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ANALYSIS OF A STABILIZED FINITE VOLUME METHOD
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Abstract. This paper is concerned with the development and study of a stabilized finite volume
method for the transient Stokes problem in two and three dimensions. The stabilization is based
on two local Gauss integrals and is parameter-free. The analysis is based on a relationship between
this new finite volume method and a stabilized finite element method using the lowest equal-order
pair (i.e., the P1 − P1 pair). An error estimate of optimal order in the H1-norm for velocity and
an estimate in the L2-norm for pressure are obtained. An optimal error estimate in the L2-norm
for the velocity is derived under an additional assumption on the body force.
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1. Introduction

Finite difference, finite element, and finite volume methods are three major nu-
merical methods for solving engineering and science problems. The finite differences
are easy to implement and locally conservative but not flexible to handle complex
geometry. The finite elements have this flexibility but do not locally conserve mass.
The finite volumes lie somewhere between the finite differences and the finite ele-
ments. They have the flexibility to handle complicated geometry, and their imple-
mentation capability is comparable to that of the finite differences. Moreover, their
numerical solutions usually have certain conservation features that are desirable in
many engineering and science applications.

The finite volume method has a variety of names: the control volume, covolume,
and first-order generalized difference methods [3, 5, 7, 9, 12, 14, 22, 23, 24, 25, 29].
Compared to the finite element method, this method is harder to analyze; partic-
ularly, its stability and convergence for multidimensional partial differential equa-
tions is more difficult to establish. There exist some preliminary error estimates for
second-order elliptic and parabolic partial differential problems. However, for more
complex problems such as the Stokes problem under consideration, a fundamental
stability and convergence theory for the finite volume method is limited.

Recently, a new stabilized finite element method based on two local Gauss inte-
grals was developed for the stationary Stokes equations [18, 20]. This new method
stabilizes the lowest equal-order (i.e., P1−P1) elements by the residual of these local
integrals on each triangular element. It is free of stabilization parameters, does not
require any calculation of high-order derivatives or edge-based data structures, and
can be implemented at the element level. Optimal error estimates were obtained
using the technique of the standard finite element method [20]. More recently, this
stabilized finite element method was extended to the finite volume method for the
stationary Stokes equations [19]. After a relationship between this method and a
stabilized finite element method was established, an error estimate of optimal order
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in the L2- and H1-norms for velocity and an estimate in the L2-norm for pressure
were obtained.

In this paper, we extend the definition and analysis of the stabilized finite volume
method to the transient Stokes equations. The crucial argument in the analysis is
how to use the relationship between the finite element and finite volume methods
developed for the stationary problems to establish the desirable optimal error esti-
mates for the transient problems. This crucial argument will be developed in detail
here. This new finite volume method will be applied to porous media flow [6, 8].

This paper is organized as follows: In the next section, we introduce some nota-
tion, the transient Stokes equations, and their finite element discretizations. Then,
in the third section, a stabilized finite volume method for the transient Stokes
equations is developed, and a relationship between this method and a finite ele-
ment method is considered. Stability and optimal order estimates for the finite
volume method are obtained in the last three sections.

2. Preliminary

We focus on two dimensions; a generalization to three dimensions is straightfor-
ward. Let Ω be a bounded domain in ℜ2, with a Lipschitz-continuous boundary Γ,
satisfying a further condition stated in (A1) below. The transient Stokes equations
are

ut − ν∆u + ∇p = f, div u = 0, (x, t) ∈ Ω × (0, T ],(2.1)

u(x, 0) = u0(x), x ∈ Ω, u(x, t)|Γ = 0, t ∈ [0, T ],(2.2)

where u = u(x, t) = (u1(x, t), u2(x, t)) represents the velocity vector, p = p(x, t)
the pressure, f = f(x, t) the prescribed body force, ν > 0 the viscosity, T > 0 the
final time of interest, and ut = ∂u/∂t.

To introduce a variational formulation, set

X = (H1
0 (Ω))2, Y = (L2(Ω))2, M = L2

0(Ω) =

{

q ∈ L2(Ω);

∫

Ω

q dx = 0

}

,

V = {v ∈ X : div v = 0}, D(A) = (H2(Ω))2 ∩ V.

As noted, a further assumption on Ω is needed:
(A1) Assume that Ω is regular in the sense that the unique solution (v, q) ∈

(X, M) of the steady Stokes problem

−∆v + ∇q = g, div v = 0 in Ω, v|∂Ω = 0

for a prescribed g ∈ Y exists and satisfies

‖v‖2 + ‖q‖1 ≤ c‖g‖0,

where c > 0 is a constant depending only on Ω and ‖ · ‖i denotes the usual norm of
the Sobolev space Hi(Ω) or (Hi(Ω))2 for i = 0, 1, 2. Below the constant c > 0 will
depend at most on the data (ν, T, u0, Ω).

We denote by (·, ·) and ‖ · ‖0 the inner product and norm on L2(Ω) or (L2(Ω))2,
as appropriate. The spaces H1

0 (Ω) and X are equipped with their usual scalar
product and norm

((u, v)) = (∇u,∇v), ‖u‖1 = ((u, u))1/2.

Due to the norm equivalence between ‖u‖1 and ‖∇u‖0 on H1
0 (Ω), we are using

the same notation for them: It is well known that for each v ∈ X the following
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inequality holds:

‖v‖0 ≤ γ‖∇v‖0,(2.3)

where γ is a positive constant depending only on Ω.
(A2) The initial velocity u0 ∈ D(A) and the body force f(x, t) ∈ L2(0, T ; Y ) are

assumed to satisfy

‖u0‖2 +

(

∫ T

0

(

‖f‖2
0 + ‖f‖2

1 + ‖ft‖
2
0

)

dt

)1/2

≤ c.

