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Abstract. A spring model is applied to simulate the skeleton structure

of the red blood cell (RBC) membrane and to study the red blood cell

(RBC) rheology in microvessels. The biconcave RBC shape in static

plasma and tank-treading behavior of single cell in shear flows have

been successfully captured in this model. The behavior of the RBC in a

Poiseuille flow and the lateral migration of the cells in a shear flow have

been investigated. It is found that the RBCs exhibit parachute shape in

a Poiseuille flow with the curvature closely related to the deformability

of the cell membrane and the hematocrit (Hct) of the blood. With this

spring model, RBCs can recover their initial shapes associated with the

minimal elastic energy when the flow stops. The simulation results also

show that the RBCs migrate to the center of the domain in the radial

direction in a shear flow, which clearly indicates the Fahraeus-Lindqvist

effect in microvessels. The rate of migration toward the center depends

on the shape of the RBC; the bioconcave shape enhences this migration.

Key Words. Computational Biomechanics, Microcirculation, Rheol-

ogy, Red blood cells, Elastic membrane model, Immersed boundary

method.

1. Introduction

The microcirculation, which is comprised of the microvessels of diameter
smaller than 100µm, is essential to the human body. It is where exchange
of mass and energy takes place. At the microcirculatory level, the partic-
ulate nature of the blood becomes significant. The rheological property of
the red blood cells (RBCs) is a key factor of the blood flow characteristics
in microvessels because of their large volume fraction (40-45%), so called
hematocrit (Hct), in the whole blood. Under normal conditions, RBCs are
biconcave-shaped discs of about 8µm in diameter. The cell membrane is
highly deformable so that RBC can change its shape when an external force
is acting on it and returns to the biconcave resting shape after the removal of
the forces [13]. In microvessels having internal diameter close to the cell size,
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the RBCs exhibit well known parachute shapes under flow [31]. In a bigger
microvessel, RBCs tend to move across the streamlines of the flow, so called
lateral migration, to the center of the vessel so that there is a cell-free layer
near the vessel wall. The non-uniform distribution of hematocrit within the
cross-section of the vessel is the physical reason of Fahraeus-Lindqvist effect
[12] which is characterized by a decrease in the apparent blood viscosity in
such microvessels.

As in [5], in silico mathematical modeling is an attractive alternative since
it is difficult to deal with in vivo and in vitro experiments on studying
microcirculation and RBC rheology due to the size limitation. Nowadays,
numerical study of RBC rheology has attracted growing interest (see, e.g.,
[28]). For example, in [29] the parachute shape of RBCs in capillaries was
investigated with different Hct and the apparent blood viscosity in capillaries
was also studied by using the boundary-integral method with both Mooney-
Rivlin and Skalak models plus bending resistance for the RBC membrane.
In [11], an immersed boundary method was used to simulate 3D capsule and
RBCs in shear flow with both neo-Hookean and Skalak models for membrane
deformation. It was found that the bending resistance must be included
in order to simulate complex shape of RBCs when they deform in shear
flow. In [2], an immersed boundary method and a neo-Hookean model with
and without bending resistance were used to simulate the interaction of
two deformable cells in a shear flow in two dimensions. It was found that
aggregates made of deformable cells are easily breakable by a shear flow,
while those made of less deformable cells are not. In [20, 22], an immersed
finite element method was presented for the simulation of RBCs in three
dimensions while the RBC membrane employing a Mooney-Rivlin model.
The microscopic mechanism of RBC aggregation has been linked to the
macroscopic blood viscosity via direct numerical simulation and the relation
between the effective viscosity of blood flow and the diameters of capillaries
has been obtained. In [33], a semi-implicit particle method combined with a
spring model was used to simulate a single file of RBCs between two parallel
plates for various Hct in two dimensions. The parachute shape of RBCs in
capillaries and flow resistance were investigated with different Hct. In [9],
a discrete model for the RBC membrane has been constructed by taking
into account the volume constraint of the RBC, the local area constraint on
each triangle element from the mesh for the RBC membrane, the total area
constraint of the RBC surface, the stretching force between nodes on each
edge of the surface triangle element, and the preferred angle between triangle
elements sharing a common edge (the bending resistance). These constraints
give different forces acting on the nodes on the RBC surface. A lattice-
Boltzmann method was combined with this discrete model to simulate 200
densely packed RBCs in three dimensional flow.

