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DISCONTINUOUS GALERKIN METHODS FOR

CONVECTION-DIFFUSION EQUATIONS FOR VARYING AND

VANISHING DIFFUSIVITY

J. PROFT AND B. RIVIÈRE

Abstract. This work formulates and analyzes a new family of discontinuous

Galerkin methods for the time-dependent convection-diffusion equation with

highly varying diffusion coefficients, that do not require the use of slope limit-

ing techniques. The proposed methods are based on the standard NIPG/SIPG

techniques, but use special diffusive numerical fluxes at some important inter-

faces. The resulting numerical solutions have an L
2 error that is significantly

smaller than the error obtained with standard discontinuous Galerkin methods.

Theoretical convergence results are also obtained.
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1. Introduction and Problem Definition

In this work we explore the development and analysis of discontinuous Galerkin
methods applied to the solution of linear advection-diffusion equations

(1) ∂tu + ∇ · (βu − ǫ∇u) = f, in Ω × (0, T ).

Although problems of this type occur in many applications, we are primarily mo-
tivated by the modeling of flow in porous media such as petroleum reservoir and
groundwater aquifer simulation. The physical, geological, and chemical properties
of the medium may lead to a degeneracy in the spatially varying diffusion coefficient
of the mathematical equations describing the model.

Classical numerical methods exhibit instability in the solution even in the non-
degenerate case, when the diffusion coefficient is sufficiently small compared to the
advection coefficient. In such a situation, the ratio of advection to diffusion is suffi-
ciently high to impose hyperbolic-type behavior in the solution and the numerical
solution is incapable of capturing the resulting boundary layer phenomenon. Con-
sequently, even though sufficient regularity exists in the mathematical description
of the problem to expect stable results, the numerical scheme is unable to recog-
nize the existence of small and possibly zero diffusion leading to extreme numerical
instabilities. Although this phenomena may be resolved by refinement of the mesh,
there is a corresponding considerable increase in computational effort.

Advection-diffusion equations of this type have been discretized using classical
finite element and finite difference methods that typically utilize an operator split-
ting technique to handle the difficulties associated with advective transport and
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diffusion separately [23, 16]. Such computational methods often utilize slope lim-
iting procedures to supress the amount of unphysical oscillations in the numerical
solution or the inclusion of a streamline-diffusion stabilization term [15]. Addi-
tionally, domain decomposition techniques utilizing differing numerical methods on
distinct subdomains have been proposed to model the multi-physics aspects of the
problem [12, 25]. In this paper, we propose an adaptive flux technique to maintain
stability, based on a discontinuous Galerkin (DG) discretization, that minimizes the
L2 norm of the error and makes the use of slope limiting techniques superfluous.

DG methods possess several characteristics which render them useful in many ap-
plications. The flexibility of the method allows for element-wise polynomial degree
approximation and general non-conforming meshes. Some well known versions ap-
plied to elliptic equations include the symmetric interior penalty method (SIPG) [2],
the OBB method [3], the non-symmetric interior penalty Galerkin method (NIPG)
[20] and the incomplete interior penalty version (IIPG) [8]. In [14], the analysis is
extended to advection-diffusion-reaction problems with variable tensor-valued diffu-
sion but the proposed technique still exhibits the same instabilities as the classically
defined DG methods we consider herein. DG methods have been applied to trans-
port equations [19, 24] where the estimates derived are semi-discrete and present
numerical examples for constant diffusion only. Alternative DG methods based on
the discretization of hyperbolic equations include the local discontinous Galerkin
method [6], subsequently extended by various authors to advection-diffusion equa-
tions.

The case of a spatially dependent, possibly degenerate diffusion coefficient has
not been analyzed previously in the context of DG methods. In this work, our
focus is to improve the numerical results in the case of a small (and possibly de-
generate) diffusion coefficient without resorting to the use of slope-limiters nor the
considerable increase in computational cost associated with mesh refinement. Un-
der the assumption that the mesh fits the discontinuities of the diffusion coefficient,
our scheme successfully detects the difficult boundary layer region and adaptively
switches techniques to maintain stability. The boundary layer region occurs when
the advection-diffusion ratio is sufficiently high that the method cannot resolve
the small scale solution behavior. Instead, it treats the problem as the degener-
ate diffusion case where sufficient mathematical regularity does not exist to justify
use of the SIPG/NIPG method. Indeed, the use of an averaged flux is only valid
in the case of a continuous solution, which is not mathematically accurate in the
degenerate diffusion case at the interface from low to high diffusivity. Only when
the advection-diffusion ratio is relatively small can the original numerical technique
recognize the small scale phenomena, i.e. non-degenerate diffusion. Our adaptive
method automatically recognizes these regions of numerical instability and success-
fully produces an accurate, stable, and relatively efficient solution.

Verification is the process of demonstrating that a computational model accu-
rately approximates the exact solution to a mathematical model. The identification
and quantification of errors in the corresponding numerical implementation is a cen-
tral component of this process [1, 22]. Our paper deals with verification in the sense
that we show that the standard DG methods yield poor L2 accurary with respect to
benchmark solutions. We propose new adaptive DG methods that solve the math-
ematical model problem accurately. Moreover, our verification analysis is valid for
a spatially varying diffusion coefficient that may possibly be degenerate. We obtain
theoretical estimates for the L2 norm of the error and we show numerically that
our proposed method yields a smaller error.
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In the following section, we define the formulation of our semi-discrete scheme.
Error estimates are proved in Section 3. Both implicit and explicit fully discrete
schemes are analysed in Section 4. Section 5 contains the adaptive scheme and
corresponding analysis. Finally numerical examples are presented in Section 6.

2. Formulation

The specific equation we consider is of advection-diffusion type defined on a
bounded polygonal domain Ω in R

n, n = 1, 2, 3,

(2) ∂tu + ∇ · (βu − ǫ∇u) = f, in Ω × (0, T ),

supplemented with boundary and initial conditions

u(x, t) = u0(x), x ∈ Ω, t = 0,(3)

(βu(x, t) − ǫ∇u(x, t)) · n∂Ω = βuin · n∂Ω, x ∈ ∂Ωin, t ≥ 0,(4)

−ǫ∇u(x, t) · n∂Ω = 0, x ∈ ∂Ωout, t ≥ 0,(5)

where u0 ∈ L2(Ω) and uin ∈ L2(∂Ωin). We assume that the velocity β is divergence-
free: ∇ · β = 0. Define inflow and outflow regions ∂Ωin = {x ∈ ∂Ω : β · n∂Ω < 0}
and ∂Ωout = {x ∈ ∂Ω : β · n∂Ω ≥ 0} respectively. The unit vector n∂Ω is outward
to the boundary ∂Ω.

We assume that the domain Ω is partitioned into two polygonal subdomains ΩH

and ΩP . We assume that the spatially dependent function ǫ = ǫ(x) is bounded in
Ω uniformly: 0 ≤ ǫ∗ ≤ ǫ ≤ ǫ∗. In general, ǫ may vary over the domain with several
orders of magnitude. However we assume that ǫ takes small values in the region
ΩH (for example ǫ = O(10−4)) and that ǫ takes larger values in the region ΩP (for
example ǫ = O(1)). For readibility, we denote ǫH = ǫ|ΩH

and ǫP = ǫ|ΩP
. Let Γ

define the interface between ΩP and ΩH . Conventionally set the unit normal nΓ

on Γ to face outward from ΩP and inward to ΩH. Define ΓHP to be the subset of Γ
through which the flow crosses from hyperbolic solution behavior (small diffusion
coefficient) to parabolic solution behavior subdomains:

ΓHP = {x ∈ Γ : β · nΓ < 0}.

The accuracy of the numerical solution at this interface ΓHP from low to high
diffusivity (and not vice-versa) is of primary interest, since the numerical solution
may exhibit instability resulting in overshoot at this location.

Continuity of the total flux (ie the solution and the flux) must hold everywhere
throughout the domain; however, in the limiting case where ǫ = 0 on ΩH , only
the flux is continuous on the subset ΓHP [13, 17]. Although the flow is continuous
elsewhere in the domain, at this interface there is a discontinuity in the solution.
Even in the case where diffusion is nonzero but small, the numerical solution mim-
ics this limiting case and may exhibit overshoot on ΓHP [10]. Consequently, we
discretize the advection-diffusion equation via DG interior penalty techniqes and
explore strategies for defining stable numerical flux functions on ΓHP.

Let Th = {Ωe}e be a nondegenerate shape-regular subdivision of Ω such that
ΓHP is the union of a subset of edges in 2D (and faces in 3D). In other words, an
element Ωe is either a subset of ΩH or a subset of ΩP . As usual, we denote he to be
the diameter of element Ωe and h the maximum diameter of elements in Th. Let Fh

be the set of faces belonging to elements Ωe ∈ Th and partition Fh into distinct sets
F i

HP∪F i∪F ∂
in∪F ∂

out, where F i
HP denotes the set of interior faces on interface region

ΓHP, F i denotes the set of remaining interior faces, F ∂
in the set of faces located on

∂Ωin, and F ∂
out the set of faces located on ∂Ωout. To each face F ∈ Fh, we associate
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a unit normal vector nF such that nF coincides with n∂Ω on F ∂
in ∪ F ∂

out and with
nΓ on F i

HP. Let ∆H denote the set of elements Ωe ⊂ ΩH such that the intersection
∂Ωe ∩ F i

HP contains at least one edge (or face). Define

ǫ∆H = max
x∈∆H

ǫH(x).

Let p be a positive integer. Define the finite element approximating space

Vh = {vh ∈ L2(Ω) : ∀Ωe ∈ Th(Ω), vh|Ωe
∈ P

p(Ωe)},

where P
p(Ωe) is the set of polynomials of total degree less than or equal to p.