The continuous bilinear forms a(·, ·) on X ×X and d(·, ·) on X ×M are, respec-
tively, defined by

a(u, v) = ν((u, v)) ∀u, v ∈ X, d(v, q) = −(v,∇q) = (q, div v) ∀v ∈ X, q ∈ M,

and the generalized bilinear form on (X, M) × (X, M) is given by

B((u, p); (v, q)) = a(u, v) − d(v, p) + d(u, q).

Then the following estimates for the bilinear term B((·, ·); (·, ·)) hold [2, 15]:

|B((u, p); (u, p)) = ν‖u‖2
1,(2.4)

|B((u, p); (v, q))| ≤ c(‖u‖1 + ‖p‖0)(‖v‖1 + ‖q‖0),(2.5)

β0(‖u‖1 + ‖p‖0) ≤ sup
(v,q)∈(X,M)

|B((u, p); (v, q))|

‖v‖1 + ‖q‖0
,(2.6)

for all (u, p), (v, q) ∈ (X, M), where β0 > 0.
The mixed variational form of (2.1) and (2.2) is to seek (u, p) ∈ (X, M), t > 0,

such that, for all (v, q) ∈ (X, M),

(ut, v) + B((u, p); (v, q)) = (f, v),(2.7)

u(x, 0) = u0(x).(2.8)

For convenience, we recall the Gronwall Lemma that will be frequently used.

Lemma 2.1. ([26]). Let g(t), ℓ(t), and ξ(t) be three nonnegative functions satis-

fying, for t ∈ [0, T ],

ξ(t) + G(t) ≤ c +

∫ t

0

ℓ ds +

∫ t

0

gξ ds,

where G(t) is a nonnegative function on [0, T ]. Then

ξ(t) + G(t) ≤

(

c +

∫ t

0

ℓ ds

)

exp

(
∫ t

0

g ds

)

.(2.9)

The following result concerning existence, uniqueness, and regularity of a global
strong solution to the Stokes equations is presented under the assumptions (A1)
and (A2).

Lemma 2.2. ([16]). Assume that (A1) and (A2) hold. Then, for any given T > 0
there exists a unique solution (u, p) satisfying the following regularities:

sup
0<t≤T

(‖u(t)‖2
2 + ‖p(t)‖2

1 + ‖ut(t)‖
2
0) ≤ c,

sup
0<t≤T

τ(t)‖ut‖
2
1 +

∫ T

0

τ(t)
(

‖ut‖
2
2 + ‖pt‖

2
1 + ‖utt‖

2
0

)

dt ≤ c,

where τ(t) = min{1, t}.
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For h > 0, we introduce finite-dimensional subspaces (Xh, Mh) ⊂ (X, M), which
are associated with Kh, a triangulation of Ω into triangles, assumed to be regular
and quasi uniform in the usual sense [4, 13]. We assume that for the finite element
spaces (Xh, Mh), the following approximation properties hold: for v ∈ (W k,r(Ω))2,
1 ≤ r, 1 ≤ k ≤ 2, and q ∈ H1(Ω) ∩ M ,

‖v − Ihv‖i,r ≤ chk−i|v|k,r , ‖q − Jhq‖0 ≤ ch|q|1, i = 0, 1,(2.10)

where ‖ · ‖i,r and | · |i,r are the usual norm and semi-norm of the Sobolev space
W k,r(Ω). Particularly, the interpolation operator Ih satisfies

‖Ihv‖1 ≤ c‖v‖1.(2.11)

Due to the quasi-uniformness of the triangulation Kh, the inverse inequality holds

‖vh‖1 ≤ ch−1‖vh‖0 ∀vh ∈ Xh.(2.12)

Note that the generic positive constant c depends only on Ω.
We consider the finite element spaces

Xh = {v = (v1, v2) ∈ X : vi|K ∈ P1(K), i = 1, 2, ∀K ∈ Kh} ,

Mh = {q ∈ M : q|K ∈ P1(K), ∀K ∈ Kh} ,

where P1(K) represents the space of linear functions on set K.
It is well known that the lowest equal-order pair of conforming finite elements

does not satisfy the discrete inf-sup condition

sup
06=vh∈Xh

d(vh, qh)

‖vh‖1
≥ β‖qh‖0,

where β > 0 is independent of h. A technique was used in [20] by adding the
residual of two local Gauss integrals on each K ∈ Kh for the pressure space to
enforce this condition. Specifically, we define

G(ph, qh) =
∑

K∈Kh

{
∫

K,2

phqh dx −

∫

K,1

phqh dx

}

, ph, qh ∈ Mh,

where
∫

K,i
g(x) dx indicates an appropriate Gauss integral over K that is exact for

polynomials of degree i, i = 1, 2, and g(x) = phqh is a polynomial of degree not
greater than two. Thus, for all test functions qh ∈ Mh, the trial function ph ∈ Mh

must be piecewise constant when i = 1. Consequently, we define the L2-projection
operator Πh : L2(Ω)→Wh

(p, qh) = (Πhp, qh) ∀p ∈ L2(Ω), qh ∈ Wh,(2.13)

where Wh ⊂ L2(Ω) denotes the piecewise constant space associated with Kh. The
projection operator Πh has the following properties:

‖Πhp‖0 ≤ c‖p‖0 ∀p ∈ L2(Ω),(2.14)

‖p − Πhp‖0 ≤ ch‖p‖1 ∀p ∈ H1(Ω).(2.15)

Now, using the definition of Πh, we can define the bilinear form G(·, ·) as follows:

G(ph, qh) = (ph − Πhph, qh) = (ph − Πhph, qh − Πhqh).(2.16)

Then the bilinear form of the finite element method on (Xh, Mh) × (Xh, Mh) is

B((uh, ph), (vh, qh)) = a(uh, vh) − d(vh, ph) + d(uh, qh) + G(ph, qh).
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Figure 1. Control volumes associated with triangles.