Among these methodologies and models mentioned above, we want to
combine the immersed boundary method with spring model since we intend
to simulate the mixture of deformable and rigid particles in microvessels in
near future. We have already developed very efficient methodologies, called
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distributed Lagrange multiplier/fictitious domain (DLM/FD) methods, for
simulating rigid particles freely moving in Newtonian fluid in three dimen-
sions [16, 17, 24]. The DLM/FD methods are closely related to the immersed
boundary methods since they both use uniform grids on simple shape com-
putational domain and the Lagrange multipliers play similar role as the
force acting on the elastic membrane immersed in fluid for the immersed
boundary methods. For modeling the RBC membrane, the general organi-
zation of the RBC membrane has been well characterized. The human RBC
is a inflated closed membrane filled with a viscous fluid, called cytoplasm.
The RBC membrane is a phospholipid bilayer plus the attached glycocalyx
at the plasmatic face of the bilayer and a network of spectrins, called the
cytoskeleton, fastened to the bilayer at its cytoplasmic face [13, 18]. The cy-
toskeleton is an elastic network which has triangular structure (and most of
these triangles form hexagons) in the network (e.g., see [34]). This particu-
lar geometry, as well as the intrinsic elastic properties of the spectrin, allows
the RBC to be highly deformable and elastic. Due to its special structure,
the RBC membrane has strong resistance changes in area/volume and shear
deformation [18]. Therefore, it is of significance to take into consideration
the structure of the RBC membrane skeleton in the study of RBC rheology.
Several spring models [8, 9, 10, 18, 30, 33] have been developed to illustrate
the structure of the RBC membrane skeleton and to describe the deforma-
bility of the RBCs. In this article, the mechanical properties of the RBC
membrane is predicted by a recently proposed elastic spring model which
has been used in [33]. The simulation presented here is two-dimensional, and
the methodology can be extended to three dimensions without difficulty.

In this article, we present computational simulation of the motion of de-
formable RBCs in microvessels. An immersed boundary method based on
the Navier-Stokes equations is adapted for the fluid flow in a two dimen-
sional channel. The present simulation uses a solution method incorporated
with an operator splitting technique and finite element method with a fixed
regular triangular mesh so faster solvers can be used for solving the fluid
flow which is an important feature needed for simulating three dimensional
flow involving deformable particles. The structure of this paper is as fol-
lows: We discuss the elastic spring model and numerical methods in Section
2. In Section 3, first we validate the model by reproducing the biconcave
RBC in static plasma and tank-treading phenomenon of single RBC in shear
flows and compare the results with the experimental data and existing nu-
merical results. Then the shape behavior of RBCs in a Poiseuille flow and
lateral migration in a shear flow are studied via numerical simulations. The
conclusions are summarized in Section 4.

2. Models and methods

Let Ω be a bounded rectangular domain filled with blood plasma which
is incompressible, Newtonian, and contains RBCs with the viscosity of the
cytoplasm same as that of the blood plasma. For some T > 0, the governing
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Figure 1. The elastic spring model of the RBC membrane

equations for the fluid-cell system are

(1) ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p + µ∆u + f in Ω, t ∈ (0, T ),

(2) ∇ · u = 0 in Ω, t ∈ (0, T ),

Equations (1) and (2) are completed by the following boundary and initial
conditions:

(3) u = g on the top and bottom of Ω and is periodic in the x direction,

(4) u(0) = u0.

where u and p are the fluid velocity and pressure, respectively, anywhere in
the flow, ρ is the fluid density, and µ is the fluid viscosity, which is assumed
to be constant for the entire fluid. In (1), f is a body force which is the sum
of fp and fB where fp is the pressure gradient pointing in the x direction
when considering the cases of Poiseuille flow and fB accounts for the force
acting on the fluid/cell interface.

