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SCIENTIFIC COMPUTING FOR ALUMINUM PRODUCTION
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Abstract. Numerical simulation in aluminum production envolves many dif-

ferent topics, this paper is dedicated to some aspects of two of them. In the

first part, a numerical approach for the computation of the motion of the fluids

in an electrolitic cell is presented, with an emphasis on a mesh deformation

technique to track the free interface during the time. In a second part, a model

for the simulation of alumina dissolution and repartition is exposed.
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1. Introduction

The industrial production of aluminum is based, since the end of the 19th cen-
tury, on the electrolysis process. In most countries, aluminum is produced from
alumina (Al2O3) which itself comes from bauxite. Aluminum electrolysis is per-
formed in big Hall-Heroult cells, of approximate size 10 meters long, 3 meters wide
and 1 meter high. Figure (1) gives a schematic representation of a vertical trans-
verse cut of such a cell. Alumina particles are injected periodically in a corrosive
electrolytic bath lying over the liquid aluminum. Both fluids are kept at tempera-
ture 965◦C and are immiscible.

A strong electric current (current density about 10′000 A/m2) runs through the
fluids from the carbone anodes to the cathode allowing electrolysis to take place in
the electrolyte. The chemical reaction:

2Al2O3+ energy→ 4Al + 3O2,

produces liquid aluminum and oxygen bubbles which are gradually burning the
anodes and creating CO2. Anodes must therefore be changed regularly. Alumina
is added periodically to the electrolytic bath and the aluminum is produced and
recolted at the bottom of the cell every day.

All these running operations can produce perturbations of the cell rendering.
Moreover, industry wants to optimize the production, this is to say increase current
density as much as possible, by acting on the geometrical and electrical configura-
tions of such electrolytic cells. Since physical observations are difficult to perform
due to high temperature, current and magnetic induction in the cells, numerical
simulations are very useful.

In this paper, some of the physical phenomena involved in aluminum production
are presented, with emphasis on numerical simulation.
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Figure 1. Simplified electrolytic cell : Notations

The most important point, is that both fluids are immiscible and moving, since
they are subject to electromagnetic and gravity forces. These electromagnetic forces
(Lorentz forces) arise from the combination of the current density running through
the fluids and the magnetic induction due to the whole electric configuration of a
hall containing many cells. It is of great importance to be able to control the motion
of the fluids in a cell because if the aluminum, which is a much better conductor
than the electrolyte, touches the anodes then the cell would be strongly damaged.

This leads to the following magnetohydrodynamic (MHD) modelling: multi-
fluid incompressible Navier-Stokes equations for the computation of the velocity
and pressure, with an unknown interface between liquid aluminum and electrolyte
determined by a level-set function, are coupled with the quasi-static Maxwell model
for the computation of the magnetic induction in the whole space. The electric cur-
rent density is given by Ohm’s law in moving media, determined only in the cell.

Many other phenomenons may be considered. Let us mention two of them :

(1) Temperature effects. Temperature in the electrolytic bath is maintained at
a value close to 965◦C. This is the result of an equilibrium between heat pro-
duction mainly in the bath due to Joule’s effect and heat transfer through
the walls of the cell. Since the fusion temperature of the electrolytic bath
is close to the mean production temperature, it can solidify on the internal
walls of the cell, creating the so-called ledges. These ledges are very useful
to protect the walls of the cell against the extreme chemical agressivity
of the bath but they are modifying the electric currents in the cell and, of
course, the shape of the fluid domain. In this document we do not deal with
thermal effects but refer to [6] for a discussion on this particular question.

(2) Ferromagnetic effects. The whole cell is placed in a steel container two cen-
timers thick. Since the container is ferromagnetic, it reduces the intensity
of magnetic induction into the fluids by screening and therefore the Lorentz
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forces that induce movements in the fluids. Eventhough ferromagnetic ef-
fects are crucial when studying the stability of an electrolytic cell but we
will not discuss this question here and refer to [4].