This bilinear form satisfies the continuity and weak coercivity [20], with (u, p),
(v, q) ∈ (X, M):

|B((u, p), (v, q))| ≤ c (‖u‖1 + ‖p‖0) (‖v‖1 + ‖q‖0) ,(2.17)

sup
(vh,qh)∈(Xh,Mh)

|B((uh, ph), (vh, qh))|

‖vh‖1 + ‖qh‖0
≥ β (‖uh‖1 + ‖ph‖0) ,(2.18)

where β is independent of h.
The corresponding discrete variational formulation for the Stokes equations is

recast:

(uht, vh) + B((uh, ph), (vh, qh)) = (f, vh) ∀ (vh, qh) ∈ (Xh, Mh).(2.19)

Because of (2.17), (2.18), and Lemma 2.2, system (2.19) has a unique solution.
Moreover, the error estimate (optimal for u) for the finite element solution (uh, ph)
holds [21], 0 < t ≤ T ,

‖u − uh‖0 + h (‖u − uh‖1 + ‖p− ph‖0) ≤ cτ−1/2(t)h2 (‖u‖2 + ‖p‖1) .(2.20)

3. Finite Volume Method

Let P be the set containing all the nodes associated with the triangulation Kh,
and N be the total number of these nodes. To define the finite volume method,
a dual mesh K̃h is introduced based on Kh; the elements in K̃h are called control
volumes. The dual mesh can be constructed by the following rule: For each element
K ∈ Kh with vertices Pj , j = 1, 2, 3, select its barycenter O and the midpoint Mj

on each of the edges of K, and construct the control volumes in K̃h by connecting
O to Mj , as illustrated in Fig. 1.

Now, the dual finite element space is defined as

X̃h =

{

v ∈
(

L2(Ω)
)2

: v|K̃ ∈ P0(K̃) ∀K̃ ∈ K̃h;

v|K̃ = 0 on any boundary dual element K̃

}

.

Obviously, the dimensions of Xh and X̃h are the same. Furthermore, there exists
an invertible linear mapping Γh : Xh→X̃h such that for

vh(x) =

N
∑

j=1

vh(Pj)φj(x), x ∈ Ω, vh ∈ Xh, Pj ∈ P ,
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we have

Γhvh(x) =

N
∑

j=1

vh(Pj)χj(x), x ∈ Ω, vh ∈ Xh, Pj ∈ P ,

where {φj} indicates the basis for the finite element space Xh, and {χj} denotes the

basis for the finite volume space X̃h that are the characteristic functions associated
with the dual partition K̃h:

χj(x) =

{

1 if x ∈ K̃j ∈ K̃h,

0 otherwise.

The above idea of connecting the trial and test spaces in the Petrov-Galerkin
method through the mapping Γh was first introduced in [1, 22] in the context of
elliptic problems. Furthermore, the mapping Γh satisfies the properties [28]:

Lemma 3.1. Let K ∈ Kh. If vh ∈ Xh and 1 ≤ r ≤ ∞, then
∫

K

(vh − Γhvh)dx = 0,(3.1)

‖vh − Γhvh‖Lr(K) ≤ chK‖vh‖W 1,r(K),(3.2)

where hK is the diameter of the element K.

Multiplying equation (2.1) by Γhvh ∈ X̃h and integrating over the dual elements

K̃ ∈ K̃h, equation (2.2) by qh ∈ Mh and over the primal elements K ∈ Kh,
and applying Green’s formula, we define the following bilinear forms for the finite
volume method:

A(uh, Γhvh) = −

N
∑

j=1

vh(Pj) ·

∫

∂K̃j

∂uh

∂n
ds, uh, vh ∈ Xh,

D(Γhvh, ph) =

N
∑

j=1

vh(Pj) ·

∫

∂K̃j

phn ds, ph ∈ Mh,

(f, Γhvh) =

N
∑

j=1

vh(Pj) ·

∫

K̃j

f dx, vh ∈ Xh,

where n is the unit normal outward to ∂K̃j.
Now, the new stabilized finite volume method is defined for the solution (ũh, p̃h) ∈

(Xh, Mh) as follows:

(ũht, vh) + A(ũh, Γhvh) + D(Γhvh, p̃h) + d(ũh, qh) + G(p̃h, qh)

= (f, Γhvh) ∀(vh, qh) ∈ (Xh, Mh).(3.3)

Note that we use vh in the first term of the above equation instead of Γhvh. With
the latter, the convergence analysis is still open. The next lemma holds [19].