Let (·, ·)Ωe
and 〈·, ·〉F denote the L2 inner-product over Ωe ∈ Th and F ∈ Fh

respectively. The corresponding L2 norm is denoted by ‖ · ‖Ωe
or ‖ · ‖F . Let Hk(Ω)

be the standard Sobolev space with norm ‖ · ‖Hk(Ω) and semi-norm | · |Hk(Ω). Let

Hk(Th) be the broken Sobolev space.

Hk(Th) = {v ∈ L2(Ω) : ∀Ωe ∈ Th(Ω), v|Ωe
∈ Hk(Ωe)},

with norm ‖ · ‖Hk(Th) = (
∑

Ωe∈Th
‖ · ‖2

Hk(Ωe))
1/2. Let L2(0, T ; Hk(Th)) denote

the space of functions v with
∫ T

0 ‖v(t)‖2
Hk(Th) < ∞. For any interior face F =

∂Ωe1
∩ ∂Ωe2

with nF pointing from Ωe1
to Ωe2

, we define the jump [·] and average
operators {·}:

∀vh ∈ Vh, [vh] = vh|Ωe1
− vh|Ωe2

, {vh} = 0.5(vh|Ωe1
+ vh|Ωe2

).

We also define upwind and downwind quantities, using characteristic functions 1{·}:
(6)

v↑F = v|Ωe1
1{β·nF≥0} + v|Ωe2

1{β·nF <0}, v↓F = v|Ωe1
1{β·nF <0} + v|Ωe2

1{β·nF ≥0}.

For uh, vh ∈ Vh, define the bilinear form

A(uh, vh) = −
∑

Ωe∈Th

(βuh − ǫ∇uh,∇vh)Ωe
+

∑

F∈F i

|F |−1〈σF [uh], [vh]〉F

+
∑

F∈F i

〈βu↑
h · nF , [vh]〉F +

∑

F∈F ∂
out

〈βuh · nF , vh〉F

−
∑

F∈F i

〈{ǫ∇uh} · nF , [vh]〉F + κ
∑

F∈F i

〈{ǫ∇vh} · nF , [uh]〉F

+ a(uh, vh) + d(uh, vh),(7)

and linear form

(8) L(vh) = (f, vh)Ω −
∑

F∈F ∂
in

〈βuin · nF , vh〉F .

The coefficient κ takes the values: κ ∈ {+1,−1, 0}, which yields respectively the
non-symmetric, symmetric and incomplete interior penalty Galerkin method (ex-
cept on the interface ΓHP). The penalty parameter σF may vary from face to face,
but for simplicity of writing we might drop the subscript F and use the notation
σ. We will choose σ to be equal to 1 if κ = 1 (non-symmetric case) and bounded
below by a large enough constant σ0 if κ = −1 (symmetric case) (see [11]) or if
κ = 0. Here, |F | denotes the (d − 1)-dimensional measure of F .

One aim of this paper is to study numerically and theoretically different ap-
proaches for defining the advective a(·, ·) and diffusive d(·, ·) fluxes on ΓHP. In [18],
we explore the results obtained by upwinding, averaging and downwinding the ad-
vective term and show numerically that, as expected, stable and accurate solutions
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are obtained only for the case of upwinding. Consequently, we fix the advective
interface flux to be upwinded:

(9) a(uh, vh) =
∑

F∈F i
HP

〈(βuh)↑ · nF , [vh]〉F ,

and consider the following numerical fluxes for the diffusion:

d(uh, vh) = dν(uh, vh) = −ν(uh, vh) + κ̃ν(vh, uh) + jσ̃ν
(uh, vh),

d(uh, vh) = dα(uh, vh) = −α(uh, vh) + κ̃α(vh, uh) + jσ̃α
(uh, vh),

where we have

ν(uh, vh) =
∑

F∈F i
HP

〈(ǫ∇uh)↑ · nF , [vh]〉F ,

α(uh, vh) =
∑

F∈F i
HP

〈{ǫ∇uh} · nF , [vh]〉F ,

jσ̃(uh, vh) =
∑

F∈F i
HP

|F |−1〈σ̃[uh], [vh]〉F .

In this paper, we refer as the improved DG method the case where d = dν . If
κ = σF = κ̃ = 1 and σ̃ν = ǫH , then the method is called improved NIPG. If
κ = κ̃ = −1 (resp. 0) with σF and σ̃ν large enough, the method is called improved
SIPG (resp. improved IIPG). We show that the improved DG method is convergent
and yields a minimal L2 error in space if there is an abrupt and substantial jump
in the diffusivity coefficient.

In the general case where the diffusivity coefficient varies over a wide range of
values, the proposed method is called adaptive DG method and it consists of a
linear combination of the improved fluxes dν and the averaged fluxes dα. To be
more precise, the adaptive DG method uses the following flux on F i

HP:

dθ(uh, vh) =
∑

F∈F i
HP

〈−(1 − θ)(ǫ∇uh)↑ · nF + (1 − θ)|F |−1σ̃ν [uh], [vh]〉F

+
∑

F∈F i
HP

〈κ̃(1 − θ)(ǫ∇vh)↑ · nF , [uh]〉F +
∑

F∈F i
HP

〈−θ{ǫ∇uh} · nF + θ|F |−1σ̃α̃[uh], [vh]〉F

+
∑

F∈F i
HP

〈κ̃θ{ǫ∇vh} · nF , [uh]〉F(10)

where θ is the function varying in space, defined by:

∀x ∈ ΓHP, θ(x) =
ǫH(x)

ǫP (x)
.

This adaptive flux automatically detects the appropriate amount of upwinding ver-
sus averaging. We show in Section 5 that the adaptive DG method is convergent
and that it minimizes the L2 norm of the error in space for varying diffusivity
coefficients.

We recall that the choice dα corresponds to the standard interior penalty Galerkin
flux (see [19]) if σ̃α is nonzero (symmetric if κ̃ = −1, non-symmetric if κ̃ = 1) and
to the IIPG flux if κ̃ = 0. If both σ̃α and κ̃ are zero, the case d = dα is simply
an averaged diffusive flux without any additional terms. In [18] we have explored
various choices of fluxes.
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For any t > 0, the continuous in time solution uh(t) ∈ Vh of (2) satifies

∀vh ∈ Vh, (∂tuh, vh)Ω + A(uh(t), vh) = L(vh),(11)

∀vh ∈ Vh, (uh(0), vh)Ω = (u0, vh)Ω.(12)

Our investigation of various flux functions defined on ΓHP is motivated by the
numerical instabilities of the computed solution when the diffusion coefficient on
ΩH is very small. In the limiting case ǫ = 0 on ΩH , the interface conditions are rela-
tively well understood. In [13], a vanishing viscosity singular perturbation analysis
is employed to derive appropriate theoretical interface conditions: continuity of the
flux must hold across any hyperbolic and parabolic interface, whereas continuity
of the solution is not satisfied on the subset ΓHP. We remark that these interface
conditions were used in [7] to establish well-posedness of a one dimensional periodic
degenerate diffusion advection-diffusion equation. These conditions were numeri-
cally verified in [10] where it is shown that for a non-vanishing but small ǫH , the
modified NIPG method with flux d = 0 yields a stable solution without overshoot
whereas the standard NIPG method produces an incorrect solution.

To better motivate our work, we present a numerical example indicative of the
numerical difficulties associated with small diffusivities. The coarse mesh is defined
in Fig. 1 with gray areas indicating ΩH and white areas ΩP . We consider the case
β = (1, 0), ǫP = 1 and ǫH = 10−3. The problem is described in detail in Section 6.1.
Fig. 2 (left) shows the ”exact” solution, which is in fact an overkill solution obtained
on a very fine mesh. The standard NIPG solution obtained on the coarse mesh is
shown in Fig. 2 (middle); this solution clearly exhibits large amount of overshoot
near the interface ΓHP. Fig. 2 (right) shows our proposed adaptive flux solution on
the coarse mesh which is almost identical to that of the exact solution. All three
solutions are for linear basis functions and explicit time discretization.

Figure 1. Mesh and domain partition of hyperbolic-type sub-
domains where ǫH = 10−3 (gray) and parabolic-type subdomain
where ǫP = 1 (white).

3. Analysis

In this section we analyze the DG scheme (11)-(12) with the improved and
averaged diffusive fluxes d = dν , dα. We prove stability bounds, then state the con-
sistency of the scheme and derive error estimates in the L2 norm. We first define
one condition that may be assumed to hold for certain values of κ̃, σ̃α and σ̃ν .

Condition I: The penalty parameters σ̃ν and σ̃α are equal to a sufficiently large
enough constant σ̃0.
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Figure 2. ”Exact” overkill solution (left), standard explicit NIPG
solution (d = dα and κ = σF = κ̃ = σ̃α = 1) (middle) and adaptive
NIPG solution (d = dθ with κ = σF = κ̃ = σ̃α = 1 and σ̃ν = ǫH

(right) at times t0 (solid line), t1 (dashed line) and t2 (dotted line).

Let us define the norm ||| · |||σ̃:

|||vh|||
2
σ̃ =

∑

Ωe∈Th

‖ǫ1/2∇vh‖
2
Ωe

+
∑

F∈F i∪F i
HP

‖|β · nF |
1/2[vh]‖2

F

+
∑

F∈F ∂
in
∪F ∂

out

‖|β · nF |
1/2vh‖

2
F +

∑

F∈F i

|F |−1‖σ
1/2
F [vh]‖2

F + jσ̃(vh, vh).(13)

In the definition above, it is understood that σ̃ is equal to σ̃ν for the choice d = dν

and σ̃α for the choice d = dα. The notation σ̃ will be used for readability provided
there is no confusion.