The contributions of this paper are the following :
(i) We recall the MHD model for the computation of the fluid motion pre-

sented in [5] and focus on the mesh deformation algorithm for the interface
tracking,

(ii) We present a numerical model to simulate the injection of alumina parti-
cles, their dissolution into the electrolyte and the repartition of the dissolved
alumina concentration. This topic is linked to the previous one since we
require here the knowledge of the velocity field in the fluid domain. It is
of great importance when dealing with the optimization of aluminum pro-
duction since a non-uniform concentration of dissolved alumina can lead to
a great waste of energy.

Finally let us mention that all those phenomenons do not share the same time
scale. Some of these are on a small time scale like the motion of the fluids, some
are of intermediate time scale like the convection-diffusion of alumina in the bath
and others are of longer scale like the formation of ledges on the cell walls. This is
why we have developed two types of simulations: a simulation of transient in the
cell, mainly for MHD movements and a simulation of the steady state of the cell,
for solidification ledges and to compute the linear stability (see [2, 3]).

2. Magnetohydrodynamics

The liquid aluminum and the electrolytic bath are assumed to be incompressible
viscous Newtonian fluids and their motion can be described with the incompressible
Navier-Stokes equations. Note also that the two fluids are immiscible. The main
physical caracteristics of these fluids are reported in Table 1.

Parameter Unit Symbol Aluminum Bath
Density kg/m3 ρ 2270 2130
Viscosity Pa·s µ 2E-3 1E-3
Electric Conductivity S/m σ 3.33E6 210

Table 1. Physical parameters associated with the electrolysis of aluminum.

2.1. Multifluid Navier-Stokes equations. Let Σ be the bounded domain of R3

occupied by the whole eletrolytic cell (fluids, anodes, cathodes, conductors, etc),
Ω ⊂ Σ the fluid domain containing the liquid aluminum Ωal(t) and the electrolytic
bath Ωel(t), where t is the time (see Figure 1). Clearly we have Ω = Ωal(t)∪Ωel(t) ⊂
Σ for all time t. The interface between the two fluids will be denoted Γ(t), i.e.
Γ(t) = Ωal(t) ∩ Ωel(t) for all t. We assume moreover that there exists a domain
Λ ⊂ R2 and a smooth function g : (0,∞)× Λ→ R such that

(1) Γ(t) =
{

(x, y, z) ∈ R3 : z = g(t, x, y), (x, y) ∈ Λ, t ∈ (0,∞)
}
.

In other words, Γ(t) can be seen as a smooth surface parametrized by x and y. In
order to simplify the presentation, the density and viscosity of liquid aluminum,
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denoted by ρal and µal are considered constant in space and time. The same as-
sumption is made for the density and viscosity of electrolytic bath ρel and µel. In
order to simplify the notations and if there is no ambiguity, we write in the follow-
ing only µ and ρ.

If we assume that the current density ~j going through the cell and the ambiant
magnetic induction field ~B are known, then the external force ~f acting on the fluids
is the sum of the gravity and of the Lorentz forces, i.e. ~f = ρ~g +~j × ~B. Then the
velocity ~u and pressure p of the fluids satisfy the multifluid incompressible Navier-
Stokes equations:

(2)


ρ
∂~u

∂t
+ ρ(~u · ∇)~u−∇ · (τ (~u, p)) = ~f,

in Ωal(t) ∪ Ωel(t),
∇ · ~u = 0,

where τ is the stress tensor defined by

(3) τ (~u, p) = 2µε(~u)− pI, with ε(~u) =
1
2
(
∇~u+∇~uT

)
.

On the interface we assume the continuity of the velocity and write [~u] = ~0 on
Γ(t), where [β] = βel − βal is the jump of the quantity β between Ωal and Ωel.
Considering surface tension effects we also impose that

(4) [τ~n] = γH~n,

where ~n is the unit normal on Γ(t) pointing from Ωal to Ωel, γ is a constant surface
tension coefficient depending on the fluids and H is the Gauss curvature of the sur-
face Γ(t) positively counted with respect to the normal ~n. The equation (4) must
be completed with the value of the contact angle between Γ(t) and the wall of the
cell. In practice this contribution will be treated following the method presented
in [10], by introducing in the variational formulation of (2), an integral on Γ and
applying a surface divergence theorem (see below).