Lemma 3.2. It holds that

A(uh, Γhvh) = a(uh, vh) ∀uh, vh ∈ Xh,(3.4)

with the following properties:

A(uh, Γhvh) = A(vh, Γhuh),(3.5)

|A(uh, Γhvh)| ≤ c‖uh‖1‖vh‖1,(3.6)

|A(vh, Γhvh)| ≥ c‖vh‖
2
1.(3.7)
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Moreover, the bilinear form D(·, ·) satisfies

D(Γhvh, qh) = −d(vh, qh) ∀(vh, qh) ∈ (Xh, Mh).(3.8)

4. Stability

Detailed results on existence, uniqueness, and regularity of the solution for the
continuous problems (2.1) and (2.2) can be found in [4, 15, 27]. For the finite
volume method (3.3), we define the bilinear form C(·, ·) on (Xh, Mh) × (Xh, Mh):

C((ũh, p̃h), (vh, qh)) = A(ũh, Γhvh) + D(Γhvh, p̃h) + d(ũh, qh) + G(p̃h, qh).(4.1)

The following result establishes its continuity and weak coercivity [19]:

Theorem 4.1. It holds that

(4.2)
|C((ũh, p̃h), (vh, qh))|≤ c (‖ũh‖1 + ‖p̃h‖0) (‖vh‖1 + ‖qh‖0)

∀(ũh, p̃h), (vh, qh) ∈ (Xh, Mh).

Moreover,

(4.3)
sup

(vh,qh)∈(Xh,Mh)

|C((ũh, p̃h), (vh, qh))|

‖vh‖1 + ‖qh‖0
≥ β (‖ũh‖1 + ‖p̃h‖0)

∀(ũh, p̃h) ∈ (Xh, Mh),

where β is independent of h.

It follows from this theorem that the stabilized finite volume system (3.3) has a
unique solution (ũh, p̃h) ∈ (Xh, Mh).

5. Error Analysis

To obtain error estimates for the finite volume solution (ũh, p̃h), we also define
the projection operator (Rh, Qh) : (X, M)→(Xh, Mh) by

C((Rh(v, q), Qh(v, q)); (vh, qh)) = B((v, q); (vh, qh))

∀(v, q) ∈ (X, M), (vh, qh) ∈ (Xh, Mh),(5.1)

which are well defined and satisfy the following approximation properties:

Lemma 5.1. The projection operator (Rh, Qh) satisfies

‖v − Rh(v, q)‖1 + ‖q − Qh(v, q)‖0 ≤ c(‖v‖1 + ‖q‖0),(5.2)

for all (v, q) ∈ (X, M) and

‖v − Rh(v, q)‖0 + h (‖v − Rh(v, q)‖1 + ‖q − Qh(v, q)‖0) ≤ ch2(‖v‖2 + ‖q‖1),

(5.3)

for all (v, q) ∈ (D(A), H1(Ω) ∩ M).

Proof. First, using the triangle inequality, (2.5), (4.3), and (5.1) gives

‖v − Rh(v, q)‖1 + ‖q − Qh(v, q)‖0 ≤ ‖v‖1 + ‖q‖0 + ‖Rh(v, q)‖1 + ‖Qh(v, q)‖0

≤‖v‖1 + ‖q‖0 +
1

β
sup

(vh,qh)∈(Xh,Mh)

C((Rh(v, q), Qh(v, q)); (vh, qh))

‖vh‖1 + ‖qh‖0

=‖v‖1 + ‖q‖0 +
1

β
sup

(vh,qh)∈(Xh,Mh)

B((v, q); (vh, qh))

‖vh‖1 + ‖qh‖0

≤c(‖v‖1 + ‖q‖0).(5.4)
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Next, we see from the definition of (Rh, Qh), the triangle inequality, (2.14)–(2.16),
and (4.2) that

‖v − Rh(v, q)‖1 + ‖q − Qh(v, q)‖0

≤ ‖v − Ihv‖1 + ‖q − ρhq‖0 + ‖Ihv − Rh(v, q)‖1 + ‖ρhq − Qh(v, q)‖0

≤ ‖v − Ihv‖1 + ‖q − ρhq‖0

+
1

β
sup

(vh,qh)∈(Xh,Mh)

|C((Ihv − Rh(v, q), ρhq − Qh(v, q)); (vh, qh))|

‖vh‖1 + ‖qh‖0

≤ ‖v − Ihv‖1 + ‖q − ρhq‖0

+
1

β
sup

(vh,qh)∈(Xh,Mh)

|C((Ihv − v, ρhq − q); (vh, qh))| + |G(q, qh)|

‖vh‖1 + ‖qh‖0

≤ c(‖v − Ihv‖1 + ‖q − ρhq‖0) +
1

β
sup

(vh,qh)∈(Xh,Mh)

|G(q, qh)|

‖vh‖1 + ‖qh‖0

≤ ch(‖v‖2 + ‖q‖1).(5.5)

Finally, to establish the estimate in the L2-norm, we consider the dual problem for
(Φ, Ψ) ∈ X × M satisfying

B((w, r); (Φ, Ψ)) = (w, v − Rh(v, q)) ∀(w, r) ∈ X × M,(5.6)

which satisfies

(5.7) ‖Φ‖2 + ‖Ψ‖1 ≤ c‖v − Rh(v, q)‖0.