3.1. Analysis Tools. In subsequent analysis, we will use the following trace in-
equalities with respect to he = diam(Ωe) [2]:

∀v ∈ H1(Ωe), ‖v‖2
F ≤ Ct

( 1

he
‖v‖2

Ωe
+ he|v|

2
H1(Ωe)

)

,(14)

∀v ∈ H2(Ωe), ‖∇v · nF ‖
2
F ≤ Ct

( 1

he
|v|2H1(Ωe) + he|v|

2
H2(Ωe)

)

.(15)

For polynomial functions, we use the following trace lemma [21]:

Lemma 3.1. For element Ωe in R
n, (n = 2, 3) with he = diam(Ωe), let F be an

edge or a face of Ωe with unit normal vector nF . Then, if vh is a polynomial on
Ωe, there exists a constant Cτ independent of Ωe such that

‖vh‖F ≤ Cτh−1/2
e ‖vh‖Ωe

,(16)

‖∇vh · nF ‖F ≤ Cτh−1/2
e ‖∇vh‖Ωe

.(17)

Recall the standard inverse inequality [4, 9]: there exists a constant Ci indepen-
dent of Ωe such that for any vh polynomial on Ωe

(18) ‖vh‖H1(Ωe) ≤ Cih
−1
e ‖vh‖Ωe

.

We will have occasion to use a function u∗(t) ∈ Vh that satisfies the following
approximation properties: For q = 0, 1, 2,

∀t ∈ (0, T ), ∀Ωe, ‖u(t) − u∗(t)‖Hq(Ωe) ≤ Cahp+1−q|u(t)|Hp+1(Ωe).(19)

∀t ∈ (0, T ), ∀Ωe, ‖∂tu(t) − ∂tu
∗(t)‖Ωe

≤ Cahp|∂tu(t)|Hp(Ωe).(20)
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Finally, we will use the constant C throughout the paper for a generic constant
independent of h and ǫ, unless specified otherwise. We will also explicitly add
to the constant the parameters on which this constant depends: for instance, the
constant Ci,τ,σ depends on Ci, Cτ , and σ.

3.2. Stability and Consistency. In this section, we derive stability bounds for
the proposed schemes and determine consistency.

Theorem 3.2. Let uh be the semi-discrete solution in Vh to (11)-(12). Then uh

satisfies the bound:
(21)

‖uh(T )‖2
Ω+

∫ T

0

|||uh(t)|||2σ̃dt ≤ ‖uh(0)‖2
Ω+Cτ,ǫ∗

∫ T

0

(‖f‖2
Ω+

∑

F∈F ∂
in

‖|β·nF |
1/2uin‖

2
F )dt,

where Cτ,ǫ∗ is a constant independent of h and ǫ∗ but dependent on Cτ and ǫ∗.
This stability bound holds unconditionally except in the cases κ̃ ∈ {−1, 0} where
Condition I is needed.

Proof. Fix t > 0. To simplify notation, we write uh(t) = uh. Using Green’s
formula and the fact that ∇ · β = 0, we have [5]:

−
∑

Ωe∈Th

(βuh,∇uh)Ωe
= −〈β · n∂Ω,

1

2
u2

h〉∂Ω −
∑

F∈F i∪F i
HP

〈β · nF ,
1

2
[u2

h]〉F .

Thus taking vh = uh in (11) yields:

1

2

d

dt
‖uh‖

2
Ω +

∑

Ωe∈Th

‖ǫ1/2∇uh‖
2
Ωe

+
1

2

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[uh]‖2

F

+
1

2

∑

F∈F ∂
in
∪F ∂

out

‖|β · nF |
1/2uh‖

2
F +

∑

F∈F i

|F |−1‖σ
1/2
F [uh]‖2

F

−(1 − κ)
∑

F∈F i

〈{ǫ∇uh · nF }, [uh]〉F + d(uh, uh) = L(uh).(22)

Using Young’s inequality, we bound L(uh):

|L(uh)| ≤
1

4

∑

F∈F ∂
in

‖|β · nF |
1/2uh‖

2
F +

∑

F∈F ∂
in

‖|β · nF |
1/2uin‖

2
F +

1

4
‖f‖2

Ω + ‖uh‖
2
Ω,

and the equation (22) becomes:

1

2

d

dt
‖uh‖

2
Ω +

∑

Ωe∈Th

‖ǫ1/2∇uh‖
2
Ωe

+
1

2

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[uh]‖2

F

+
1

2

∑

F∈F ∂
out

‖|β · nF |
1/2uh‖

2
F +

1

4

∑

F∈F ∂
in

‖|β · nF |
1/2uh‖

2
F

+
∑

F∈F i

|F |−1‖σ
1/2
F [uh]‖2

F + d(uh, uh) ≤
∑

F∈F ∂
in

‖|β · nF |
1/2uin‖

2
F +

1

4
‖f‖2

Ω + ‖uh‖
2
Ω

+|(1 − κ)
∑

F∈F i
HP

〈{ǫ∇uh · nF }, [uh]〉F |.(23)
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Let us first assume that κ = 1 in (7). It remains to bound the diffusive flux term
d(uh, uh). In the case where κ̃ = 1, we have dν = dα = jσ̃, and this yields

(24)
d

dt
‖uh‖

2
Ω + |||uh|||

2
σ̃ ≤

∑

F∈F ∂
in

‖|β · nF |
1/2uin‖

2
F +

1

4
‖f‖2

Ω + ‖uh‖
2
Ω.

We conclude by integrating from 0 to T and using Gronwall’s lemma.
For κ̃ = 0, we have dν = −ν + jσ̃ and dα = −α + jσ̃. In the first case, the term
ν(uh, uh) is bounded by using the definition of the jump term:

|ν(uh, uh)| ≤ Cτ ǫH

∑

F∈F i
HP

|F |−1/2‖[uh]‖2
F +

1

4

∑

Ωe∈∆H

‖ǫ1/2∇uh‖
2
Ωe

.

Thus, both terms can be hidden in the left-hand side of the equation (23) if σ̃ ≥
Cτ ǫH . In other words, we obtain (21) if Condition I holds true. Finally, in the
second case, the following bound is obtained using trace inequality Lemma (3.1):

α(uh, uh) ≤
1

2

∑

Ωe∈Th

‖ǫ1/2∇uh‖
2
Ωe

+ Cτ,ǫ∗

∑

F∈F i
HP

|F |−1‖[uh]‖2
F .(25)

Thus, (23) becomes

1

2

d

dt
‖uh‖

2
Ω +

1

2

∑

Ωe∈Th

‖ǫ1/2∇uh‖
2
Ωe

+
1

2

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[uh]‖2

F

+
1

2

∑

F∈F ∂
out

‖|β · nF |
1/2uh‖

2
F +

1

4

∑

F∈F ∂
in

‖|β · nF |
1/2uh‖

2
F +

∑

F∈F i

|F |−1‖σ
1/2
F [uh]‖2

F

+(σ̃ − Cτ,ǫ∗)
∑

F∈F i
HP

|F |−1‖[uh]‖2
F ≤

∑

F∈F ∂
in

‖|β · nF |
1/2uin‖

2
F + ‖f‖2

Ω + ‖uh‖
2
Ω.

Then, Condition I, integration from 0 to T and Gronwall’s lemma yield the stability
bound. Finally, in the case κ̃ = −1, the diffusive fluxes are dν = −2ν + jσ̃ and
dα = −2α + jσ̃. It is clear that as above, Condition I is needed for d = dν and for
d = dα. The case κ = 1 and κ = −1 are handled similarly if σ is bounded below
by a large enough constant.

Remark 3.3. Existence and uniqueness of the solution of (11) is a corollary of the
stability result Theorem 3.2 and the theory of ordinary differential equations.

For the consistency of the scheme, we see that the solution u of (2) satisfies:

(26) ∀vh ∈ Vh, (
∂u

∂t
, vh) + A(u, vh) = L(vh).

3.3. Semi-Discrete Error Analysis. We next derive a semi-discrete a priori
error estimate in the energy norm.

Theorem 3.4. For t > 0, let uh(t) be the semi-discrete solution in Vh to (11)-(12).
Assume that u0 ∈ Hp+1(Th), u ∈ L2(0, T ; Hp+1(Th)) and ∂tu ∈ L2(0, T ; Hp(Th)).
Then there exists a constant Ci,τ,t,β,a,σ,ǫ∗ independent of h and ǫ∗ such that

‖(u − uh)(T )‖2
Ω +

∫ T

0

|||u(t) − uh(t)|||2σ̃dt ≤

Ci,τ,t,β,a,σ,ǫ∗ h2p
(

|u0|
2
Hp+1(Th) +

∫ T

0

|u(t)|2Hp+1(Th)dt +

∫ T

0

|∂tu(t)|2Hp(Th)dt
)

,(27)

for the following cases:
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• d = dν , κ̃ = 1. Note that the constant depends on σ̃−1
0 if σ̃ν = σ̃0. If σ̃ν = 1

or σ̃ν = ǫH , the constant is independent of σ̃ν .

• d = dν , κ̃ ∈ {−1, 0}, σ̃ν = 1 and
√

ǫ∆H small enough.

• d = dν , κ̃ ∈ {−1, 0}, σ̃ν = σ̃0 and Condition I. The constant depends on
σ̃−1

0 .

• d = dν , κ̃ ∈ {−1, 0}, σ̃ν = ǫH under the condition 0 ≤
√

ǫ∆H < h.

• d = dα, κ̃ = 1, σ̃α ∈ {1, σ̃0}. The constant depends on σ̃−1
0 if σ̃α = σ̃0.

• d = dα, κ̃ ∈ {−1, 0} and σ̃α = σ̃0 and Condition I. The constant depends
on σ̃−1

0 if σ̃α = σ̃0.

The estimate is

‖(u − uh)(T )‖2
Ω +

∫ T

0

|||u(t) − uh(t)|||2σ̃dt ≤

Ci,τ,t,β,a,σ,ǫ∗ h2p
(

|u0|
2
Hp+1(Th) + (1 +

ǫ∗

min
x∈∆H

ǫH(x)
)

∫ T

0

|u(t)|2Hp+1(Th)dt +

∫ T

0

|∂tu(t)|2Hp(Th)dt
)

(28)

for the choice d = dα, κ̃ = 1, σ̃α = ǫH .