The equation (2) is completed with a suitable initial condition for the velocity

~u(0) = ~u0 such that ∇ · ~u0 = 0,

by homogenous Dirichlet boundary conditions for the velocity ~u = 0 on a part ΓD of
the border ∂Ω and by slip boundary conditions, i.e. ~u·~n = 0 and τ~n·~ti = 0, i = 1, 2,
on ΓS = ∂Ω \ ΓD (see section 2.2), where ~t1,~t2 are two orthogonals vectors in the
normal plane to ~n. Remark that the temperature drop between the interior and the
exterior of the domain Ω usually leads to the creation of solidified ledges near the
border of the cell. However we will not include those thermic effects in our model
and refer to [6] for a discussion on this particular question.

Considering the spaces L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω
q dx = 0

}
and

(5) H̃1(Ω) =
{
~v ∈ H1(Ω)3 satisfying ~v = 0 on ΓD and ~v · ~n = 0 on ΓS

}
,

an appropriate weak formulation of the problem (2) with interface conditions (3)
and (4) is the following : find two mappings ~u : (0,∞)→ H̃1(Ω) and p : (0,∞)→
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L2
0(Ω) satisfying∫

Ω

(
ρ
∂~u

∂t
· ~v + ρ(~u · ∇)~u · ~v + τ (~u, p) : ε(~v)

)
=

∫
Ω

~f · ~v +
∫

Γ(t)

γH~v · ~n,(6) ∫
Ω

qdiv(~u) = 0,(7)

for all ~v ∈ H̃1(Ω) and all q ∈ L2
0(Ω). Here L2(Ω) is the standard space of square

integrable functions and H1(Ω) the standard Sobolev space. We refer to [13] and
[11] for the discussion on the existence of the solution and to [5] for the description
of a numerical scheme in time to deal with these equations.

Introducing ~n∂Ω the outward unit normal to ∂Ω and ~nΓ = ~n the normal to the
interface Γ(t), we define on the boundary ∂Γ(t) = Γ(t) ∩ ∂Ω the vectors

~t∂Γ = ~nΓ × ~n∂Ω, ~t∂Ω = ~n∂Ω × ~t∂Γ and ~m = ~t∂Γ × ~nΓ.

Denoting by ∇S~v the gradient of ~v along the surface Γ(t) (see [10] for details) and
by θ the physical contact angle defined as the angle between ~m and ~t∂Ω we can
rewrite the surface tension term in (6) as

(8)
∫

Γ(t)

γH~v · ~n =
∫

∂Γ(t)

γ cos(θ) ~t∂Ω · ~v −
∫

Γ(t)

γ tr (∇S~v) .

Since the dimensions of the cell are large, the surface tension could be neglected
as it influences the shape of the interface only close to the boundary. However, in
particular cases where the dimensions are smaller, this term can have a dominant
contribution.

2.2. Free Surface. The resolution of (2) requires the knowledge of the shape of
the domains Ωal(t) and Ωel(t) at time t, i.e. the time evolution of the interface
Γ(t), ∀t ≥ 0. For this purpose, we follow here a Level-Set method (see [15]) and
define a C1 function ϕ : (0,∞)× Ω satisfying for all time t:

(9) ϕ(t, x)


> 0 in the bath,

< 0 in the liquid aluminum,

= 0 on the interface.

The zero isosurface of ϕ defines the interface Γ(t) and ϕ is the solution of the
following linear convection equation:

(10)
∂ϕ

∂t
+ ~u · ∇ϕ = 0 in (0,∞)× Ω,

where ~u is the fluid velocity. In fact the Level-Set method deals with the distance
between x and the interface Γ(t) but since we numerically solve equation (10) on
small time steps, we re-normalize ϕ after each time step (see [15]).

Remark that this approach influences the choice of the boundary conditions of
the Navier-Stokes problem. Liquid aluminum and electrolytic bath being viscous
fluids, we should impose homogeneous Dirichlet boundary conditions everywhere
on ∂Ω. The problem is that this would freeze the interface on the boundary ∂Ω and
though it is preferable to impose slip conditions on the lateral wall and therefore
permit the interface to move vertically. For this purpose, on the lateral wall of the
fluid domain ΓS , slip boundary conditions while on ΓD = ∂Ω \ ΓS , homogeneous
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Dirichlet boundary conditions are imposed.