Obviously, using (2.10) and (5.5) and setting (w, r) = (e, η) = (v − Rh(v, q), q −
Qh(v, q)) in (5.6) and (vh, qh) = (IhΦ, ρhΨ) in (5.1), respectively, we see that

‖e‖2
0 =C((e, η); (Φ − IhΦ, Ψ − ρhΨ)) + G(q, ρhΨ) − G(η, Ψ)

≤c (‖e‖1 + ‖η‖0) (‖Φ − IhΦ‖1 + ‖Ψ − ρhΨ‖0) + G(q, ρhΨ − Ψ)

+ G(q, Ψ) − G(η, Ψ)

≤ch {(‖e‖1 + ‖η‖0) (‖Φ‖2 + ‖Ψ‖1) + h‖q‖1‖Ψ‖1}

≤ch (‖e‖1 + ‖η‖0 + h‖q‖1) (‖Φ‖2 + ‖Ψ‖1) .(5.8)

Thus, by combining (5.8) with (5.7) and using (5.5), we have

‖v − Rh(v, q)‖0 ≤ ch2(‖v‖2 + ‖q‖1),

which, together with (5.5), yields (5.3). #
Because of u0 ∈ D(A), we can define p0 ∈ H1(Ω) ∩ M [16]. Now, we define

(u0h, p0h) = (Rh(u0, p0), Qh(u0, p0)).

Lemma 5.2. Under the assumptions of Lemma 2.2, we see that, for t ∈ [0, T ],

‖ũh(t)‖2
0 +

∫ t

0

(

ν‖ũh‖
2
1 + G(p̃h, p̃h)

)

ds ≤ c,(5.9)

ν‖ũh(t)‖2
1 + G(p̃h(t), p̃h(t)) +

∫ t

0

‖ũht‖
2
0ds ≤ c,(5.10)

‖u(t) − ũh(t)‖2
0 +

∫ t

0

(

ν‖u − ũh‖
2
1 + G(p − p̃h, p − p̃h)

)

ds ≤ ch2.(5.11)

Proof. Choosing (v, q) = 2(ũh, p̃h) in (3.3) and using the definition of C(·; ·), we
see that

d

dt
‖ũh‖

2
0 + 2ν‖ũh‖

2
1 + 2G(p̃h, ph) ≤ ‖f‖0‖Γhũh‖0 ≤ ν‖ũh‖

2
1 + ν−1γ2‖f‖2

0.
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Integrating the above inequality from 0 to t and noting

‖ũh(0)‖0 ≤ ‖u0‖0 + ‖u0 − Rh(u0, p0)‖0 ≤ c(‖u0‖1 + ‖p0‖0),

we obtain (5.9).
Subtracting (3.3) from (2.7) with (v, q) = (vh, qh), we see that

(ut − ũht, vh) + C((u − ũh, p − p̃h); (vh, qh)) = (f, vh − Γhvh) + G(p, qh),(5.12)

for all (vh, qh) ∈ (Xh, Mh). Set (vh, qh) = 2(eh, ηh) in (5.12), where (eh, ηh) =
(Rh(u, p)−ũh, Qh(u, p)− p̃h). Also, set E = u−Rh(u, p). Then, using the definition
of Rh and Qh, we obtain

d

dt
‖u − ũh‖

2
0 + 2ν‖eh‖

2
1 + 2G(ηh, ηh) = 2(f, vh − Γhvh) + 2(ut − ũht, E).(5.13)

Using Lemma 2.2 and (2.3), we see that

|(ut − ũht, E)| ≤ c‖E‖0‖ut − ũht‖0,

|(f, eh − Γheh)| ≤ ch‖f‖0‖eh‖1 ≤ ch2‖f‖2
0 +

ν

4
‖eh‖

2
1.

Noting that

(5.14) ‖E‖0 + h‖E‖1 ≤ ch2(‖u‖2 + ‖p‖1),

and combining this inequality with (5.13), we have

d

dt
‖u − ũh‖

2
0 + ν‖eh‖

2
1 + G(ηh, ηh)

≤ ch2
(

‖f‖2
0 + ‖ut − ũht‖0(‖u‖2 + ‖p‖1)

)

.(5.15)

Then, by integrating (5.15) from 0 to t and using the Schwarz inequality, Lemma
2.2, (A2), and the following inequality:

‖u0 − Rh(u0, p0)‖0 ≤ ch2(‖u0‖2 + ‖p0‖1),

we have

‖u(t) − ũh(t)‖2
0 +

∫ t

0

(

ν‖eh‖
2
1 + G(ηh, ηh)

)

ds

≤ ch2 + ch2

(
∫

(‖ut‖
2
0 + ‖ũht‖

2
0)ds

)1/2

,(5.16)

which, combining with (5.3), (5.14), and Lemma 2.2, yields

‖u(t) − ũh(t)‖2
0 +

∫ t

0

(

ν‖u − ũh‖
2
1 + G(p − p̃h, p − p̃h)

)

ds

≤ ch2

{

1 +

(
∫ t

0

‖ũht‖
2
0ds

)1/2
}

.(5.17)

To estimate
∫ t

0
‖ũht‖

2
0ds, we differentiate the term d(ũh, qh) + G(p̃h, q̃h) with

respect to time t in (3.3) and set (vh, qh) = (ũht, p̃h) to have

‖ũht‖
2
0 +

1

2

d

dt

(

ν‖ũh‖
2
1 + G(p̃h, p̃h)

)

= (f, Γhũht) ≤ c‖f‖0‖ũht‖0,

so

‖ũht‖
2
0 +

d

dt

(

ν‖ũh‖
2
1 + G(p̃h, p̃h)

)

≤ c‖f‖2
0.(5.18)

Now, integrating (5.18) from 0 to t, noting that

ν‖ũ0h‖
2
1 + G(p̃0h, p̃0h) ≤ c(‖ũ0h‖

2
1 + ‖p̃0h‖

2
0) ≤ c(‖u0‖

2
1 + ‖p0‖

2
0),
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and using Lemma 2.2, we see that