2.1. Elastic spring model for the RBC membrane. The deformability
and the elasticity of the RBC are due to the skeleton architecture of the
membrane. A one-dimensional elastic spring model used in [33] is considered
to describe the deformable behavior of the RBCs. Based on this model, the
RBC membrane can be viewed as membrane particles connecting with the
neighboring membrane particles by springs, as shown in Figure 1. Elastic
energy stores in the spring due to the change of the length l of the spring
with respect to its reference length l0 and the change in angle θ between
two neighboring springs. The total elastic energy of the RBC membrane,
E = El + Eb, is the sum of the total elastic energy for stretch/compression
and the total energy for bending which, in particular, are

(5) El =
kl

2

N
∑

i=1

(
li − l0

l0
)2

and

(6) Eb =
kb

2

N
∑

i=1

tan2(θi/2).
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In equations (5) and (6), N is the total number of the spring elements,
and kl and kb are spring constants for changes in length and bending angle,
respectively. Based on the principle of virtual work, the elastic spring force
acting on the ith membrane particle is then

(7) Fi = −
∂E

∂ri

with ri the position of the ith membrane particle. In the simulation, this
elastic force is a portion of the body force term in the Navier-Stokes equa-
tions.

2.2. Immersed boundary method. The immersed boundary method
developed by Peskin, e.g, [25, 26, 27], is employed in this study because
of its distinguish features in dealing with the problem of fluid flow interact-
ing with a flexible fluid/structure interface. Over the years, it has demon-
strated its capability in study of computational fluid dynamics including
blood flow. Based on the method, the boundary of the deformable structure
is discretized spatially into a set of boundary nodes. The force located at the
immersed boundary node X affects the nearby fluid mesh nodes x through
a 2D discrete δ-function Dh(X − x):

(8) F(x) =
∑

F(X)Dh(X − x) for |X− x| ≤ 2h,

where h is the uniform finite element mesh size and

(9) Dh(X− x) = δh(X1 − x1)δh(X2 − x2)

with the 1D discrete δ-functions being

(10) δh(z) =







1

4h

(

1 + cos
(π · z

2h

))

for |z| ≤ 2h,

0 for |z| > 2h.

The movement of the immersed boundary node X is also affected by the
surrounding fluid and therefore is enforced by summing the velocities at the
nearby fluid mesh nodes x weighted by the same discrete δ-function:

(11) U(X) =
∑

h2u(x)Dh(X− x) for |X− x| ≤ 2h.

After each time step, the position of the immersed boundary node is updated
by

(12) Xt+∆t = Xt + ∆tU(Xt).

2.3. Operator splitting technique. We first apply the Lie’s scheme [4,
16] to equations (1) and (2) with the backward Euler method in time for
some subproblems and obtain the following fractional step subproblems:

u0 = u0 is given; for n ≥ 0, un being known, solve

(13)























ρ
un+1/3 − un

△t
+ ∇pn+1/3 = 0 in Ω,

∇ · un+1/3 = 0 in Ω,

un+1/3 = gn+1 on the top and bottom of Ω
and is periodic in the x direction,
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Figure 2. Schematic representation of a FEM triangulation
and its subtriangulation.

Update the position of the membrane by (11) and (12) and then compute
the force fB on the fluid/cell interface by (7) and (8). Now solve

(14)











∂u(t)

∂t
+ (un+1/3 · ∇)u(t) = 0 in Ω on (tn, tn+1),

u(tn) = un+1/3 in Ω,
u(t) = gn+1 on Γn+1

−
× (tn, tn+1),

where Γn+1
−

= {x|x ∈ Ω, gn+1(x) · n(x) < 0 }, and set un+2/3 = u(tn+1).
Finally solve

(15)















ρ
un+1 − un+2/3

△t
− µ∆un+1 = fn+1 in Ω,

un+1 = gn+1 on the top and bottom of Ω
and is periodic in the x direction.