Proof. Subtracting (26) from (11) gives the error equation:

(∂t(uh − u), vh)Ω −
∑

Ωe∈Th

(β(uh − u) − ǫ∇(uh − u),∇vh)Ωe
+ d(uh − u, vh)

+
∑

F∈F i∪F i
HP

〈β(uh − u)↑ · nF , [vh]〉F −
∑

F∈F i

〈{ǫ∇(uh − u) · nF }, [vh]〉F +
∑

F∈F ∂
out

〈β(uh − u), vh〉F

+κ
∑

F∈F i

〈{ǫ∇vh · nF }, [uh − u]〉F +
∑

F∈F i

|F |−1〈σF [uh − u], [vh]〉F = 0.(29)

We decompose the error uh − u = η − ξ with η = uh − u∗ and ξ = u − u∗, with u∗

satisfying (19)-(20). Then, choosing vh = η in the error equation (29) yields:

1

2

d

dt
‖η‖2

Ω +
∑

Ωe∈Th

‖ǫ1/2∇η‖2
Ωe

+
∑

F∈F i

|F |−1‖σ
1/2
F [η]‖2

F

+
1

2

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[η]‖2

F +
1

2

∑

F∈F ∂
in
∪F ∂

out

‖|β · nF |
1/2η‖2

F

= (∂tξ, η)Ω −
∑

Ωe∈Th

(βξ,∇η)Ωe
+

∑

Ωe∈Th

(ǫ∇ξ,∇η)Ωe
+

∑

F∈F i∪F i
HP

〈βξ↑ · nF , [η]〉F

−
∑

F∈F i

〈{ǫ∇ξ · nF }, [η]〉F + κ
∑

F∈F i

〈{ǫ∇η · nF }, [ξ]〉F +
∑

F∈F i

|F |−1〈σF [ξ], [η]〉F

+
∑

F∈F ∂
out

〈βξ · nF , η〉F − (1 − κ)
∑

F∈F i

〈{ǫ∇η · nF }, [η]〉F + d(ξ, η) − d(η, η)

= T1 + · · · + T11.(30)

We now briefly bound the first nine terms. The techniques used are standard to the
discontinuous Galerkin methods. The first term T1 is easily bounded by Cauchy-
Schwarz and Young’s inequalities:

T1 ≤
1

2
‖η‖2

Ω +
1

2
‖∂tξ‖

2
Ω.
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Using inverse inequality (18), the second term is bounded as

T2 ≤
1

2
‖η‖2

Ω + Cih
−2 1

2
‖β‖2

∞‖ξ‖2
Ω.(31)

Similarly the term T3 is bounded

T3 ≤
1

16

∑

Ωe∈Th

‖ǫ1/2∇η‖2
Ωe

+ 4ǫ∗‖∇ξ‖2
Ω.(32)

For the fourth term we have:

T4 ≤
1

16

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[η]‖2

F + 4‖β‖∞
∑

F∈F i∪F i
HP

‖ξ↑‖2
F .(33)

We have for T5

T5 ≤
1

16

∑

F∈F i

|F |−1‖σ
1/2
F [η]‖2

F + ǫ∗h
∑

F∈F i

σ−1
F ‖{∇ξ · nF }‖

2
F ,(34)

and for T6:

T6 ≤
1

16

∑

Ωe∈Th

‖ǫ1/2∇η‖2
Ωe

+ Cτ,ǫ∗

∑

F∈F i

|F |−1‖[ξ]‖2
F .(35)

The term T7 is easily bounded as

T7 ≤
1

16

∑

F∈F i

|F |−1‖σ
1/2
F [η]‖2

F + 4
∑

F∈F i

|F |−1‖σ
1/2
F [ξ]‖2

F .(36)

The term T8 is bounded similar to T4:

T8 ≤
1

16

∑

F∈F ∂
out

‖|β · nF |
1/2η‖2

F + 4‖β‖∞
∑

F∈F ∂
out

‖ξ‖2
F .

If κ = 1, the term T9 vanishes. Otherwise, we use a similar argument as in (25)
using Lemma (3.1):

T9 ≤
1

8

∑

Ωe∈Th

‖ǫ1/2∇η‖2
Ωe

+ Cτ,ǫ∗

∑

F∈F i
HP

|F |−1‖[η]‖2
F .(37)

Combining the bounds above, for κ = 1, equation (30) becomes:

1

2

d

dt
‖η‖2

Ω +
3

4

∑

Ωe∈Th

‖ǫ1/2∇η‖2
Ωe

+
7

8

∑

F∈F i

|F |−1‖σ
1/2
F [η]‖2

F

+
7

16

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[η]‖2

F +
1

2

∑

F∈F ∂
in

‖|β · nF |
1/2η‖2

F +
7

16

∑

F∈F ∂
out

‖|β · nF |
1/2η‖2

F

≤ ‖η‖2
Ω + Ci,τ,t,β,a,σ,ǫ∗ h2p(|u|2Hp+1(Th) + |∂tu|

2
Hp(Th)) + d(ξ, η) − d(η, η).(38)

If κ = −1, the resulting equation differs from (38) only by the constant in front

of
∑

F∈F i |F |−1‖σ
1/2
F [η]‖2

F . We will now continue the analysis of the scheme by
considering each diffusive flux on ΓHP separately.
Case d = dν : We first consider the numerical flux d = dν with κ̃ = 1. The last

two terms of (38) are:

T10 + T11 = −ν(ξ, η) − jσ̃(η, η).
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The first term is bounded as follows:

−ν(ξ, η) ≤ Ct,a,ǫ∗ h2p|u|2Hp+1(Th) +
1

16
jσ̃(η, η), if σ̃ = 1, ǫH ,

or as follows:

−ν(ξ, η) ≤ Ct,a,ǫ∗,σ̃−1 h2p|u|2Hp+1(Th) +
1

16
jσ̃(η, η), if σ̃ = σ̃0,

and the second term can be hidden in the left-hand side of (38). Thus, we obtain
the estimate:

‖η(t)‖2
Ω +

∫ t

0

|||η|||2σ̃ ≤ ‖η(0)‖2
Ω + Ci,τ,β,ǫ∗,a h2p

(

∫ t

0

|u|2Hp+1(Th) +

∫ t

0

|∂tu|
2
Hp(Th)

)

,

(39)

with the constant depending on σ̃−1 if σ̃ = σ̃0. If κ̃ ∈ {−1, 0}, we need to bound
the additional term −ν(η, η). First, if σ̃ = σ̃0 we have:

(40)
∑

F∈F i
HP

〈(ǫ∇η)↑ ·nF , [η]〉F ≤
1

32

∑

Ωe∈∆H

‖ǫ1/2∇η‖2
Ωe

+ Cτ ǫ∆H
∑

F∈F i
HP

|F |−1‖[η]‖2
F .

Provided σ̃0 is large enough, both terms can be hidden in the left-hand side of (38).
The estimate is then (39). If σ̃ = 1, we have

∑

F∈F i
HP

〈(ǫ∇η)↑ · nF , [η]〉F ≤
1

32

∑

Ωe∈∆H

‖ǫ1/2∇η‖2
Ωe

+ Cτ ǫ∆Hjσ̃(η, η).

Both terms can be hidden in the left-hand side of (38) if Cτ ǫ∆H < 1. The estimate
is still (39). Finally if σ̃ = ǫH , we have:

(41) T11 = (1 − κ̃)ν(η, η) ≤ Cτ‖η‖
2
Ω + ǫ∆Hh−2

∑

Ωe∈∆H

‖ǫ1/2∇η‖2
Ωe

.

Therefore, using the condition 0 ≤
√

ǫ∆H < h, we have (39).

Case d = dα: Next, if d = dα, the last two terms in (38) are:

T10 + T11 = −α(ξ, η) + (1 − κ̃)α(η, η) − jσ̃(η, η).

If κ̃ = 1 and σ̃ ∈ {1, σ̃0}, then we easily obtain the estimate (39) using the bound:

(42) α(ξ, η) ≤ Ct,σ̃,ǫ∗,a h2p|u|2Hp+1(Th) +
1

32

∑

F∈F i
HP

|F |−1‖σ̃1/2[η]‖2
F .

If σ̃ = ǫH , then we have

(43) α(ξ, η) ≤
1

32
jσ̃(η, η) + Ct,a

ǫ∗

minx∈∆H
ǫ(x)

h2p|u|2Hp+1(Th),

which yields the estimate (28). Finally, the additional term to bound in the case
κ̃ ∈ {−1, 0} is

(44) α(η, η) ≤
1

32

∑

Ωe∈Th

‖ǫ1/2∇η‖2
F + Cτ,ǫ∗

∑

F∈F i
HP

|F |−1‖[η]‖2
F ,

which can be subtracted from the left-hand side of (38) if σ̃0 is large enough.
A simple corollary of Theorem 3.4 is the convergence of the method in particular

cases.

Lemma 3.5. Let uh be solution of (11) with d chosen as one of the following
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• d(uh, vh) = −ν(uh, vh) + ν(vh, uh) + jσ̃ν
(uh, vh)

• d(uh, vh) = −ν(uh, vh)− ν(vh, uh)+ jσ̃ν
(uh, vh) with σ̃ν = σ̃0 large enough.

• d(uh, vh) = −ν(uh, vh) + jσ̃ν
(uh, vh) with σ̃ν = σ̃0 large enough.

• d(uh, vh) = −α(uh, vh) + α(vh, uh) + jσ̃α
(uh, vh) with σ̃α = 1.

• d(uh, vh) = −α(uh, vh)−α(vh, uh)+jσ̃α
(uh, vh) with σ̃α = σ̃0 large enough.