∫ t

0

‖ũht‖
2
0ds + ν‖ũh(t)‖2

1 + G(p̃h(t), p̃h(t))

≤ ν‖ũ0h‖
2
1 + G(p̃0h, p̃0h) + c

∫ t

0

‖f‖2
0ds ≤ c,(5.19)

which implies (5.10). Finally, combining (5.17) with (5.10) gives (5.11). #

Lemma 5.3. Under the assumptions of Lemma 2.2, it holds that, for t ∈ [0, T ],

‖ũht(t)‖
2
0 +

∫ t

0

(

ν‖ũht‖
2
1 + G(p̃ht, p̃ht)

)

ds ≤ c,(5.20)

τ(t)
(

ν‖ũht(t)‖
2
1 + G(p̃ht(t), p̃ht(t))

)

+

∫ t

0

τ(s)‖ũhtt‖
2
0ds ≤ c,(5.21)

τ(t)‖ut(t) − ũht(t)‖
2
0 +

∫ t

0

τ(s)
(

ν‖eht‖
2
1 + G(ηht, ηht)

)

ds ≤ ch2.(5.22)

Proof. By differentiating (3.3) with respect to time, it follows that

(ũhtt, vh) + C((ũht, p̃ht); (vh, qh)) = (ft, Γhvh),(5.23)

for (vh, qh) ∈ (Xh, Mh). Taking (vh, qh) = (ũht, p̃ht) in equation (5.23), we deduce

1

2

d

dt
‖uht‖

2
0 + ν‖ũht‖

2
1 + G(p̃ht, p̃ht) ≤

1

2ν
‖ũht‖

2
1 +

ν

2
‖ft‖

2
0,(5.24)

so

d

dt
‖ũht‖

2
0 + ν‖ũht‖

2
1 + G(p̃ht, p̃ht) ≤ c‖ft‖

2
0.(5.25)

Integrating (5.25) and using assumption (A2) and Lemma 5.2, we obtain (5.20).
Next, differentiating again the term d(ũht, qh) + G(p̃ht, qh) in (5.23) and taking

(vh, qh) = (ũhtt, p̃ht), we see that

(ũhtt, ũhtt) +
d

dt
(ν‖ũht‖

2
1 + G(p̃ht, p̃ht)) = (ft, Γhũhtt)

≤ ‖ft‖0‖ũhtt‖0 ≤
1

2
‖ft‖

2
0 +

1

2
‖ũhtt‖

2
0.(5.26)

Similarly, multiplying (5.26) by τ(s) and integrating from 0 to t, we see that

∫ t

0

τ(s)‖ũhtt‖
2
0ds + τ(t)(ν‖ũht‖

2
1 + G(p̃ht, p̃ht))

≤ c

(
∫ t

0

τ(s)‖ft‖
2
0ds +

∫ t

0

(ν‖ũht‖
2
1 + G(p̃ht, p̃ht))ds

)

.(5.27)

Combining (5.27), Lemma 5.2, and (A2) completes the proof of (5.21).
To show (5.22), differentiating (5.12) with respect to time t gives

(utt − ũhtt, vh) + C((eht, ηht); (vh, qh)) = (ft, vh − Γhvh),(5.28)
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for all (vh, qh) ∈ (Xh, Mh). Taking (vh, qh) = (eht, ηht) in (5.28) and using (3.2)
and (5.3), we see that

1

2

d

dt
‖ut − ũht‖

2
0 + ν‖eht‖

2
1 + G(ηht, ηht) = (ft, eht − Γheht) − (utt − ũhtt, Et)

(5.29)

≤ c‖ft‖0h‖eht‖1 + ‖utt − ũhtt‖0‖Et‖0

≤
c

2ν
h2‖ft‖

2
0 +

1

2
ν‖eht‖

2
1 + c(‖utt‖0 + ‖ũhtt‖0)h

2(‖u‖2 + ‖p‖1).

We multiply (5.29) by τ(s), integrate from 0 to t, and apply Lemma 2.2 and (5.21)
to obtain

τ(t)‖ut − ũht‖
2
0 +

∫ t

0

τ(s)(ν‖eht‖
2
1 + G(ηht, ηht))ds(5.30)

≤ch2

(
∫ t

0

τ(s)‖ft‖
2
0ds +

∫ t

0

τ(s)(‖utt‖0 + ‖ũhtt‖0)(‖u‖2 + ‖p‖1)ds

)

≤ ch2,

which completes the proof. #

Lemma 5.4. Under the assumptions of Lemma 2.2, it holds that, for t ∈ [0, T ],

ντ(t)‖u(t) − ũh(t)‖2
1 +

∫ t

0

τ(s)‖ut − ũht‖
2
0ds ≤ ch2.(5.31)

Proof. Differentiating the term d(u − ũh, qh) + G(p− p̃h, qh) in (5.12), we have

(ut − ũht, vh) + A(u − ũh, Γhvh) + D(Γhvh, p − p̃h) + d(ut − ũht, qh)

+ G(pt − p̃ht, qh) = (f, vh − Γhvh) + G(pt, qh).(5.32)

Taking (vh, qh) = (eht, ηh) in (5.32) and noting that

(ut − ũht, Et) ≤
1

2
‖u − ũht‖

2
0 +

1

2
‖Et‖

2
0,(5.33)

we have

‖ut − ũht‖
2
0 +

1

2

d

dt
(ν‖eh‖

2
1 + G(ηh, ηh))