2.3. Mesh Deformation. In general the Level-Set method is associated with the
use of a fixed mesh. Thus, in order to have a good approximation of the free sur-
face, fine meshes are needed, at least in a neighbourhood of the interface. This
can not be done easily here since the computational domain is very complex from
the geometrical point of view. The fluid mesh typically represents less than 50
% of the elements of the whole mesh. In this context it seems reasonable to in-
troduce a deformation technique that forces the mesh to follow the interface motion.

2.3.1. Interface mesh deformation. Let us introduce the reference fluid do-
main Ω̂ corresponding to the case when the interface Γ between the two fluids is
horizontal at the altitude z0 ∈ R. For some h > 0, we associate to this domain
an isotropic conforming tetrahedral mesh T̂h with Nh nodes and Mh elements of
typical size h. T̂h is compatible with the physical domains in the sense that an
element is either entirely in the aluminum domain either in the bath domain. In
this configuration, the interface Γh is the union of some triangular faces of elements
belonging to T̂h.

In the following we introduce an algorithm that allows us to build, for any time
tn, a mesh T n

h of the fluid domain at time tn by deforming the reference mesh T̂h.
Suppose that we know at time tn the mesh of the fluid domain T n

h and the
velocity field ~un+1

h computed from (6-7) on T n
h during the time interval (tn, tn+1).

We now explain how to construct the new triangulation T n+1
h . For each node xn

i

of the mesh T n
h , i = 1, . . . , Nh, we can define ϕn

h as

(11) ϕn
h(xn

i ) =

 dist(xn
i ,Γ

n
h), if xn

i ∈ Ωel(tn),

−dist(xn
i ,Γ

n
h ), if xn

i ∈ Ωal(tn),

where dist(x,Γ n
h ) is the vertical distance function between x ∈ Ω and the surface

Γ n
h .

Solving with a finite element method, the transport equation (10) on (tn, tn+1)
with ϕn

h as initial condition and ~un+1
h as velocity, we compute the convected level-

set function ϕn+1
h on T n

h . The zero isosurface of ϕn+1
h yields the new interface Γ n+1

h .

The first step of the deformation algorithm is to move the NΓ
h nodes xn

i of Γ n
h

to their new position xn+1
i in order to assure that

(12) ϕn+1
h (xn+1

i ) = 0, ∀i = 1, . . . , NΓ
h .

To do this, we first associate to each node xn
i ∈ Γ n

h a trajectory line, say a curve
in R3 parametrized by γi : [0, 1]→ R3 on which the node xn

i is allowed to move. In
most situation we can choose straight lines as trajectories. The goal here is to keep
a conforming mesh at each time step and insure that the nodes do not cross the cell
boundary ∂Ω (see Figure 2). Clearly, if the lateral wall is vertical, all trajectories
are parallel. This is often not the case in cells where lateral faces of ∂Ω are usually
inclined.
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Interface

Trajectory lines

Figure 2. Example of possible trajectory lines depending on cell
geometry. Left : vertical boundary, right : inclined boundary.
The nodes of the interface are only allowed to move along these
trajectroy lines.

The restriction of the level-set function ϕn+1
h on such a line will be given by the

function χi : [0, 1]→ R such that

(13) χi(s) =
(
ϕn+1

h ◦ γi

)
(s), ∀s ∈ [0, 1] and i = 1, . . . , NΓ

h .

The new interface mesh can be identified as the isosurface ϕn+1
h = 0 by solving the

following 1D fixed point problems: for all i = 1, . . . , NΓ
h , find s̄ ∈ [0, 1] such that

(14) χi(s̄) = 0 and set xn+1
i = γi(s̄).

Note that any fixed point method can be used here but since ϕn+1
h is often close

to a linear function, a simple secant method converges very fast. It can be written
as follows: if s0 and s1 are given numbers in [0, 1], we compute until convergence

sk+1 = sk −
sk − sk−1

χi(sk)− χi(sk−1)
χi(sk) , k = 1, 2, . . .

The main difficulty here is to efficiently compute χi(sk) for each k which requires
a fast 3D interpolation of the function ϕn+1

h at point γi(sk).

