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Abstract. In this paper the mechanism and the character of the formation of

singularities caused by eigenvalues or (and) eigenvectors, respectively, will be

discussed for 1-D quasilinear hyperbolic systems.
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1. Introduction

We consider the following Cauchy problem for the first order quasilinear hyper-
bolic system

∂u

∂t
+ A(u)

∂u

∂x
= 0,(1.1)

t = 0 : u = ϕ(x),(1.2)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) = (aij(u))
is an n × n matrix with suitably smooth entries aij(u) (i, j = 1, · · · , n), and ϕ(x)
is C1 vector function of x with bounded C1 norm.

By strict hyperbolicity, on the domain under consideration A(u) has n distinct
real eigenvalues

(1.3) λ1(u) < λ2(u) < · · · < λn(u).

For i = 1, · · · , n, let li(u) = (l1i(u), · · · , lni(u)) (resp., ri(u) = (ri1(u), · · · ,
rin(u))T ) be a left (resp., right) eigenvector corresponding to λi(u):

(1.4) li(u)A(u) = λi(u)li(u) (resp., A(u)ri(u) = λi(u)ri(u)).

We have

(1.5) det|lij(u)| 6= 0 (resp., det|rij(u)| 6= 0),

and all λi(u), lij(u) and rij(u) (i, j = 1, · · · , n) have the same regularity as
aij(u) (i, j = 1, · · · , n). Without loss of generality, we assume that

(1.6) li(u)rj(u) = δij (i, j = 1, · · · , n),

where (δij) stands for the Kronecker’s symbol.
Using left eigenvectors li(u) (i = 1, · · · , n), system (1.1) can be equivalently

rewritten in the following characteristic form

(1.7) li(u)
(∂u

∂t
+ λi(u)

∂u

∂x

)
= 0 (i = 1, · · · , n).

The i-th equation in (1.7) contains only the directional derivatives of u with respect
to t along the i-th characteristic direction dx/dt = λi(u).
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By local existence and uniqueness of C1 solution to the Cauchy problem (cf.
[11]), there exists δ > 0 such that Cauchy problem (1.1)–(1.2) admits a unique C1

solution u = u(t, x) on 0 ≤ t ≤ δ; moreover, for a given system (1.1), δ may be
chosen to depend only on the C1 norm of ϕ:

(1.8) δ = δ(‖ϕ‖1),

where ‖ϕ‖1 = ‖ϕ‖0 + ‖ϕ′‖0 in which ‖ϕ‖0 = max
x∈R

|ϕ| is the C0 norm of ϕ and

ϕ′ = dϕ/dx.
Thus, in order to prove the global existence and uniqueness of C1 solution to

Cauchy problem (1.1)–(1.2), one should establish the following uniform a priori
estimate: For any given T0 > 0, if Cauchy problem (1.1)–(1.2) admits a unique C1

solution u = u(t, x) on 0 ≤ t ≤ T with 0 < T < T0, then

(1.9) ‖u(t, ·)‖1 , ‖u(t, ·)‖0 + ‖ux(t, ·)‖0 ≤ C(T0), ∀ 0 ≤ t ≤ T,

where C(T0) is a positive constant independent of T but possibly depending on T0.
However, it is well-known (cf. [5, 6]) that, generically speaking, the C1 solu-

tion u = u(t, x) to Cauchy problem (1.1)–(1.2) exists only locally in time and the
singularity may occur in a finite time, i.e., there exists t∗ > 0 such that as t ↑ t∗,

(1.10) ‖u(t, ·)‖1 = ‖u(t, ·)‖0 + ‖ux(t, ·)‖0 becomes unbounded.

If the C1 solution u = u(t, x) to Cauchy problem (1.1)–(1.2) blows up in a finite
time, we say that there is a formation of singularities. The problem we would like to
study is what is the mechanism and the character of the formation of singularities
for quasilinear hyperbolic systems. That is to say, in what follows we don’t pay our
attention on studying if there is a global C1 solution or if the C1 solution blows up
in a finite time (This is another business on which there are already many results),
we study only the mechanism and the character of the formation of singularities
under the hypothesis that the formation of singularities occurs.