≤ c‖f‖0h‖eht‖1 +
1

2
‖ut − ũht‖

2
0 +

1

2
‖Et‖

2
0.(5.34)

That is,

‖ut − ũht‖
2
0 +

d

dt
(ν‖eh‖

2
1 + G(ηh, ηh))

≤ c‖f‖0h‖eht‖1 + ‖Et‖
2
0.(5.35)

Multiplying (5.35) by τ(s), integrating from 0 to t, and using Lemma 5.1, Lemma
5.2, and (5.22) yields

∫ t

0

τ(s)‖ut − ũht‖
2
0ds + τ(t)(ν‖eh‖

2
1 + G(ηh, ηh))

≤c

∫ t

0

τ(s)‖f‖0h‖eht‖1ds +

∫ t

0

τ(s)‖Et‖
2
0ds +

∫ t

0

(ν‖eh‖
2
1 + G(ηh, ηh))ds

≤ch

(
∫ t

0

‖f‖2
0ds

)1/2(∫ t

0

τ(s)‖eht‖
2
1ds

)1/2

+

∫ t

0

τ(s)h2(‖ut‖
2
2 + ‖pt‖

2
1)ds

+

∫ t

0

(ν‖eh‖
2
1 + G(ηh, ηh))ds ≤ ch2.(5.36)
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This completes the proof. #

Lemma 5.5. Under the assumptions of Lemma 2.2, it holds that, for t ∈ [0, T ],

τ1/2(t)‖p(t) − p̃h(t)‖0 ≤ ch.(5.37)

Proof. It follows from the inf-sup condition (4.3) and (3.3) that

‖ηh(t)‖0 ≤β−1 sup
(vh,qh)∈(Xh,Mh)

C((eh(t), ηh(t)); (vh, qh))

‖vh‖1 + ‖qh‖0

≤β−1γ‖ut(t) − ũht(t)‖0 + ch‖f‖0.(5.38)

Using Lemma 5.3 and (A2), we see that

τ1/2(t)‖ηh(t)‖0 ≤ cτ1/2(t)‖ut(t) − ũht(t)‖0 + chτ1/2(t)‖f‖0 ≤ ch.(5.39)

Thus, using Lemmas 5.1 and 2.2 yields

τ1/2(t)‖p(t) − p̃h(t)‖0 ≤τ1/2(t)‖ηh(t)‖0 + τ1/2(t)‖p(t) − Qh(u(t), p(t))‖0

≤ch + ch(‖u(t)‖2 + ‖p(t)‖1) ≤ ch,

which is (5.37). #

Theorem 5.6. Under the assumptions of Lemma 2.2, it holds that, for t ∈ [0, T ],

τ1/2(t)‖u(t) − ũh(t)‖1 + τ1/2(t)‖p(t) − p̃h(t)‖0 ≤ ch.

This theorem follows from Lemmas 5.4 and 5.5.

6. L2-Error Estimate

Now, we estimate the error ‖u − uh‖0 using a parabolic duality argument for a
backward-in-time Stokes problem [16, 17]. The dual problem is to seek (Φ(t), Ψ(t))
∈ X × M such that, for t ∈ [0, T ] and g ∈ L2(0, T, Y ),

(v, Φt) − B
(

(v, q); (Φ, Ψ)
)

= (v, g)(6.1)

for all (v, q) ∈ (X, M), with Φ(T ) = 0. This problem is well-posed and has a unique
solution (Φ, Ψ) with [17]

Φ ∈ C(0, T, V ) ∩ L2(0, T, D(A)) ∩ H1(0, T, Y ), Ψ ∈ L2(0, T, H1(Ω) ∩ M).

We recall the following regularity results [17]:

Lemma 6.1. The solution (Φ, Ψ) of (6.1) satisfies

sup
0≤t≤T

‖Φ(t)‖2
1 +

∫ T

0

(

‖Φ‖2
2 + ‖Ψ‖2

1 + ‖Φt‖
2
0

)

dt ≤ c

∫ T

0

‖g‖2
0dt.(6.2)

Lemma 6.2. Under the assumptions of Lemma 2.2 and f ∈ L∞(0, T, (H1(Ω))2),
it holds that

∫ T

0

‖u − ũh‖
2
0ds ≤ ch4.(6.3)

Proof. We introduce the dual Galerkin projection (Φh(t), Ψh(t)) of (Φ(t), Ψ(t)):

C((vh, qh)); (Φh, Ψh)) = B((vh, qh); (Φ, Ψ)) ∀ (vh, qh) ∈ (Xh, Mh),

which gives

C((vh, qh); (Φ − Φh, Ψ − Ψh)) = G(qh, Ψ) ∀ (vh, qh) ∈ (Xh, Mh).(6.4)

By using a similar approach to the proof of Lemma 5.1, we can prove

‖Φ − Φh‖0 + h‖Φ − Φh‖1 + h‖Ψ − Ψh‖0 ≤ ch2(‖Φ‖2 + ‖Ψ‖1).(6.5)
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Taking (vh, qh) = (Φh, Ψh) in (5.12), we have

(et, Φh) + C
(

(e, η); (Φh, Ψh)
)

= (f, Φh − ΓhΦh) + G(p, Ψh),(6.6)

where (e, η) = (u − ũh, p − p̃h). Adding (6.6) and (6.1) with (v, q) = (e, η) and
g = e, we see that