2.3.2. Fluid mesh deformation. Above we have seen how to combine the level-
set technique with a mesh deformation algorithm to identify at each time tn+1 the
interface mesh Γ n+1

h . Below we now describe how to propagate this deformation to
the fluid mesh T n

h .

Let us first introduce a zone around the interface in which the mesh is allowed to
be deformed. Let zm, zp ∈ R, zm < z0 < zp be such that the volume in Σ between
the altitude zm and zp belongs to the fluid domain (no other electric conductors).
In most cells zm is the top altitude of the cathode and zp is the bottom altitude of
the anodes. Recall that z0 is the altitude of the interface in T̂h.

The mesh of the fluid domain T n+1
h at time tn+1 can be constructed from T̂h

and Γ n+1
h as follows:
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Figure 3. “Elastic” deformation of the mesh.

• Aluminum : For each node x̂i ∈ T̂h ∩ Ωal with altitude z ∈ R, verifying
zm ≤ z ≤ z0, we define α ∈ [0, 1] such that

(15) α =
z − zm

z0 − zm
.

If γi : [0, 1]→ R3 is the trajectory line associated with x̂i, then there exist
a, b ∈ R such that γi(a) is on the interface formed by the triangles of Γ̂h

and γi(b) is on the interface formed by the triangles of Γ n+1
h (see Figure

3). The node x̂i can then be moved as follows:

(16) xn+1
i = x̂i + α · (γi(b)− γi(a)).

The coefficient α assure that the deformation is proportional to the distance
between a node and the interface in the original mesh. In particular if
z ≈ zm the deformation tends to zero. This can be seen as a kind of elastic
deformation of T̂h.

• Bath : For each node x̂i ∈ T̂h ∩Ωel with altitude z ∈ R, verifying z0 ≤ z ≤
zp, we define α ∈ [0, 1] such that

(17) α =
zp − z
zp − z0

.

The new position of x̂i is then defined by the equation (16) and, here, the
deformation tends to zero if z ≈ zp.

For understanding, the Figure 4 presents an 2D simplified illustration where we
impose a given deformation of the interface.

2.4. Electromagnetic equations. We have seen that the source term ~f in Navier-
Stokes equations (2) is the sum of the gravity ρ~g and of the Lorentz forces ~j × ~B,
with ~j the current density flowing trough the cell and ~B the magnetic induction
produced by the electric configuration of the conductors. Since the liquid metal
is much more conductive than the electrolythic bath, the current distribution is
strongly dependent of the position of the interface. In order to correctly simulate
the motion of the fluids in a cell, one has to couple the evolutive Navier-Stokes
equations (2) with the following time-dependent Maxwell equations in which we
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Figure 4. Mesh deformation in a two dimensional simplified ex-
ample. On the left T̂h, on the right T n+1

h .

neglect the displacement currents (see [14] for a justification):

(18)





∂ ~B

∂t
+∇× ~E = 0,

∇× ~B = µ0
~j, in R3,

∇ · ~B = 0,

~j = σ
(
~E + ~u ∧ ~B

)
, in Σ.

where σ is the electric conductivity of the materials, µ0 the magnetic permeability
of the vaccum, ~E the electric field and ~u the velocity of the fluids. Since µ0 is con-
stant, ferromagnetic effects are neglected but in real situations, the ferromagnetic
screen effect due to the steel shell containing the cell must be added (see [4]).

The numerical resolution of (18) will not be discussed here (see [5, 7] for details)
but we just notice that the main difficulty is to efficiently compute the magnetic
induction ~B for all time t, since it is defined in the whole space R3.

2.5. Numerical results.

In this section, we consider a simplified electrolytic cell whose geometry is a
cylinder with a 3.5 cm base radius. The current is entering the cell from a partially
immerged anode and is leaving it trough a cathode covering the whole base of the
fluid domain (see Figure 5). Note that, in this experiment, surface tension effects
are not negligibles since the capillary length is

λc =
√

γ

∆ρg
= 1.91 cm ≈ interface radius/2,

where g = 9.81 m/s2, the surface tension coefficient γ for the aluminum/electrolyte
interface is 0.5 N/m and ∆ρ = ρal − ρel = 140 kg/m3.