• d(uh, vh) = −α(uh, vh) + jσ̃α
(uh, vh) with σ̃α = σ̃0 large enough.

Then, the numerical error in the energy norm and in the L2 norm converges to
zero. The rates are optimal for the energy norm, namely O(hp).

We now conclude this section with a few remarks.

Remark 3.6. One can show [18] that for the case d = 0, the error estimate is:

‖(u − uh)(T )‖2
Ω +

∫ T

0

|||u(t) − uh(t)|||20dt ≤ Ct(ǫ
∆
Hh−1)2

∫ T

0

‖u‖2
H2(Th)

+Ci,τ,t,β,a,σ,ǫ∗ h2p
(

|u0|
2
Hp+1(Th) +

∫ T

0

|u(t)|2Hp+1(Th)dt +

∫ T

0

|∂tu(t)|2Hp(Th)dt
)

(45)

Therefore, it is possible to have an accurate solution on a given mesh if ǫ∆H ≤ hp+1,
but this method does not converge as the mesh size tends to zero.

Remark 3.7. In general, the analysis is valid for degenerate ǫH = 0, except in the
case d = dα, κ̃ = 1 and σ̃α = ǫH . In addition no assumption on the relative size of
ǫH with respect to ǫP is made.

Remark 3.8. Error estimates cannot be obtained for the case d = dα, κ̃ ∈
{−1, 0} and σ̃α ∈ {1, ǫH}.

4. Fully Discrete Scheme and Analysis

Let ∆t be a positive time step and let tj = j∆t denote the time at the jth step.
We denote by vj the function v evaluated at time tj . We define the linear form
Lj+1 : Vh → R:

(46) Lj+1(vh) = (f j+1, vh)Ω −
∑

F∈F ∂
in

〈βuj+1
in · nF , vh〉F .

4.1. Backward Euler time discretization. In this paper, we refer to the im-
plicit DG solution as the solution defined by:

∀vh ∈ Vh, (
uj+1

h − uj
h

∆t
, vh) + A(uj+1

h , vh) = Lj+1(vh),(47)

∀vh ∈ Vh, (u0
h, vh) = (u0, vh).(48)

We first derive a stability bound then present an error estimate:

Theorem 4.1. For t > 0, let (uj
h)j be the discrete solution in Vh to (47)-(48).

If κ̃ ∈ {−1, 0} and either d = dα or d = dν , assume that Condition I holds true.

Then, there is ∆t0 > 0 such that for all ∆t ≤ ∆t0, (uj
h)j satisfies the bound for all

n > 0:

‖un
h‖

2
Ω + C∆t

n
∑

j=1

|||uj
h|||

2
σ̃dt ≤ ‖u0‖

2
Ω + Cτ,ǫ∗∆t

n
∑

j=1

(‖f j‖2
Ω +

∑

F∈F ∂
in

‖|β · nF |
1/2uj

in‖
2
F ),
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where Cτ,ǫ∗ is a constant independent of h, ∆t and ǫ∗.

Proof. Choose vh = uj+1
h in (47). We obtain a similar bound as in (23):

1

2∆t
(‖uj+1

h ‖2
Ω − ‖uj

h‖
2
Ω) +

∑

Ωe∈Th

‖ǫ1/2∇uj+1
h ‖2

Ωe
+

1

2

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[uj+1

h ]‖2
F

+
1

2

∑

F∈F ∂
out

‖|β · nF |
1/2uj+1

h ‖2
F +

1

4

∑

F∈F ∂
in

‖|β · nF |
1/2uj+1

h ‖2
F

+
∑

F∈F i

|F |−1‖σ
1/2
F [uj+1

h ]‖2
F + d(uj+1

h , uj+1
h ) ≤

∑

F∈F ∂
in

‖|β · nF |
1/2uj+1

in ‖2
F +

1

4
‖f j+1‖2

Ω

+‖uj+1
h ‖2

Ω + |(1 − κ)
∑

F∈F i
HP

〈{ǫ∇uj+1
h · nF }, [u

j+1
h ]〉F |.

Using similar arguments as in the proof of Theorem 3.2, we obtain:

1

2∆t
(‖uj+1

h ‖2
Ω − ‖uj

h‖
2
Ω) + C|||uj+1

h |||2σ̃

≤ Cτ‖u
j+1
h ‖2

Ω + Cτ,ǫ∗(
∑

F∈F ∂
in

‖|β · nF |
1/2uj+1

in ‖2
F + ‖f j+1‖2

Ω),(49)

We then multiply the inequality by 2∆t and sum over j = 0, . . . , n − 1:

(1 − 2Cτ∆t)‖un
h‖

2
Ω − ‖u0

h‖
2
Ω + 2C∆t

n
∑

j=1

|||uj
h|||

2
σ̃

≤ 2Cτ∆t

n−1
∑

j=1

‖uj
h‖

2
Ω + 2Cτ,ǫ∗∆t

n
∑

j=1

(
∑

F∈F ∂
in

‖|β · nF |
1/2uj

in‖
2
F + ‖f j‖2

Ω)

Under the assumption that 1−2Cτ∆t > 0 and using a discrete Gronwall’s estimate,
we obtain the final result.

We then remark that the exact solution u satisfies:

(50) ∀vh ∈ Vh, (
∂u

∂t
(tj+1), vh) + A(uj+1, vh) = Lj+1(vh).

Theorem 4.2. Let u be the solution of (2)-(5) and let (uj
h)j ∈ Vh be the se-

quence of discrete solutions satisfying (47)-(48). Assume that u0 ∈ Hp+1(Th),
u ∈ L2(0, T ; Hp+1(Th)) and ∂tu, ∂ttu ∈ L2(0, T ; Hp(Th)). There is a constant
∆t0 > 0 such that for all ∆t < ∆t0, and constants C, Ci,τ,t,β,a,σ,ǫ∗ independent of
h, and ǫ∗ such that

‖un − un
h‖

2
Ω + ∆t

n
∑

j=1

|||uj − uj
h|||

2
σ̃ ≤ C∆t2

∫ T

0

‖∂ttu(t)‖2
Ωdt

+Ci,τ,t,β,a,σ,ǫ∗ h2p
(

|u0|
2
Hp+1(Th) + ∆t

n
∑

j=1

|uj |2Hp+1(Th) + ∆t

n
∑

j=1

|∂tu
j |2Hp(Th)

)

,(51)

for the following cases:

• d = dν , κ̃ = 1. The constant also depends on σ̃−1
ν if σ̃ν = σ̃0.

• d = dν , κ̃ ∈ {−1, 0}, σ̃ν = 1 and
√

ǫ∆H small enough.

• d = dν , κ̃ ∈ {−1, 0}, σ̃ν = σ̃0 and Condition I.

• d = dν , κ̃ ∈ {−1, 0}, σ̃ν = ǫH and under the condition 0 ≤
√

ǫ∆H < h.

• d = dα, κ̃ = 1, σ̃α ∈ {1, σ̃0}. The constant also depends on σ̃−1
α if σ̃α = σ̃0.
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• d = dα, κ̃ ∈ {−1, 0} and σ̃α = σ̃0 and Condition I. The constant also
depends on σ̃−1

α if σ̃α = σ̃0.

The estimate is

‖un − un
h‖

2
Ω + ∆t

n
∑

j=1

|||uj − uj
h|||

2
σ̃ ≤ C∆t2

∫ T

0

‖∂ttu(t)‖2
Ωdt

+Ci,τ,t,β,a,σ,ǫ∗ h2p
(

|u0|
2
Hp+1(Th) + (1 +

ǫ∗

min
x∈∆H

ǫH(x)
)

∫ T

0

|u(t)|2Hp+1(Th)dt +

∫ T

0

|∂tu(t)|2Hp(Th)dt
)

,

for the case d = dα, κ̃ = 1, σ̃α = ǫH.

Proof. Using the same notation as in the proof of Theorem 3.4, we have from
subtracting (50) from (47) and choosing vh = ηj+1:

1

2∆t
(‖ηj+1‖2

Ω − ‖ηj‖2
Ω) +

∑

Ωe∈Th

‖ǫ1/2∇ηj+1‖2
Ωe

+
∑

F∈F i

|F |−1‖σ
1/2
F [ηj+1]‖2

F

+
1

2

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[ηj+1]‖2

F +
1

2

∑

F∈F ∂
in
∪F ∂

out

‖|β · nF |
1/2ηj+1‖2

F

= (∂tu
∗(tj+1) −

u∗j+1 − u∗j

∆t
, ηj+1)Ω + (∂tξ(t

j+1), ηj+1)Ω −
∑

Ωe∈Th

(βξj+1,∇ηj+1)Ωe

+
∑

Ωe∈Th

(ǫ∇ξj+1,∇ηj+1)Ωe
+

∑

F∈F i∪F i
HP

〈βξ↑,j+1 · nF , [ηj+1]〉F

−
∑

F∈F i

〈{ǫ∇ξj+1 · nF }, [η
j+1]〉F + κ

∑

F∈F i

〈{ǫ∇ηj+1 · nF }, [ξ
j+1]〉F

+
∑

F∈F ∂
out

〈βξj+1 · nF , ηj+1〉F − (1 − κ)
∑

F∈F i

〈{ǫ∇ηj+1 · nF }, [η
j+1]〉F

+
∑

F∈F i

|F |−1〈σF [ξj+1], [ηj+1]〉F + d(ξj+1, ηj+1) − d(ηj+1, ηj+1).(52)

As the remainder of the proof is similar to the proof of Theorem 3.4, we only present
the bounds for the first two terms in the right-hand side of (52). Using a Taylor
expansion with integral remainder, we have

‖∂tu
∗(tj+1) −

u∗j+1 − u∗j

∆t
‖2
Ω ≤

1

2∆t2

∫ tj+1

tj

(s − tj)2ds

∫ tj+1

tj

‖∂ttu
∗‖2

Ω

≤
∆t

6

∫ tj+1

tj

‖∂ttu
∗‖2

Ω.(53)

Therefore, we have

(∂tu
∗(tj+1) −

u∗j+1 − u∗j

∆t
, ηj+1)Ω ≤ ‖ηj+1‖2

Ω + C∆t3
∫ tj+1

tj

‖∂ttu
∗‖2

Ω.

