densities for each pair of trajectories to
calculate the intersection point and determine the next renewal time epoch. The
search range is (0, ts), where ts = min(t1, t2).

Let D1(t) be the right-hand edge of the trajectory on the left and D2(t) the left-
hand edge of the trajectory on the right, as shown in FIGURE 16. Their explicit
expressions are derived in Sections 2.4 and 2.5. Initially, we have D1(0) = ρl

and D2(0) = ρr for the element between these two trajectories. We define the
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function of density difference as Z(t) = D2(t) − D1(t), in which Z(0) and Z(ts)
must take different signs and the root of Z(t) is unique within the range (0, ts)
(see [2]). Without loss of generality, we assume that Z(0) > 0 and Z(ts) < 0. The
intersection time can then be easily determined using the following procedure.

Step 1: Compute Z(0) > 0.
Step 2: Compute Z(ts) < 0.
Step 3: If Z(ts) > 0, then there is no intersection point for this element, and the

algorithm terminates; otherwise go to Step 4.
Step 4: Set ta = 0 and tb = ts.
Step 5: Update ts = Z(ta)tb−Z(tb)ta

Z(ta)−Z(tb)
.

Step 6: (1) If Z(ts) > ε, then set ta = ts, and go to Step 5.
(2) If Z(ts) < −ε, then set tb = ts, and go to Step 5.
(3) If |Z(ts)| ≤ ε, then t∗ = ts is the solution, where ε is a positive precision

tolerance.
For the opposite case Z(0) < 0 and Z(ts) > 0, the same procedure with slight

modification can be used to compute the root.

4.3. Procedure. Starting from t = 0, we first determine the earliest preset time
∆t (exogenously given and fixed), and then calculate the natural break time, ∆tib
for each element (if any), as discussed in Section 2.2. For each node, the trajectory
of the characteristic or shock emanating from the nodal position at the current
time epoch can be deduced from the initial element profiles (see Sections 2.2-2.5).
The trajectory of the characteristic or shock from the first node on the left can be
determined by the boundary condition of the highway entrance (see Section 3.1),
and the boundary meeting time of the last element ∆texit can be obtained using
the method in Section 3.2. The intersection time ∆tm,m+1 for each pair of adjacent
characteristics or shocks m and m+1 is determined using the procedures in Sections
4.1 and 4.2. The next renewal time is then computed as the earliest time of all of
these wave interactions by

trenew = min
(
∆t,∆texit, ∆tib, ∀i, tm,m+1∀m

)
.

We update the density profile at this renewal time using the explicit expressions
developed in the previous sections. The procedure is then repeated until the end
of study period is reached.

FIGURE 17. The flow-density relationship used in the numerical examples.
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5. NUMERICAL EXAMPLES

In this section, we give numerical examples to illustrate the explicit formulae for
the entropy solutions obtained in the previous sections. The flow-density relation-
ship is given by

f(ρ) =
{

f1(ρ) = −0.625ρ2 + 100ρ, 0 ≤ ρ < 120,
f2(ρ) = 0.03125ρ2 − 27.5ρ + 5850, 120 ≤ ρ < 360,

which is also shown in FIGURE 17. The first two numerical examples are Riemann
problems with the initial conditions

ρ(x, 0) =
{

ρl, 0 ≤ x < 10,
ρr, 10 ≤ x < 20,

FIGURE 18. The exact entropy solution obtained by the front tracking algorithm (solid line) and the

numerical solution derived using the WENO scheme with N = 1000 uniform grid points (circles) for

Example 1. Left: case 1-a at t = 30 min; middle: case 1-b at t = 12 min; right: case 1-c at t = 18 min.

5.1. Example 1 (Positive jump). Three typical cases are considered as follows.
Case 1-a: ρl = 20, ρr = 300
In this case, the solution consists of a single shock, as shown in FIGURE 18 (left

figure).
Case 1-b: ρl = 50, ρr = 350
In this case, the solution consists of a shock on the left and a rarefaction on the

right, as shown in FIGURE 18 (middle figure).
Case 1-c: ρl = 80, ρr = 350
In this case, the solution consists of a shock on the left, a fan of constant critical

density in the middle, and a rarefaction on the right, as shown in FIGURE 18 (right
figure).

FIGURE 19. The exact entropy solution obtained by the front tracking algorithm (solid line) and the

numerical solution derived using the WENO scheme with N = 1000 uniform grid points (circles) for

Example 2. Left: case 2-a at t = 18 min; right: case 2-b at t = 15 min.
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5.2. Example 2 (Negative jump). Two typical cases are considered as follows.
Case 2-a: ρl = 350, ρr = 50
In this case, the solution consists of a shock on the left and a rarefaction on the

right, as shown in FIGURE 19 (left figure).
Case 2-b: ρl = 350, ρr = 100
In this case, the solution consists of a single shock, as shown in FIGURE 19

(right figure).

FIGURE 20. Boundary and initial conditions for Example 3. Left: entrance density variation on the

time axis at x = 0; right: (b) initial density profile on the spatial axis at t = 0.

The exact solutions to these problems as worked out using the front tracking
procedure are shown as solid lines in FIGURES 18 and 19, and are compared with
the numerical solution obtained by the fifth-order WENO scheme [12, 31, 36, 39]
using N = 1000 uniform grid points, which are shown as circles on the respective
figures. We can see that the results agree very well for all of the cases.

TABLE 1. Density functions of the elements at different time epochs for Example 3.