2.4. Finite element approximation. Subproblems (13)-(15) have been
solved by finite element methods. Suppose that a rectangular computational
domain Ω ⊂ R2 is chosen with length L, h is a space discretization step, Th

is a finite element triangulation of Ω for velocity, and T2h is a twice coarser
triangulation for pressure (see Figure 2). Let P1 be the space of polynomials
in two variables of degree ≤ 1, we introduce the finite dimensional spaces:

Wgh(t) = {vh|vh ∈ C0(Ω)2,vh|T ∈ (P1)
2,∀T ∈ Th,vh = gh(t) on the

top and bottom of Ω and has period L in the x direction},

W0h = {vh|vh ∈ C0(Ω)2,vh|T ∈ (P1)
2,∀T ∈ Th,vh = 0 on the top

and bottom of Ω and has period L in the x direction},

L2
h = {qh|qh ∈ C0(Ω), qh|T ∈ P1,∀T ∈ T2h qh has period L

in the x direction}

L2
h,0 = {qh|qh ∈ L2

h,

∫

Ω
qhdx = 0}.

Then we have the following approximations of (13)-(15) (some of the sub-
scripts h have been dropped):
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u0 = u0h is given; for n ≥ 0, un being known, solve

(16)























ρ

∫

Ω

un+1/3 − un

△t
· vdx −

∫

Ω
pn+1/3(∇ · v)dx = 0, ∀v ∈ W0h,

∫

Ω
q∇ · un+1/3dx = 0, ∀q ∈ L2

h,

un+1/3 ∈ W n+1
gh

, pn+1/3 ∈ L2
h,0.

Update the position of the membrane by (11) and (12) and then compute
the force fB on the fluid/cell interface by (7) and (8). Now solve

(17)























∫

Ω

∂u(t)

∂t
· vdx +

∫

Ω
(un+1/3 · ∇)u(t) · vdx = 0 on (tn, tn+1),

∀v ∈ W n+1,−
0h , u(t) ∈ Wh,

u(t) = gh(tn+1) on Γn+1
−

× (tn, tn+1),

u(tn) = un+1/3,

and set un+2/3 = u(tn+1). Finally solve

(18)







ρ

∫

Ω

un+1 − un+2/3

△t
· vdx + µ

∫

Ω
∇un+1 · ∇vdx =

∫

Ω
f · vdx,

∀v ∈ W0h, un+1 ∈ W n+1
gh

.

In (16)-(18), we have W n+1
gh

= Wgh(tn+1), Wh = {vh|vh ∈ C0(Ω)2,vh|T ∈

P1×P1,∀T ∈ Th, vh is periodic in the x direction with period L }, W n+1,−
0h =

{v|v ∈ Wh,v = 0 on Γn+1
−

}, and gh(t) is an approximation of g(t) verifying
∫

Γ gh(t) · n dΓ = 0 where Γ is the top and bottom of Ω.
The degenerated quasi-Stokes problem (16) is solved by a conjugate gradient
method introduced in [16]. Equation (17) is an advection type subproblem.
It is solved by a wave-like equation method, which is described in detail in
[6], [7], and [23]. Problem (18) is a discrete elliptic system whose iterative
or direct solution is a classical problem .