When the contact angle θ = π/2, starting from an inclined interface as initial
condition, Lorentz forces in the cell induce a rotational motion of the interface
called the “metal pad rolling” (see [1], [8] and [9]). This is due to the big jump of



498 M. FLÜCK, T. HOFER, M. PICASSO, J. RAPPAZ, AND G. STEINER

Figure 5. Geometrical configuration of the simplified cell.

conductivity between the bath and the aluminum ; indeed, the current path mini-
mizes the Joule’s effect and so there will be more current going trough the side of
the interface close to the anode and less on the other. As the current density is
uniformly distributed at the bottom of the cathode, horizontal currents are created
in the aluminum and consequently we also have the creation of horizontal Lorentz
forces, orthogonal to the current density and magnetic induction. Depending on
the current and magnetic induction intensity, interface oscillations can either in-
crease or decrease. In the aluminum industry a cell is said to be stable whenever
the oscillations of the interface do not increase.

Suppose the contact angle on the lateral wall is greater than π/2. Then, in
absence of electrical currents, the steady state of the interface will be a curved
surface (see Figure 6). Moreover we can see that, in presence of electrical currents
and external magnetic induction, this steady state is extremely stable in the sense
that small perturbations vanish very quickly. This means that in this particular
geometrical configuration, surface tension effects have a dominant contribution.

3. Dissolution and distribution of alumina in the bath

Let us assume that we are in presence of a stationary MHD configuration and
consequently that Ωel and ~u do not depend on time.

In the industrial process, particles of alumina are added periodically at several
locations between the anodes. It is assumed that the alumina particles follow the
trajectories of the velocity field, dissolving at the same time and increasing thereby
the concentration of liquid alumina. Liquid alumina is also transported by the
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Figure 6. Steady state position of the interface. On the right: nu-
merical simulation. On the left : X-ray picture of a lab experiment
(source : RioTinto-Alcan, Laboratoire de recherche et fabrication,
St-Jean de Maurienne (F)).

bath, diffusing slightly, and it is transformed into aluminum by electrolysis. Since
aluminum is heavier than the bath it sinks to the bottom of the cell. This last
phenomena is not contained in the model presented hereafter.

3.1. Model. We denote c = c(~x, t) the concentration of liquid alumina and np

the particle density of solid alumina. Alumina particles are supposed to be spher-
ical and their radii change with time. In an Eulerian description, we thus have
np = np(~x,R, t), where R is the particle radius. The physical unit of the concen-
tration is mol·m−3 and for the particle density it is (number of particles)·m−4. In a
Lagrangian description we assume that the kinetics of the particle dissolution can
be described by

(19) Ṙ(t) = f(R(t))

along the trajectories ~x(t) given by the velocity ~u. If, for example, dissolution
kinetics are due to diffusion only, then f would be defined as (see for example
[12],[16])

(20) f(R) = −DM(csat − c(~x(t), t))
ρR

,

where csat is the saturation concentration of liquid alumina in the bath, D is its
diffusion coefficient, M is the molar mass of alumina, and ρ is its mass density.

Going back to the Eulerian reference frame, if the number of alumina particles
in the bath is kept constant the particle density follows a convection equation in
four dimensions,

(21)
∂np

∂t
+ ~u.∇np +

∂

∂R
(npf) = ψ,
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where ψ stands for a source due to the injection of the particles. Observe that this
equation does not change the number of particles but it does change the total mass
of the particles because particle radii become smaller by dissolution.

The motion of liquid alumina concentration can be described by a convection-
diffusion equation,

(22)
∂c

∂t
+ ~u.∇c−D∆c = Q̇(np),

where Q̇(np) is the source of liquid alumina which consists of two parts. On the
one hand we have the mass which is lost by dissolution of the particles and which
is the source of concentration of liquid alumina:

(23) q̇1(np) = −4π
ρ

M

∫ ∞
0

npfR
2dR.

On the other hand, concentration diminishes by the electrolytic process. This is
supposed to happen uniformly in the whole bath, giving

(24) q̇2 = − I

6FV
,

where I is the total electric current, F the Faraday constant, and V the volume of
Ωel. The quantity Q̇(np) is the sum of q̇1(np) and q̇2.