Obviously, if all eigenvalues λi and all left (resp., right) eigenvectors li (resp.,
ri) (i = 1, · · · , n) are independent of u, system (1.1) or (1.7) reduces to a linear
hyperbolic system with constant coefficients and then there is no singularity at all.
Hence, in order that the singularity occurs, it is necessary to have the dependence
of eigenvalues or (and) eigenvectors on u.

2. Singularity caused by eigenvalues

In the special case that all left (resp., right) eigenvectors are independent of u,
the singularity (if any!) should be caused only by eigenvalues. By the invertible
linear transformation

(2.1) ū = Lu,

where L = (lij) denotes the matrix of left eigenvectors, system (1.1) can be reduced
to a diagonal form, Thus, we may suppose that

(2.2) A(u) = diag{λ1(u), · · · , λn(u)}.

In this diagonal case, it is not difficult to get the following conclusions (cf. [6]):
(A) The solution u = u(t, x) itself always remains bounded, while the first order

derivative ux of the C1 solution becomes unbounded along a characteristic at the
starting point of singularities on the (t, x)-plane.

(B) The singularity occurs at the starting point of the envelope of characteristics
of the same family, i.e., at the point with minimum t-value on the envelope. Here,
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the characteristics of the i-th family are the integral curves of

(2.3)
dx

dt
= λi(u(t, x))

on the (t, x)-plane
This kind of singularity is called to be “the shock formation” or “the geometric

singularity”.
(C) There is no singularity for the linearly degenerate (LD) system,namely, the

Cauchy problem for any given LD system always admits a unique global C1 solution
for all t ∈ R, provided that the initial data have a bounded C1 norm.

(D) If λi(u) is LD, then the family of the i-th characteristics never forms any
envelope at least up to the blow-up time.

Here, λi(u) is linearly degenerate (LD) means that on the domain under consid-
eration

(2.4) ▽λi(u)ri(u) ≡ 0.

For the system of diagonal form, it simply means that

(2.5)
∂λi(u)

∂ui

≡ 0.

The system is LD means that all the eigenvalues are LD.
Moreover, even though the eigenvectors may depend on u, if the initial data have

the following small and decaying property: there exists a constant µ > 0 such that

(2.6) sup
x∈R

{(1 + |x|)1+µ(|ϕ(x)| + |ϕ′(x)|)} ≪ 1,

the previous four conclusions (A)–(D) are still valid for Cauchy problem (1.1)–(1.2)
(cf. [8, 12]). Therefore, in this case the singularity is essentially caused by the
dependence of eigenvalues on u again.

More precisely, a complete category has been given for each eigenvalue λi(u)
and for the whole system (1.1) in this situation. For this purpose, we introduce the
following

Definition 1: λi(u) is weakly linearly degenerate (WLD) if along the i-th char-
acteristic trajectory u = u(i)(s) passing through u = 0 in the u-space, defined
by

(2.7)






du

ds
= ri(u),

s = 0 : u = 0,

we have

(2.8) ▽λi(u)ri(u) ≡ 0, ∀|u| small,

i.e.,

(2.9) λi(u
(i)(s)) ≡ λi(0), ∀|s| small.

If all eigenvalues λi(u) (i = 1, · · · , n) are weakly linearly degenerate (WLD),
system (1.1) is called to be WLD.

Obviously, if λi(u) is LD, then λi(u) is WLD. Thus, a LD system is a WLD
system.