The second term in the right-hand side of (52) is bounded as

(∂tξ(t
j+1), ηj+1)Ω ≤ ‖ηj+1‖2

Ω + Ca h2p|∂tu
j+1|2Hp(Th).

As in the derivation of the stability result, we need the time step to be small enough
in order to conclude. A discrete Gronwall’s lemma is used, and the rest of the proof
is straightforward.
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Remark 4.3. Except in the case d = dν , κ̃ ∈ {−1, 0}, σ̃ν = ǫH, we can replace
the constraint ”∆t small enough” by the constraint ǫ∗ > 0. The constant C in the
right-hand side of the resulting estimate will then additionally depend on 1/ǫ∗.

4.2. Forward Euler time discretization. In this paper, we refer to the explicit
DG solution as the solution defined by:

∀vh ∈ Vh, (
uj+1

h − uj
h

∆t
, vh) = Lj(vh) − A(uj

h, vh),(54)

∀vh ∈ Vh, (u0
h, vh) = (u0, vh).(55)

To derive stability and an error estimate for the forward Euler discretization, we
will assume throughout this section that the triangulation is quasi-uniform. Inverse
inequality (18) yields the following result.

Lemma 4.4. There is a constant Cb = Cǫ∗,i,β,τ independent of h and ǫ∗ such that

(56) ∀vh, wh ∈ Vh, A(vh, wh) ≤ Cb h−1‖vh‖Ω|||wh|||0.

Theorem 4.5. For t > 0, let (uj
h)j be the discrete solution in Vh to (54)-(55).

If d = dα and κ̃ ∈ {−1, 0}, assume that Condition I holds true. Assume that
Condition I holds true for d = dν and κ̃ ∈ {−1, 0}. Then, there is a constant C0

independent of h and ǫ∗ such that if ∆t ≤ C0 and h−2∆t ≤ C0, there is a constant
Cb independent of h and ǫ∗ such that (uj

h)j satisfies the bound for all n > 0:

‖un
h‖

2
Ω + C∆t

n
∑

j=1

|||uj
h|||

2
0 ≤ ‖u0‖

2
Ω + Cb∆t

n
∑

j=1

(‖f j‖2
Ω +

∑

F∈F ∂
in

‖|β · nF |
1/2uj

in‖
2
F ).

Proof. Choose vh = uj+1
h in (54). We obtain:

1

2∆t
(‖uj+1

h ‖2
Ω − ‖uj

h‖
2
Ω + ‖uj

h − uj+1
h ‖2

Ω) + A(uj+1
h , uj+1

h ) = Lj(uj+1
h ) + A(uj+1

h − uj
h, uj+1

h )

≤
∑

F∈F ∂
in

‖|β · nF |
1/2uj

in‖
2
F +

1

4
‖f j‖2

Ω +
1

4

∑

F∈F ∂
in

‖|β · nF |
1/2uj+1

h ‖2
F + ‖uj+1

h ‖2
Ω

+C2
b h−2‖uj

h − uj+1
h ‖2

Ω +
1

4
|||uj+1

h |||2.

We rewrite the term A(uj+1
h , uj+1

h ) and obtain the following inequality:

1

2∆t
(‖uj+1

h ‖2
Ω − ‖uj

h‖
2
Ω) + (

1

2∆t
− C2

b h−2)‖uj
h − uj+1

h ‖2
Ω

+
3

4

∑

Ωe∈Th

‖ǫ1/2∇uj+1
h ‖2

Ωe
+

1

4

∑

F∈F i∪F i
HP

‖|β · nF |
1/2[uj+1

h ]‖2
F

+
1

4

∑

F∈F ∂
out

‖|β · nF |
1/2uj+1

h ‖2
F +

3

4

∑

F∈F i

|F |−1‖σ
1/2
F [uj+1

h ]‖2
F

+d(uj+1
h , uj+1

h ) ≤
∑

F∈F ∂
in

‖|β · nF |
1/2uj

in‖
2
F +

1

4
‖f j‖2

Ω + ‖uj+1
h ‖2

Ω +
1

4
jσ̃(uj+1

h , uj+1
h )

+|(1 − κ)
∑

F∈F i

〈{ǫ∇uj+1
h · nF }, [u

j+1
h ]〉F |.
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The rest of the proof follows as in the case of backward Euler. Here, we have the
additional stability condition (also called CFL condition):

∆tC2
b h−2 <

1

2
.

Theorem 4.6. Let u be the solution of (2)-(5) and let (uj
h)j ∈ Vh be the se-

quence of discrete solutions satisfying (54)-(55). Assume that u0 ∈ Hp+1(Th), u ∈
L∞(0, T ; Hp+1(Th)) and ∂tu ∈ L∞(0, T ; Hp(Th)) and ∂ttu ∈ L2((0, T )×Ω). There
is a constant C0 independent of h and ǫ∗ such that if ∆t ≤ C0 and h−2∆t ≤ C0,
then there are constants C, Cb,a independent of h and ǫ∗ such that

‖un − un
h‖

2
Ω ≤ C∆t2

∫ T

0

‖∂ttu‖
2
Ω

+Cb,ah2p
(

|u0|
2
Hp+1(Th) + ∆t

n−1
∑

j=1

|uj|2Hp+1(Th) + ∆t

n−1
∑

j=0

|∂tu
j|2Hp(Th)

)

.

Proof. Since the proof uses similar arguments as for the stability result and
the proof for the convergence of the backward Euler scheme, we only give the first
steps. We write the error equation as:

1

2∆t
(‖ηj+1‖2

Ω − ‖ηj‖2
Ω + ‖ηj+1 − ηj‖2

Ω) + A(ηj , ηj+1) = A(ηj+1 − ηj , ηj+1)

+A(ξj , ηj+1) + (∂tξ(t
j), ηj+1)Ω + (∂tu

∗(tj) −
u∗j+1 − u∗j

∆t
, ηj+1).

We also have, as in (53):

‖∂tu
∗(tj) −

u∗j+1 − u∗j

∆t
‖2
Ω ≤ C∆t

∫ tj+1

tj

‖∂ttu
∗‖2

Ω.

Furthermore, we have

A(ηj+1 − ηj , ηj+1) ≤
1

4
|||ηj+1|||2 + C2

b h−2‖ηj+1 − ηj‖2
Ω.

Thus, it remains to bound the standard terms A(ξj , ηj+1) and (∂tξ(t
j), ηj+1)Ω. The

remainder of the proof follows that of the backward Euler scheme.

5. Adaptive Fluxes

In this section, we analyze the adaptive method that uses on the interface ΓHP

the flux dθ introduced in Section 2. This flux is obtained as a weighted average of
the standard NIPG/SIPG fluxes and the upwind flux. When the interface region
indicates a large difference between the diffusion coefficients, the scheme selects a
stronger emphasis on the upwinding interface terms. Similarly, when there is less
difference between the hyperbolic and parabolic coefficients, the scheme selects a
stronger emphasis on the standard DG average flux definition. Our motivation
for considering such an adaptive definition is highlighted in Section 6, where we
demonstrate its excellent numerical results when applied to a domain with highly
varying diffusion coefficient. Essentially, the use of an adaptive flux enables the
scheme to automatically decide when to employ an upwinding strategy, in the case
of advective to diffusive flow, versus a standard averaging technique everywhere
else. In this way, the adaptive scheme successfully detects the difficult boundary
layer region, and switches to an upwinding technique to maintain stability.

The parameters in the definition of dθ are chosen to be:
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• either κ̃ = 1 with σ̃ν = ǫH and σ̃α = 1: the method is called adaptive
NIPG.

• or κ̃ ∈ {−1, 0} and σ̃ν = σ̃α = σ̃0 with σ̃0 large enough: the method is
called adaptive SIPG or adaptive IIPG.

With these definitions, the scheme (11) is unconditionally stable.

Theorem 5.1. Assume that d = dθ defined in (10). The solution uh in Vh of
(11)-(12) satisfies the following estimate:

‖uh(T )‖2
Ω +

∫ T

0

|||uh|||
2
0 +

∫ T

0

∑

F∈F i
HP

|F |−1‖(θσ̃α + (1 − θ)σ̃ν)1/2[uh]‖2
F

≤ ‖uh(0)‖2
Ω + Cτ,ǫ∗

∫ T

0



‖f‖2
Ω +

∑

F∈F ∂
in

‖|β · nF |
1/2uin‖

2
F



 ,

where Cτ,ǫ∗ is a constant independent of h and ǫ∗ but dependent on Cτ and ǫ∗

whenever κ̃ 6= 1.

Proof. We obtain as in Theorem 3.2, the inequality (23). If κ̃ = 1, then we
obtain the bound:

‖uh(T )‖2
Ω +

∫ T

0

|||uh|||
2
0 +

∫ T

0

∑

F∈F i
HP

|F |−1‖(θ + (1 − θ)ǫH)1/2uh‖
2

≤ ‖uh(0)‖2
Ω + C(‖f‖2

Ω +
∑

F∈F ∂
in

‖|β · nF |
1/2uin‖

2
F ).(57)

The case κ̃ ∈ {−1, 0} is handled in a similar fashion; the bound (57) is derived
assuming that σ̃0 is large enough. The final estimate is obtained then by integrating
in time and using Gronwall’s lemma.