‖e‖2
0 =

d

dt
(e, Φ) − (et, Φ − Φh) − C((e, η); (Φ − Φh, Ψ − Ψh))

− (f, Φh − ΓhΦh) + G(η, Ψ) − G(p, Ψh).(6.7)

Applying Lemma 6.1, (2.14), and (3.2), we have

|(et, Φ − Φh)| ≤c(‖ut‖0 + ‖ũht‖0)‖Φ − Φh‖0

≤ch2(‖ut‖0 + ‖ũht‖0)(‖Φ‖2 + ‖Ψ‖1),

(f, Φh − ΓhΦh) =(f − Γhf, Φh − ΓhΦh) ≤ ch‖f‖1h‖Φh‖1

≤ch2‖f‖1(‖Φ − Φh‖1 + ‖Φ‖1),

|G(η, Ψ)| ≤chG1/2(η, η)‖Ψ‖1,

G(p, Ψh) =G(p, Ψh − Ψ) + G(p, Ψ) ≤ ch‖p‖1h‖Ψ‖1 + ch‖p‖1h‖Ψ‖1.(6.8)

As for the bilinear term, by using (6.4), (5.1), (5.5), (2.14), and (2.15), we have

|C
(

(e, η); (Φ − Φh, Ψ − Ψh)
)

|

≤ |C
(

(u − Rh(u, p), p − Qh(u, p)); (Φ − Φh, Ψ − Ψh)
)

| + |G(Qh(u, p) − p̃h, Ψ)|

≤ c (‖u − Rh(u, p)‖1 + ‖p − Qh(u, p)‖0) (‖Φ − Φh‖1 + ‖Ψ − Ψh‖0)

+ |G(Qh(u, p) − p + η, Ψ)|

≤ ch2 (‖u‖2 + ‖p‖1) (‖Φ‖2 + ‖Ψ‖1) + chG1/2(η, η)‖Ψ‖1.

Then, combining the above estimates with (6.7), we see that

‖e‖2
0 =

d

dt
(e, Φ) + ch2(‖ut‖0 + ‖uht‖0)(‖Φ‖2 + ‖Ψ‖1) + chG1/2(η, η)‖Ψ‖1

+ ch2 (‖u‖2 + ‖p‖1) (‖Φ‖2 + ‖Ψ‖1) + ch2‖f‖1(‖Φ‖1 + h‖Φ‖2).(6.9)

Integrating the above equation from 0 to T gives

∫ T

0

‖e(s)‖2
0ds = −(e(0), Φ(0))

(6.10)

+ ch2

(

∫ T

0

(

‖ut‖
2
0 + ‖uht‖

2
0 + ‖u‖2

2 + ‖p‖2
1

)

ds

)1/2(
∫ T

0

(

‖Φ‖2
2 + ‖Ψ‖2

1

)

ds

)1/2

+ ch

(

∫ T

0

G(η, η)ds

)1/2(
∫ T

0

‖Ψ‖2
1ds

)1/2

+ ch2

(

∫ T

0

‖f‖2
1ds

)1/2(
∫ T

0

(‖Φ‖2
1 + h2‖Ψ‖2

2)ds

)1/2

.

In addition, by the definition of Rh, we have

|(e(0), Φ(0)| = |(u0 − Rh(u0, p0), Φ(0))| ≤ ch2(‖u0‖2 + ‖p0‖1)‖Φ(0)‖1.(6.11)

Combining (6.11) with (6.10) and using Lemma 6.1 with g = e complete the proof
of (6.3). #
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Lemma 6.3. Under the assumptions of Lemma 6.2, it holds that, for t ∈ [0, T ],

τ1/2(t)‖u(t) − uh(t)‖0 ≤ ch2.(6.12)

Proof. Taking (vh, qh) = (eh, ηh) = (Rh(u, p)− uh, Qh(u, p)− ph) in (5.12) and
using (3.2), we see that

1

2

d

dt
‖eh‖

2
0 + ν‖eh‖

2
1 + G(ηh, ηh) = (f, eh − Γheh) − (ut − Rh(u, p)t, eh)

= (f − Γhf, eh − Γheh) − (ut − Rh(u, p)t, eh)

≤ ch4 1

2ν
‖f‖2

1 +
ν

2
‖eh‖

2
1 + ‖Et‖0‖eh‖0,(6.13)

so

d

dt
‖eh‖

2
0 + ν‖eh‖

2
1 + G(ηh, ηh) ≤ ch4‖f‖2

1 + c‖Et‖0‖eh‖0.(6.14)

Multiplying (6.14) by τ(t), integrating from 0 to t, and using Lemmas 2.2 and
6.2, we obtain

τ(t)‖eh(t)‖2
0 +

∫ t

0

τ(s)
(

ν‖eh‖
2
1 + G(ηh, ηh)

)

ds

≤ c

∫ t

0

‖eh‖
2
0ds + ch4

∫ t

0

τ(s)‖f‖2
1ds

+ ch2

(
∫ t

0

τ(s)(‖ut‖
2
2 + ‖pt‖

2
1)ds

)1/2 (∫ t

0

‖eh‖
2
0ds

)1/2

,

which completes the proof. #
The next theorem follows from Lemma 6.3 and Theorem 5.6.
Theorem 6.4. Under the assumptions of Lemma 6.2, it holds that, for t ∈ [0, T ],

‖u(t) − ũh(t)‖0 + h‖u(t) − ũh(t)‖1 + h‖p(t) − p̃h(t)‖0 ≤ cτ−1/2(t)h2.(6.15)
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