By definition, if λi(u) is not WLD, then either there exists an integer αi ≥ 0
such that

(2.10)
dlλi(u

(i)(s))

dsl

∣∣∣
s=0

= 0 (l = 1, · · · , αi), but
dαi+1λi(u

(i)(s))

dsαi+1

∣∣∣
s=0

6= 0
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or

(2.11)
dlλi(u

(i)(s))

dsl

∣∣∣
s=0

= 0 (l = 1, 2, · · · ), but λi(u
(i)(s)) 6≡ λi(0),

∀|s| small, denoted by αi = +∞.

αi is the index corresponding to non-WLD λi(u).
Hence we have

λi(u)
not WLD

WLD

αi =

finte︷ ︸︸ ︷
0, 1, 2, · · · +∞

GN critical

When αi = 0, λi(u) is genuinely nonlinear (GN) is a neighbourhood of u = 0,
i.e.,

(2.12) ▽λi(u)ri(u) 6= 0, ∀|u| small.

Moreover, when αi is getting larger and larger, λi(u) is closer and closer to the
WLD situation.

If system (1.1) is not WLD, then there exists a nonempty set J ⊆ {1, 2, · · · , n}
such that λi(u) is not WLD if and only if i ∈ J .

For each i ∈ J , there is an index αi which is an integer ≥ 0 or +∞. Let

(2.13) α = min{αi

∣∣∣i ∈ J}.

We have

System (1.1)
not WLD

WLD

α =

finte︷ ︸︸ ︷
0, 1, 2, · · · +∞

critical

For small and decaying initial data, we can prove that if system (1.1) is WLD, in
particular, if system (1.1) is LD, then the Cauchy problem (1.1)–(1.2) always admits
a global C1 solution u = u(t, x) for all t ∈ R, namely, there is no singularity at all;
while, if system (1.1) is not WLD (α is finite or +∞), the singularity must occur
at least for a part of initial data. Moreover, we can prove that if the singularity

occurs, namely, if the lifespan T̃ of the corresponding C1 solution u = u(t, x) is
finite, then

(1). On the existence domain o ≤ t < T̃ , the solution itself remains bounded and
small, while the first order derivative ux becomes unbounded along a characteristic

at the starting point of singularities on t = T̃ .
(2). The singularity occurs at the starting point of the envelope of characteristics

of the same family, i.e., at the point with minimum t-value on the envelope.
These two points show that the singularity always corresponds to a shock for-

mation, namely, a geometric singularity.
(3) If λi(u) is WLD, in particular, if λi(u) is LD, then the family of the i-th

characteristics never forms any envelope on the domain 0 ≤ t ≤ T̃ .
Thus, for small and decaying initial data, the singularity is essentially caused by

the dependence of eigenvalues on u, the dependence of eigenvectors on u gives no
influence on the formation of singularities.
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3. Singularity caused by eigenvectors

For arbitrary C1 initial data with bounded C1 norm, the situation changes
tremendously.

For instance, we consider the system given by A. Jeffrey [4]:

(3.1)





∂u1

∂t
− cosh(2u2)

∂u1

∂x
− sinh(2u2)

∂u3

∂x
= 0,

∂u2

∂t
+ coshu2

∂u1

∂x
+ sinhu2

∂u3

∂x
= 0,

∂u3

∂t
+ sinh(2u2)

∂u1

∂x
+ cosh(2u2)

∂u3

∂x
= 0.

It is easy to see that it is a strictly hyperbolic system with constant eigenvalues

(3.2) λ1 = −1 < λ2 = 0 < λ3 = 1.

The characteristic form of (3.1) can be written as

(3.3)





coshu2

(
∂u1

∂t
− ∂u1

∂x

)
+ sinhu2

(
∂u3

∂t
− ∂u3

∂x

)
= 0,

coshu2
∂u1

∂t
+ ∂u2

∂t
+ sinhu2

∂u3

∂t
= 0,

sinhu2

(
∂u1

∂t
+ ∂u1

∂x

)
+ coshu2

(
∂u3

∂t
+ ∂u3

∂x

)
= 0.