It is easy to see that the adaptive flux dθ produces a consistent scheme. We next
state some semi-discrete a priori error estimates. We skip the proof as it is similar
to the proof of Theorem 3.4

Theorem 5.2. Let u be the solution of (2)-(5) and for t > 0 let uh(t) ∈ Vh be
the discrete solution of (11)-(12) with d = dθ. Assume that u0 ∈ Hp+1(Th), u ∈
L2(0, T ; Hp+1(Th)) and ∂tu ∈ L2(0, T ; Hp(Th)). There is a constant Ci,τ,t,β,a,σ,ǫ∗

independent of h and ǫ such that

‖(u − uh)(T )‖2
Ω +

∫ T

0

|||u(t) − uh(t)|||20dt +

∫ T

0

∑

F∈F i
HP

‖(θσ̃α + (1 − θ)σ̃ν)1/2[u(t) − uh(t)]‖2
F dt

≤ Ci,τ,t,β,a,σ,ǫ∗h
2p

(

|u0|
2
Hp+1(Th) +

∫ t

0

|u(t)|2Hp+1(Th)dt +

∫ t

0

|∂tu(t)|2Hp(Th)dt
)

,

The constant Ci,τ,t,β,a,σ,ǫ∗ also depends on σ̃−1
0 if σ̃α = σ̃ν = σ̃0 for the adaptive

SIPG/IIPG methods.

Remark 5.3. It is clear that we also obtain fully discrete estimates as in Sec-
tion 4. If the time discretization is the backward Euler, then the stability bound of
Theorem 4.1) holds and the error estimate (51) is valid.



DG METHODS FOR VARYING DIFFUSIVITY 551

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

Figure 3. Varying diffusivity: standard NIPG solution every-
where for ǫH = 0.1 (solid line), ǫH = 0.05 (dashed line), and
ǫH = 0.01 (dotted line) in ΩH at time t1 = 1.0.

6. Numerical Experiments

6.1. Study of Fluxes. In this section, we investigate the numerical effect of the
advective and diffusive fluxes listed in Section 2. We consider a simple test problem
with large local Peclet number, which is inversely proportional to the diffusivity
coefficient. Our domain is a two-dimensional rectangular region [0, 2] × [0, 1] with
a triangular mesh consisting of 200 elements displayed in Fig. 1. We impose noflow
conditions on top and bottom boundaries, an inflow value of uin = 1 on the left
boundary, and outflow on the right boundary. The initial solution consists of u = 0
everywhere in the domain. The velocity is β = (1, 0) and the source function f
is zero. Unless otherwise specified, the diffusion parameter is ǫP = 1 on ΩP and
ǫH = 10−3 on ΩH. The timestep is sufficiently small so that spatial error dominates
the computation; hence our results are independent of the timestep size.

This particular test problem highlights the numerical difficulties encountered in
modeling advection dominated regimes. For instance, Fig. 3 shows the numerical
solution for various values of ǫH and a fixed mesh size. We focus on the profile
of the numerical solution along {(x, 0.5) : 0 ≤ x ≤ 2} obtained with the standard
NIPG method everywhere (d = dα, κ = σF = κ̃ = σ̃α = 1, p = 1) and a forward
Euler scheme. If the ratio ǫH to ǫP is of order one, there are no instabilities. If
the ratio is much smaller than one, then the instabilities increase at the interface
from low to high diffusivity. One can see that the magnitude of these instabilities
directly affect the L2 norm of the error: the larger the instabilities, the higher
the error norm. It is well known that the accuracy of the solution in advection
dominated regimes can be improved by refining the mesh. However, a refinement
in the computational mesh introduces a considerable computational cost that we
aim to avoid while maintaining the integrity of the solution.

Next, in Fig. 4 we compare the effects of the time discretization technique on
the numerical solution for the standard NIPG method defined everywhere (d = dα,
κ = σF = κ̃ = σ̃α = 1). The left figure shows the solution obtained by the forward
Euler scheme, whereas the right two figures show the solution obtained by the
backward Euler scheme. The time step is taken 20 times larger than for the forward
Euler scheme. The implicit time discretization is more numerically diffusive. The
overall amount of overshoot is reduced but still present. It is not surprising to
observe that the overshoot phenomena are exacerbated when the polynomial degree
is increased.
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Figure 4. Time discretization comparison: standard NIPG solu-
tion: explicit p = 1 (left), implicit p = 1 (middle) and implicit
p = 2 (right), at times t0 (solid line), t1 (dashed line) and t2 (dotted
line).
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Figure 5. Time discretization comparison: improved NIPG so-
lution: explicit p = 1 (left), implicit p = 1 (center) and implicit
p = 2 (right), at times t0 (solid line), t1 (dashed line) and t2 (dotted
line).

We now explore various definitions of the flux at interface ΓHP. The numerical
solutions for the explicit discretization for p = 1 and implicit scheme for p = 1, 2
are shown in Fig. 5. The overshoots for the explicit time discretization are minimal,
and they disappear for the implicit time discretization, even when the polynomial
degree is increased.

We obtain less accurate results by retaining d = dν and further varying the
values for the parameters κ̃ and σ̃ν . Results for the explicit time discretization are
shown in Fig. 6, 7, 8. Clearly these solutions are not as accurate as those in Fig. 5,
and the overshoots are greatest for the IIPG flux on ΓHP (Fig. 8). For these tests,
increasing the penalty value from 1 to 10 exacerbates the overshoot phenomena.

From the previous experiments, we conclude that the choice d = dν with κ̃ = 1,
σ̃ν = ǫH on ΓHP yield the most accurate results for this particular example. We
now choose the adaptive flux d = dθ. Fig. 9 shows the explicit solution for p = 1
and the implicit solution for p = 1, 2. The overshoot phenomena disappears for the
implicit solution while the fronts remain sharp. We note that qualitatively, there is
no noticeable difference between figures 5 and 9. However, in the next section we
will compute quantitative values of the L2 norm of the error.

We finish these numerical studies by now considering the underlying method to
be SIPG (κ = −1) everywhere except at the interface ΓHP. In this case, there
is a constraint on the size of the penalty parameter σF . First, we note that the



DG METHODS FOR VARYING DIFFUSIVITY 553

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

Figure 6. Explicit NIPG solution (κ = 1, σF = 1) with d = dν :
κ̃ = σ̃ν = 1 (left), κ̃ = −1, σ̃ν = 1 (center) and κ̃ = −1, σ̃ν = 10
(right) at times t0 (solid line), t1 (dashed line) and t2 (dotted line).
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Figure 7. Explicit NIPG solution (κ = 1, σF = 1) with d = dν

and κ̃ = 0: σ̃ν = 1 (left) and σ̃ν = 10 (right) at times t0 (solid
line), t1 (dashed line) and t2 (dotted line).
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Figure 8. Explicit NIPG solution (κ = 1, σF = 1) with d = dα

and κ̃ = 0: σ̃α = 1 (left) and σ̃α = 10 (right) at times t0 (solid
line), t1 (dashed line) and t2 (dotted line).

standard SIPG (d = dα with κ̃ = −1) on ΓHP does not produce stable solutions
even for large penalty values (σF = σ̃α = 100) if the explicit time discretization
is used. However, the implicit time discretization stabilizes the method and the
solutions are shown in Fig. 10 for linears and quadratics and for σF = σ̃α = 10. As
in the case of the implicit NIPG method implemented on ΓHP, (Fig. 4), the fronts
are diffuse and instabilities occur when the polynomial degree is increased. If the
optimal choice for the parameters in the definition of the adaptive flux is used, the
resulting solution does not show any overshoot and the fronts remain sharp. The
profiles for the implicit solution are shown in Fig. 11.



554 J. PROFT AND B. RIVIERE

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 9. Adaptive NIPG solution with flux d = dθ: explicit
p = 1 (left), implicit p = 1 (center) and implicit p = 2 (right), at
times t0 (solid line), t1 (dashed line) and t2 (dotted line).
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Figure 10. Implicit SIPG solution (κ = κ̃ = −1, σF = σ̃ = 10):
p = 1 (left) and p = 2 (right), at times t0 (solid line), t1 (dashed
line) and t2 (dotted line).
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Figure 11. Implicit SIPG solution with (κ = −1, σF = 10) and
adaptive flux d = dθ (κ̃ = 1, σ̃ν = ǫH , σ̃α = 1): p = 1 (left) and
p = 2 (right), at times t0 (solid line), t1 (dashed line) and t2 (dotted
line).

The conclusion of these numerical studies is that the improved and adaptive
NIPG methods are more accurate than the standard NIPG method. One can also
employ the SIPG method, but one has to carefully select the penalty parameter
[11]. In what follows, we show that the adaptive method is the most accurate in
the case of varying diffusivity.
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6.2. Study of L2 Errors. To complement our theoretical error analysis, we verify
in this section the l∞(L2) accuracy of our improved and adaptive NIPG methods
with respect to the exact solution.

By ”exact”, we mean an overkill solution where the mesh size is greatly refined
and the number of finite elements is increased from 800 to 51,200. For stability of
the numerical solution, the timestep must also be refined to 200 times smaller. We
present results for an explicit time discretization and linear basis functions.

We consider two test problems. First, we compute the l∞(L2) error for the test
problem described in the previous section. The errors for the standard, improved
and adaptive NIPG methods are given in Table 1. Clearly the improved and adap-
tive solutions are more accurate than the standard NIPG solution. We also note
that in this example, the improved solution yields the smallest error.

Method Error
standard NIPG 1.0013× 10−1

improved NIPG 8.6381× 10−3

adaptive NIPG 1.3242× 10−2

Table 1. l∞(L2) errors for first test problem

The second test problem is a perturbation of the first test problem. We consider
the same domain with the two vertical inclusions. However, we modify the value
in the rightmost hyperbolic region from 10−3 to 0.5. This simple example demon-
strates more realistic variations of diffusivity: in some places the diffusivity jump
is large and in others small. Table 6.2 shows the errors in the l∞(L2) norm for
the standard, improved and adaptive NIPG methods. Both improved and adaptive
solutions have smaller errors than the standard NIPG solutions. However, in this
case, the most accurate solution is the adaptive one. The adaptive NIPG method
does a better job in capturing the exact solution on the interface where the diffu-
sivity jump is nonzero but small, compared to the upwind NIPG method. Clearly
the adaptive method is more advantageous in the case of highly varying diffusivity
coefficient.