TABLE 2. Compares the computing times of the front tracking algorithm and the WENO

scheme (for N = 5000), and shows that the WENO scheme requires about 150 times more

computation time than the front tracking algorithm.

5.3. Example 3 (Traffic incident). Consider a long homogenous freeway of 20
km in length. The entrance density is 15 veh/km. Due to an incident near the
downstream end of the freeway, the traffic density profile that is shown in Figure
20 (left figure) is formed in which a jam-packed condition 2 km long occurs 13
to 15 km from the upstream entrance to the freeway. To release the traffic jam
condition downstream, the authority blocks the freeway entrance for 8 minutes,
after which traffic is again released from the freeway entrance at a capacity density
of 80 veh/km. After 4 minutes, the entrance flow returns to normal with a density
of 15 veh/km. The variation in the traffic density at the upstream entrance of the
freeway is illustrated in FIGURE 20 (right figure).
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Time (min) Element xl(km) xr(km) ρl(veh/km) ρr(veh/km)

8.0 1 0.000 12.083 0.0 15.0

2 12.083 12.474 15.0 15.0

3 12.474 14.333 360.0 360.0

4 14.333 15.070 360.0 227.4

5 15.070 20.000 101.2 73.8

8.248 1 0.000 0.414 80.0 0.0

2 0.414 12.458 0.0 0.0

3 12.458 14.313 360.0 360.0

4 14.313 14.988 360.0 232.5

5 14.988 20.000 101.0 74.0

11.494 1 0.000 5.824 80.0 0.0

2 5.824 12.458 0.0 0

3 12.458 14.042 360.0 360.0

4 14.042 20.000 99.1 75.6

12.0 1 0.000 6.667 80.0 0.0

2 6.667 12.458 0.0 0.0

3 12.458 13.920 360.0 360.0

4 13.920 20.000 98.8 75.8

15.475 1 0.000 2.718 15.0 15.0

2 2.718 12.458 62.5 0.0

3 12.458 13.081 360.0 360.0

13.081 20.000 97.3 76.7

18.958 1 0.000 5.874 15.0 15.0

2 5.874 12.237 54.3 26.4

3 12.237 20.000 96.3 77.3

28.570 1 0.000 15.572 15.0 15.0

2 15.572 20.000 85.4 78.2

35.300 1 0.000 20.000 15.0 15.0

Method
Example 3 Example 4

Time steps Computing time Time steps Computing time

Front tracking 7 2 seconds 144 7 seconds

WENO 20834 308 seconds 20691 347 seconds

FIGURE 21. Time-space diagram of evolution waves for Example 3.

The solution is shown in TABLE 1, and the space-time diagram of the waves
involved is illustrated in FIGURE 21. FIGURE 22 shows the exact solution to
the problem as worked out using the expressions developed in the foregoing section
(shown as solid lines), and compares it with a numerical solution obtained using the
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fifth order WENO scheme using N = 5000 uniform grid points (shown as circles).
We can again see that the two outcomes agree quite well. From these figures, we
can clearly observe the formation of a wide moving jam with two very sharp shock
fronts at both ends, which is a traffic phenomenon that is commonly observed on
highways and well studied [13,18–20,24,37,38].

FIGURE 22. The exact entropy solution obtained by the front tracking algorithm (solid line) and the

numerical solution derived using the WENO scheme with N = 5000 uniform grid points (circles) for

Example 3. Top left: t = 8 min; top right: t = 12 min; bottom left: t = 15.475 min; bottom right: t =

18.958 min.

FIGURE 23. Periodic signal settings at the highway exit for Example 4.

5.4. Example 4 (Signal control). This example shares the same initial condi-
tion and entrance boundary condition as those described in Example 3. However,
at the exit boundary, a traffic signal is installed with a repeated pattern of 1 minute
of red light followed by 2 minutes of green light, as shown in FIGURE 23. The
exact solution to this problem is again worked out using the expressions developed
in the foregoing section, and is shown as solid lines in FIGURE 24. This solution
is then compared with the numerical solution obtained using the WENO scheme
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and N = 5000 uniform grid points, which is shown as circles in the figure. We can
again see that the two outcomes agree quite well. The computing times are also
shown in TABLE 2, from which we can see that the WENO scheme requires about
50 times more computing time than the front tracking algorithm.

FIGURE 24. The exact entropy solution obtained by the front tracking algorithm (solid line) and the

numerical solution derived using the WENO scheme with N = 5000 uniform grid points (circles) for

Example 4. Top left: t = 6 min; top right: t = 10 min; bottom left: t = 15 min; bottom right: t =

20min.

6. CONCLUSION

In this paper, we have adopted the piecewise quadratic, continuous, non-smooth,
and non-concave fundamental diagram in a front tracking algorithm for the LWR
model. The algorithm is found to be more flexible in its ability to fit well with
observed data, which results in a more realistic traffic flow model to describe traffic
movement on highways. Explicit expressions for the path trajectory of the density
jump across the critical density have been derived, and the solution procedure
is outlined. Several numerical examples have been presented to demonstrate the
effectiveness of the constructed entropy solutions for both simple Riemann initial
conditions and representative traffic flow problems. A comparison of the results
from the front tracking algorithm with numerical solutions obtained using a fifth-
order WENO scheme shows the front tracking algorithm to be more efficient than a
finite-difference scheme, and indicates that it has promising applications for solving
traffic flow problems. We also note that although we use traffic flow problems
to demonstrate the solution algorithm, it can also be used to solve general scalar
conservation equations with piecewise quadratic flux functions.
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