System (3.1) or (3.3) is obviously LD, then WLD; moreover, all the characteris-
tics of the same kind are parallel, then never form any envelope. However, for the
following initial data

(3.4) t = 0 : u1 =
x

α
, u2 = 0, u3 = −

x

α
, x ∈ [−1, 1],

on the maximum determinate domain {(t, x)|0 ≤ t ≤ 1, t − 1 ≤ x ≤ 1 − t} the
solution to Cauchy problem (3.1) and (3.4) can be expressed explicitly as

(3.5)





u1 = α
α−t

+ x
α
− 1,

u2 = ln
(
1 − t

α

)
,

u3 = α
α−t

− x
α
− 1.

Therefore, if 0 < α < 1 (namely, the initial data are not small), as t ↑ α, the
solution u itself and its first order derivative ∂u

∂t
go to the infinity on the line t = α

(however, ∂u
∂x

remains bounded in this case).

This example shows that for arbitrary (quite large) C1 initial data,
(1) The formation of singularities may not be due to the envelope of character-

istics of the same kind, but due to the dependence of left (resp., right) eigenvectors
on u;

(2) The singularity of C1 solution may occur in a finite time even for the LD
system (with constant eigenvalues);

(3) At the starting point of singularities, the solution itself may not keep the
boundedness so that the solution and its first order derivatives become unbounded
simultaneously.

From this example, we see that the previous conclusions (A)–(C) fail in this
situation, then the mechanism and the character of the formation of singularities
produced by eigenvectors are quite different from those produced by the envelope
of characteristics of the same kind. It gives us a new kind of singularity (cf. [7, 9]).

On the other hand, we consider the following system

(3.6)






∂u1

∂t
+ (u1 + u2)

∂u1

∂x
+ (u1 + u2 − 1)∂u3

∂x
= 0,

∂u2

∂t
+ u2

∂u1

∂x
+ u2

∂u3

∂x
= 0,

∂u3

∂t
− (1 + u1 + u2)

∂u1

∂x
− (u1 + u2)

∂u3

∂x
= 0.
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Similar to system (3.1), this is still a strictly hyperbolic system with constant
eigenvalues (3.2). However, since the corresponding characteristic form can be
written as

(3.7)






∂(u1+u3)
∂t

− ∂(u1+u3)
∂x

= 0,
∂u2

∂t
+ u2

∂(u1+u3)
∂x

= 0,

(1 + u1 + u2)
(

∂u1

∂t
+ ∂u1

∂x

)
+ (u1 + u2 − 1)

(
∂u3

∂t
+ ∂u3

∂x

)
= 0,

using the initial data, we can first explicitly solve u1 + u3 from the first equation
of (3.7), then solve u2 from the second equation of (3.7), and finally get u1 (or u3)
from the third equation of (3.7). Hence, for any given C1 initial data with bounded
C1 norm, the Cauchy problem for system (3.6) always admits a unique global C1

solution for all t ∈ R. In this case, the dependence of eigenvectors on u does not
cause any singularities.

Thus, it is natural to ask the following problems:
1. For what kind of eigenvectors does the singularity of C1 solution to Cauchy

problem (1.1)–(1.2) occur? For what kind of eigenvectors does Cauchy problem
(1.1)–(1.2) admit a unique global C1 solution u = u(t, x) on t ≥ 0 or for all t ∈ R?

2. What is the character of singularities produced by eigenvectors?

4. Completely reducible hyperbolic systems

In order to consider the influence of the dependence of eigenvectors on u to
the formation of singularities, we should try to give a complete category to the
eigenvectors so that we can distinguish this influence in different levels.

In what follows we will arrange all the eigenvalues

(4.1) λi(u), λ2(u), · · · , λn(u)

according to the property of eigenvectors, then it is not necessary to ask them to
be in order as shown in (1.3).