Method Error
standard NIPG 1.0217× 10−1

improved NIPG 6.6179× 10−2

adaptive NIPG 1.1448× 10−2

Table 2. l∞(L2) errors for second test problem

6.3. Convergence Rates. In this section, we present numerical rates of conver-
gence for a variety of diffusive fluxes, that confirm our theoretical error estimates.

The domain Ω is the unit square with a coarse mesh of 25 square elements
(h = 0.2), containing a subdomain ΩH = [0.4, 0.6] × [0, 1] and ΩP = Ω \ ΩH . The
diffusion coefficients are constants where ǫP = 1 and ǫH takes the value 10−8 or
10−4. We consider the following smooth analytical solution:

∀0 ≤ x ≤ 0.4, u(x) =
ǫH

1.4 − 0.4ǫH
xex+t,

∀0.4 ≤ x ≤ 0.6, u(x) = (x + 0.56
ǫH − 1

1.4 − 0.4ǫH
)ex+t,
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∀0.6 ≤ x ≤ 1.0, u(x) = ((1.6ǫH − 0.6+
0.56(ǫH − 1)2

1.4 − 0.4ǫH
)x+0.6+ (0.56

ǫH − 1

1.4− 0.4ǫH
)

−0.6(1.6ǫH − 0.6 +
0.56(ǫH − 1)2

1.4 − 0.4ǫH
))ex+t.

The coarse mesh is successively uniformly refined, each triangle being divided into
four triangles at each refinement stage. The time step is chosen small enough so
that the numerical error is of the order of the spatial approximation error. We
present rates obtained with the backward Euler discretization. The convergence
rate is obtained as log(eh/eh/2)/log(2) where eh is the numerical error obtained on

the mesh with size h. We compute both H0
1 and L2-type errors defined below:

Eh,1 =
(
∑

Ωe∈Th
‖ǫ1/2∇(u(T ) − uh(T ))‖2

Ωe
)1/2

(
∑

Ωe∈Th
‖ǫ1/2∇u(T )‖2

Ωe
)1/2

, Eh,2 =
‖u(T )− uh(T )‖Ω

‖u(T )‖Ω

Table 3 contains the convergence rates for the case ǫH = 10−8 in the case of the
NIPG method for several diffusive fluxes. Only the results for the finest mesh
are given. For piecewise linear approximation, the finest mesh size is h = 0.0125
whereas for piecewise quadratic approximation, the finest mesh size is h = 0.025.
In this experiment, the adaptive flux dθ is defined with κ̃ = σ̃α = 1 and σ̃ν = ǫH .
For the first five cases, the rates are optimal for the H1

0 norm, as predicted by the
theory. The cases d = dα with σ̃α = 1 and κ̃ ∈ {0,−1} also yield optimal results
for the energy norm. This means that the diffusion coefficient ǫH is small enough
for these experiments. Finally, the last two cases should yield optimal results if
the penalty is large enough. Clearly, this is the case for the choice d = −α + j1
but not the case for d = dα with κ̃ = −1 and σ̃α = 1 where we only obtain
suboptimal energy rate for piecewise quadratic polynomials. For the L2 norm, the
rates are optimal for piecewise linear approximations and suboptimal for piecewise
quadratics. Table 4 presents the convergence rates in the case of the SIPG method.
In this case, the choice σF = 1 does not yield optimal rates and increasing the
jump parameter to σF = 10, gives optimal rates both polynomial degrees and both
norms. With the last two cases, the penalty parameter σ̃ was increased to 10 to
obtain optimal rates.

6.4. Non-zero randomized diffusion. For this test problem, the diffusion coef-
ficient is randomly selected to be either ǫ = 1 or ǫ = 10−3 on each individual element
using a random number generator (see Fig. 12). The velocity vector is β = (1, 1),
and consequently the inflow boundary consists of the left vertical boundary and
bottom horizontal boundary. In all tests, a forward Euler in time and piecewise
linear spatial discretization is used.

The adaptive technique, which automatically detects regions of numerical insta-
bility, is successful at producing an accurate and stable method without resorting
to mesh refinement and consequently increased computational effort to maintain
the integrity of the numerical solution. With this example, we demonstrate the
complete failure of the standard NIPG method to achieve stability throughout the
domain as well as the stability of both improved NIPG method and adaptive NIPG
method.

In Fig. 16, we compare the standard NIPG solution with the improved NIPG
solution extracted along the line {(x, 0.45) : 0 ≤ x ≤ 2}. As the progression of
images clearly shows, the NIPG method tends to blow up after some finite time
whereas the improved NIPG version is stable. Furthermore, in Fig. 17 we compare
the profiles obtained with the improved method to the adaptive NIPG method The
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Degree Eh,1 rate Eh,2 rate
d(uh, vh) = −ν(uh, vh) + ν(vh, uh) + j1(uh, vh)

1 1.0015 2.0739
2 2.0011 2.3730

d(uh, vh) = −ν(uh, vh) + ν(vh, uh) + jǫH
(uh, vh)

1 1.0006 2.0274
2 1.9945 2.3567

d(uh, vh) = dθ(uh, vh) with σ̃ν = ǫH

1 1.0006 2.0274
2 1.9945 2.3567

d(uh, vh) = −α(uh, vh) + α(vh, uh) + j1(uh, vh)
1 1.0026 2.0600
2 2.0004 2.4234

d(uh, vh) = −ν(uh, vh) + j1(uh, vh)
1 1.0015 2.0739
2 2.0011 2.3730

d(uh, vh) = −ν(uh, vh) − ν(vh, uh) + j1(uh, vh)
1 1.0015 2.0739
2 2.0011 2.3730

d(uh, vh) = −α(uh, vh) − α(vh, uh) + j1(uh, vh)
1 1.0019 2.0600
2 1.5751 2.4105

d(uh, vh) = −α(uh, vh) + j1(uh, vh)
1 1.0011 2.0598
2 2.0068 2.4446

Table 3. Case ǫH = 10−8: NIPG everywhere (κ = 1, σF = 1)
except on interface ΓHP.

lines are indistinguishable visually and demonstrate the stability of both methods.
Two dimensional contours of the solution for all three methods (standard, improved
and adaptive NIPG) are shown in Fig. 13, 14 and Fig. 15 respectively.

6.5. Vanishing randomized diffusion. Next, the diffusion coefficient is ran-
domly selected to be either ǫ = 1, ǫ = 10−3, or completely degenerate with ǫ = 0
on each individual element using a random number generator (see Fig. 18). The
velocity vector is β = (1, 0), and consequently the inflow boundary consists of the
left vertical boundary only. Fig. 19, 20 and 21 show the contours of the solutions
obtained with the standard, improved and adaptive NIPG methods. Clearly the
standard NIPG solution blows up after a few time steps whereas the improved and
adaptive solutions remain stable throughout the simulation.

7. Conclusions

In this paper we analyze and develop discontinuous Galerkin methods for an
advection-diffusion equation with spatially varying and possibly vanishing diffusion
coefficient. Without resorting to slope limiting techniques nor mesh refinement,
we demonstrate successful choices of numerical fluxes that appropriately capture
solution behavior and minimize the L2 norm of the error. We derived stability
and a priori error estimates for both continuous and discrete time discretizations.
Numerical tests indicate the robustness of our convergence estimates. Moreover,
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Degree Eh,1 rate Eh,2 rate
d(uh, vh) = −ν(uh, vh) + ν(vh, uh) + j1(uh, vh)

1 1.0016 2.0767
2 2.0084 2.9124

d(uh, vh) = −ν(uh, vh) + ν(vh, uh) + jǫH
(uh, vh)

1 1.0006 2.0291
2 2.0035 2.8742

d(uh, vh) = dθ(uh, vh) with σ̃ν = ǫH

1 1.0000 1.8989
2 2.0035 2.8742

d(uh, vh) = −α(uh, vh) + α(vh, uh) + j1(uh, vh)
1 1.0010 1.9017
2 2.0209 2.9505

d(uh, vh) = −ν(uh, vh) + j10(uh, vh)
1 1.0014 2.0837
2 2.0081 2.9195

d(uh, vh) = −ν(uh, vh) − ν(vh, uh) + j10(uh, vh)
1 1.0014 2.0837
2 2.0081 2.9195

d(uh, vh) = −α(uh, vh) − α(vh, uh) + j10(uh, vh)
1 1.0012 2.0823
2 2.0075 2.9218

d(uh, vh) = −α(uh, vh) + j10(uh, vh)
1 1.0013 2.0817
2 2.0084 2.9235

Table 4. Case ǫH = 10−8: SIPG everywhere (κ = −1, σF = 10)
except on interface ΓHP.

Figure 12. Mesh and diffusion coefficient randomly generated
(ǫP = 1 white, ǫH = 10−3 gray).

our numerical results indicate a substantial improvement in the solution for our
adaptive flux technique over standard DG flux definitions.



DG METHODS FOR VARYING DIFFUSIVITY 559

Figure 13. Two-dimensional contours with standard NIPG at
times t0 (left), t1 (middle) and t2 (right).

Figure 14. Two-dimensional contours with improved NIPG at
times t0 (left), t1 (middle) and t2 (right).

Figure 15. Two-dimensional contours with adaptive NIPG at
times t0 (left), t1 (middle) and t2 (right).
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Figure 16. Comparison between standard NIPG (dashed line)
and improved NIPG (solid line) at times t0 (left), t1 (middle) and
t2 (right).
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