We are thus looking for c = c(~x, t) and np = np(~x,R, t) verifying

∂c

∂t
+ ~u.∇c−D∆c = Q̇(np) in Ωel × (0, T )(25)

∂c

∂n
= 0 on ∂Ωel × (0, T )(26)

∂np

∂t
+ ~u.∇np +

∂

∂R
(npf) = ψ in Ωel × (0,∞)× (0, T ),(27)

with f defined as above.
Without the injection of alumina particles (i.e. ψ = 0) and without electrolysis

(i.e. q̇2 = 0) the total mass of alumina in the bath does not change over time, i.e.

(28)
d

dt

(
M

∫
Ωel

cdΩ +
4
3
πρ

∫
Ωel

(∫ ∞
0

npR
3dR

)
dΩ
)

= 0.

3.2. Numerical scheme. Let us choose a discretization of the time t by

0 < t1 < t2 < . . . < tn < tn+1 < . . . .

If ck, nk
p are known approximations of c and np at time tk, we compute ck+1 and

nk+1
p at time tk+1 as follows. On each time step (tk+1 − tk) we solve successively

the equation for the concentration c and the equation for the particles np. For
solving this last equation we use a splitting method in time in order to separate the
space-time part from the radius-time part in Equation (27). With this splitting we
avoid solving a problem in R4. So we numerically solve:

• Convection-diffusion equation on (tk, tk+1),

∂c

∂t
+ ~u.∇c−D∆c = Q̇(nk

p), in Ωel,(29)

c(tk) = ck.(30)
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∆R in µm ∆t in seconds relative mass difference in %
40 0.01 15.9
20 0.005 7.2
10 0.0025 3.1

Table 2. Relative mass difference of the total mass after 100 sec-
onds and the total mass at time 0.

• Convection equation in space on (tk, tk+1),

∂ñp

∂t
+ ~u.∇ñp = ψ, in Ωel,(31)

ñp(tk) = nk
p,(32)

where ñp is a prediction of the quantity np.
• Particle dissolution on (tk, tk+1),

∂np

∂t
+

∂

∂R
(npf) = 0,(33)

np(tk) = ñp(tk+1).(34)

We set ck+1 = c(tk+1) and nk+1
p = np(tk+1). The convection-diffusion equation (29)

and the convection equation (31) are solved by an Euler implicit method in time
and by a continuous piecewise linear finite element method with SUPG stabilization
in space. The particle dissolution (33) is solved using the method of characteristics
on time and radius, where a piecewise constant discretization of the radius is used.
All these problems are numerically solved on the same tetrahedral mesh of Ωel.
The linear systems are solved by the GMRES method.

3.3. Numerical results. We consider a cube of volume 1 m3. We impose a
velocity field ~u by assuming the cube to be a driven cavity. Thus, to compute the
velocity field, we impose zero veloctiy at the bottom surface, zero normal velocity
at the lateral surfaces (~u.~n = 0) and a velocity of 1 m/s from the left to the right at
the top surface. The initial particle density np is as in Figure 7, top left, while the
initial concentration of liquid alumina c is set to zero. Figure 7 shows the evolution
of the particle density np and the concentration c. The evolution of the total mass,
the mass of alumina particles and the mass of liquid alumina is shown in Figure 8.
We notice that the total mass is slightly increasing. In Table 2 we show the relative
mass difference between the total mass after 100 seconds and the total mass at the
beginning. We do this on a fixed mesh, for different time steps ∆t and for different
radius meshsizes ∆R. We see that the relative mass difference is divided by two if
∆t and ∆R are divided by two.

4. Conclusion

This paper presented : i) a physical model for the movements of the interface
between liquid aluminum and electrolyte in an aluminum electrolytic cell, ii) a
physical model for the alumina dissolution and convection in these fluids. Numerical
methods to effectively approximate and compute the time-dependent solutions to
these models have been introduced as well and some results obtained on simplified
geometries have been presented.
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Figure 7. Evolution of particle density np (left) and concentra-
tion c (right)
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Figure 8. Evolution of the total mass, the mass of alumina par-
ticles and the mass of liquid alumina during the simulation

Our final aim is the simulation of an industrial configuration of a cell in a reason-
able time and with a good precision taking into account fluid motion, solidifications
of ledges, ferromagnetic effects and alumina convection-dissolution.
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