If, by means of a suitable diffeomorphism of unknown variables, all the left (resp.,
right) eigenvectors can be taken as constant vectors l1, · · · , ln (resp., r1, · · · , rn),
system(1.1) can be equivalently rewritten in a diagonal form, then we have all
the conclusions (A)–(D) presented above. It is the simplest case: no influence of
eigenvectors on the formation of singularities. This trivial situation is called to be
1-step completely reducible (cf. [7, 9]).

More generally, we give the following (cf. [7, 9])
Definition 2: System (1.1) is called to be m-step completely reducible, if, there

is a global C2 diffeomorphism form R
n to R

n :

(4.2) u = u(ũ)

such that system (1.1) can be equivalently rewritten as

(4.3)
∂ũ

∂t
+ Ã(ũ)

∂ũ

∂x
= 0,

where

(4.4) Ã(ũ) =




Λ̃(1)(ũ)

Ã21(ũ) Λ̃(2)(ũ)

· · · · · ·
. . .

Ãm1(ũ) · · · Ãm m−1(ũ) Λ̃(m)(ũ)


 ,
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in which Λ̃(a)(ũ) (a = 1, · · · , m) are diagonal matrices, the entries of which are

given by λ̃i(ũ) = λi(u(ũ)) (i = 1, · · · , n), respectively.
If this diffeomorphism is only valid in a local domain, system (1.1) is called to

be m-step locally completely reducible.
If there is no such diffeomorphism even in the local sense, system (1,1)is non-

completely reducible.
Thus, the standard form of 2-step completely reducible system is

(4.5)

{
∂u(1)

∂t
+ Λ(1)(u)∂u(1)

∂x
= 0,

∂u(2)

∂t
+ Λ(2)(u)∂u(2)

∂x
+ A21(u)∂u(1)

∂x
= 0,

where

u(1) = (u1, · · · , uk)T , u(2) = (uk+1, · · · , un)T ,(4.6)

Λ(1)(u) = diag{λ1(u), · · · , λk(u)}, Λ(2)(u) = diag{λk+1(u), · · · , λn(u)}.(4.7)

The corresponding matrix composed of left eigenvectors is then of the form

(4.8) L(u) =

(
Ik 0

L21(u) In−k

)
,

where Ik and In−k are k × k and (n − k) × (n − k) identity matrices.
Similarly, the standard form of 3-step completely reducible system is

(4.9)





∂u(1)

∂t
+ Λ(1)(u)∂u(1)

∂x
= 0,

∂u(2)

∂t
+ Λ(2)(u)∂u(2)

∂x
+ A21(u)∂u(1)

∂x
= 0,

∂u(3)

∂t
+ Λ(3)(u)∂u(3)

∂x
+ A31(u)∂u(1)

∂x
+ +A32(u)∂u(2)

∂x
= 0,

where
(4.10)

u(1) = (u1, · · · , uk)T , u(2) = (uk+1, · · · , uk+h)T , u(3) = (uk+h+1, · · · , un)T ,

Λ(1)(u) = diag{λ1(u), · · · , λk(u)},

Λ(2)(u) = diag{λk+1(u), · · · , λk+h(u)},(4.11)

Λ(3)(u) = diag{λk+h+1(u), · · · , λn(u)}.

The matrix of left eigenvectors is then

(4.12) L(u) =




Ik 0 0

L21(u) Ih 0
L31(u) L32(u) In−k−h



 .

In order to study the mechanism of the formation of singularities caused only
by the dependence of eigenvectors on u in a pure situation, we now assume that all
the eigenvalues are constants:

(4.13) λ1, λ2, · · · , λn.

In this case, all the characteristics of the same kind are parallel, then never form
any envelope. Hence, it is impossible to have the geometric singularity. Corre-
spondingly, we guess that the solution u = u(t, x) itself can not remain bounded

as t tends to the lifespan T̃ , namely, the solution u = u(t, x) and its first order
derivatives Du should become unbounded simultaneously at the starting point of
singularities. This kind of singularity is then of so called ODE type, as in the case
of Riccati’s equation. We think it should be the character of singularities caused
by eigenvectors.
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In order to prove this conjecture, it suffices to show that the boundedness of the
C0 norm of u = u(t, x) implies the boundedness of the C1 norm ‖u‖1 = ‖u‖0 +
‖ux‖0. More precisely, it is only necessary to show that for any given T0 > 0, if the
Cauchy problem under consideration admits a unique C1 solution u = u(t, x) on
0 ≤ t ≤ T with 0 < T < T0, such that the C0 norm of u = u(t, x) has a uniform a
priori estimate

(4.14) ‖u(t, ·)‖0 ≤ C0(T0), ∀t ∈ [0, T ],

where C0(T0) is a positive constant independent of T but possibly depending on
T0, then we have

(4.15) ‖ux(t, ·)‖0 ≤ C1(T0), ∀t ∈ [0, T ],

where C1(T0) is also a positive constant independent of T but possibly depending
on T0.

Thus we need only to establish a uniform a priori estimate on ux.
For the simplest case that the system is 2-step completely reducible with constant

eigenvalues, we have proved the previous conjecture, however, up to now, even
for 3-step completely reducible systems with constant eigenvalues, the previous
conjecture can be proved only under some additional hypotheses (cf. [7, 9]). As to
the non-completely reducible system, for instance, the system given by A. Jeffrey,
we have no idea at all. How to prove this conjecture in the general situation, or
how to construct a counter example to show that this conjecture is in general not
correct, is still an open problem.

5. Is there no shock formation for quasilinear LD hyperbolic systems?

Now we turn to the next problem: What happens if both eigenvalues and eigen-
vectors depend on u? For small and decaying initial data, we know that the de-
pendence of eigenvectors on u has no influence on the formation of singularities
and the singularity must be of the type of shock formation. In particular, there is
no singularity then no shock formation for quasilinear LD hyperbolic systems. For
arbitrary initial data with bounded C1 norm, as said by Yann Brenier, “Solutions
of linearly degenerate system of hyperbolic conservation laws are in general believed
to be smooth or to blow up in Sup norm, not in Lipschitz norm” [1]. Actually, A.
Majda has essentially given the following conjecture in his monograph [13] “If the
system is totally linearly degenerate, then the system typically has smooth global
solutions for any ϕ(x), unless there exists a T∗ so that as t ↑ T∗, u(t, x) escapes
form every compact subset. In particular, the shock wave formation never happens
for any smooth initial data ϕ(x)”.

Thus, another conjecture is that there is no shock formation for quasilinear LD
hyperbolic systems of conservation laws.

This conjecture is true for diagonal systems or for small and decaying C1 initial
data. The question is what happens for arbitrary C1 initial data with bounded C1

norm. In order to prove this conjecture, it still suffices to establish the previous
uniform a priori estimate for the C0 norm of ux under the assumption that there
is a uniform a priori estimate for the C0 norm of u.

For 2-step completely reducible systems of 2 equations

(5.1)

{
∂u1

∂t
+ λ1(u)∂u1

∂x
= 0,

∂u2

∂t
+ λ2(u)∂u2

∂x
+ a(u)∂u1

∂x
= 0
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with the LD conditions

(5.2)

{
∂λ1

∂u1
− a(u)

λ2(u)−λ1(u)
∂λ1

∂u2
≡ 0,

∂λ2

∂u2
≡ 0,

this conjecture can be proved (see [10]).
More generally, the same result is still valid (see [10]) for 2-step completely

reducible systems of the form

(5.3)

{
∂u(1)

∂t
+ Λ(1)(u)∂u(1)

∂x
= 0,

∂un

∂t
+ λn(u)∂un

∂x
+ a1(u)∂u1

∂x
+ · · · + an−1(u)∂un−1

∂x
= 0

with the corresponding LD conditions, where

(5.4) u(1) = (u1, · · · , un−1)
T

and

(5.5) Λ(1)(u) = diag{λ1(u), · · · , λn−1(u)}.

Up to now, we have not asked our system to be of conservation laws. If it is
the case, some additional conditions should be imposed to the original hyperbolic
system so that it may be possible to give us some benefits to prove the previous
conjecture.

Consider 2-step completely reducible systems

(5.6)

{
∂u(1)

∂t
+ Λ(1)(u)∂u(1)

∂x
= 0,

∂u(2)

∂t
+ Λ(2)(u)∂u(2)

∂x
+ A21(u)∂u(1)

∂x
= 0,

where

(5.7) u(1) = (u1, · · · , uk), u(2) = (uk+1, · · · , un)

and

(5.8) Λ(1)(u) = diag{λ1(u), · · · , λk(u)}, Λ(2)(u) = diag{λk+1(u), · · · , λn(u)}.

Suppose that by means of a C2 diffeomorphism from R
n to R

n:

(5.9) w = w(u),

the system can be rewritten in a form of conservation laws:

(5.10)
∂w

∂t
+

∂f(w)

∂x
= 0.

Then, it can be shown that system (5.6) is partly rich, namely, for the second
part of system (5.6), Lax’s transformation is still valid with respect to variables
u(2) = (uk+1, · · · , un). Then, under the hypothesis that the C0 norm of u = u(t, x)
has a uniform a priori bound, we can prove that

(5.11) ‖u(1)
x (t, ·)‖0 ≤ C1(T0), ∀t ∈ [0, T ]

implies

(5.12) ‖u(2)
x (t, ·)‖0 ≤ C2(T0), ∀t ∈ [0, T ].

Hence, if (5.6) is a block successive closed system, namely, ifΛ(1)(u) depends only
on u(1), then the conjuncture can be proved, since in this case we do have (5.11).

This argument is still OK for m-step completely reducible systems. The con-
clusion is as follows: For any m-step completely reducible system, suppose that
it is strictly hyperbolic and LD. Suppose furthermore that it is a block successive
closed system, namely, for i = 1, · · · , m−1, the coefficients in any i-step subsystem
depend only on the variable (u(1), · · · , u(i)) so that any i-step subsystem is closed.
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Suppose finally that by means of a C2 diffeomorphism this system can be rewritten
in a form of conservation laws. Then there is no shock formation for the Cauchy
problem with any C1 initial data with bounded C1 norm (see [10]).

Recently, for quasilinear LD hyperbolic systems with source terms

(5.13)
∂u

∂t
+ A(u)

∂u

∂x
= F (u),

this conjecture was also verified in some special cases (see [2, 3, 10]).
However, this conjecture is still open in more general cases.

6. Is there no envelope for LD characteristics of the same family?

Another related conjecture is that if the i-th characteristic λi(u) is LD, then
the i-th family of characteristics never form any envelope at least on the domain

0 ≤ t ≤ T̃ , where T̃ is the lifespan of the C1 solution.
This conjecture is true for diagonal systems or for small and decaying C1 initial

data. But we don’t know if it is true or not for general hyperbolic systems with
arbitrary C1 initial data with bounded C1 norm. It is still open up to now.

Here, we would like to say that in order to show this conjecture, the hypothesis
that the initial data have a bounded C1 norm is essential. To illustrate this, consider
the following system

(6.1)

{
∂u1

∂t
+ u1

∂u1

∂x
= 0,

∂u2

∂t
+ (1 + u1)

∂u2

∂x
= 0.

For this system, λ1 = u1 is GN, while λ2 = 1 + u1 is LD. For the following initial
data

(6.2) t = 0 : u1 = ϕ1(x) , −2x, u2 = ϕ2(x),

it is easy to see that all the 1-st characteristics passing through the x-axis meet
at the point (t, x) = (1

2 , 0) and all the 2-nd characteristics passing through the

x-axis also meet at this point. Since the lifespan T̃ is equal to 1
2 , the family of LD

characteristics forms an envelope on t = T̃ in this case with unbounded C1 initial
data.
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