3. Numerical results and discussions

In this study, the RBCs are suspended in blood plasma which has a
density ρ = 1.00g/cm3 and a dynamical viscosity µ = 0.012g/(cm · s).
The viscosity ratio which describes the viscosity contrast of the fluid inside
and outside the RBC membrane is fixed at 1.0. The fluid domain is a two
dimensional horizontal channel. For all computations, the grid resolution
for the computational domain is 80 grid points per unit length with the unit
length equal to 10µm and the time step is △t=0.001 with the time unit equal
to one millisecond. To obtain a Poiseuille flow, a constant pressure gradient
is prescribed as a body force. To produce shear flow, a Couette flow driven
by two walls at the top and bottom which have the same speed but move
in directions opposite to each other is applied to the suspension. Different
shear rate can be obtained by adjusting the wall speed. In addition, periodic
conditions are imposed at the left and right boundary of the domain.
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3.1. Shape change of a swollen RBC. In many cases of interest, the
two-dimensional model approximates the shape of the RBC by the charac-
teristic cross section in the plane that is parallel to the flow direction if the
cell were in shear flow. In the following, the shape change of swollen RBC
is simulated using the elastic spring model based on minimum energy prin-
ciple as in [33]. Initially, the RBC is assumed to be a circle with a radius
of 2.8µm. The circle is discretized into N = 76 membrane particles so that
76 springs are formed by connecting the neighboring particles. The shape
change is stimulated by reducing the total area of the circle s0 through a
penalty function

(19) Γs =
ks

2
(
s − se

se
)2

and the total energy is modified as E + Γs and the force acting on the ith
membrane particle now is

(20) Fi = −
∂(E + Γs)

∂ri

where s and se are the time dependent area of the RBC and the equilib-
rium area of the RBC, respectively. When the area is reduced, each RBC
membrane particle moves on the basis of the following equation of motion:

(21) mr̈i + γṙi = Fi

Here, (̇) denotes the time derivative; m and γ represent the membrane par-
ticle mass and the membrane viscosity of the RBC. The position ri of the
ith membrane particle is solved by discretizing (21) via a second order finite
difference method. The total energy stored in the membrane decreases as
the time elapses. The final shape of the RBC shown in Figure 3 is obtained
as the total elastic energy is minimized.

The parameters in the simulation of the shape change of the RBCs are set
as follows: the membrane particle mass m is 2.0 × 10−4g as in [33] and the
membrane viscosity γ is 8.8 × 10−7N · s/m obtained in [21]. The bending
constant was taken as kb = 0.6−4.8×10−12N ·m in [33]. Here, the membrane
parameters kl and kb are set to be in the range of 0.01 − 3.0 × 10−12N · m
with kl = kb and the spring length can be kept almost constant with this
choice of parameters (see Section 3.2). The penalty coefficient ks in (19)
is about kb × 104. The bending constant is closely related to the rigidity
of the membrane. A higher kb results a less deformable cell. Also when kl

is about 10 times smaller of kb (at least for those kb used in this article),
the final shape is still circular. An initial circular shape is transformed into
its final stable shape (see Figure 3) associated with a minimal energy for
a given area ratio s∗ regardless the choice of kb in the above given range.
It is found that when the reduced area s∗ = se/s0 ≤ 0.8, biconcave shapes
are obtained. When the ratio s∗ > 0.8, the final stable shape is close to an
ellipse. The biconcave shape obtained for s∗ = 0.55 resembles the normal
physiological shape of the RBC very well.

After obtaining the shape of the RBC for a given reduced areas, such
RBC shape is put into a 20µm × 20µm domain to obtain its equilibrium
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Figure 3. The top figure is an example of the history of the
change in the elastic energy of RBC membrane with kb =
3.0 × 10−12N · m. The bottom one shows two dimensional
RBC shapes obtained by reducing the area from a circle using
the elastic model. Elliptic shape: s∗ = 0.9; biconcave shape:
s∗ = 0.55. Lines correspond to the RBC obtained from the
elastic model while the dots show the equilibrium RBC shape
in a static blood plasma.

shape in static plasma. For the results shown in this paper, the coupled
RBC motion and fluid flow is solved by the immersed boundary method
based on the Navier-Stokes equations with the force given (20) instead of
the one in (7). The elastic force induced by the springs is substituted into
the Navier-Stokes equations as a body force. The equilibrium shapes in
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plasma shown in Figure 3 demonstrate that the RBCs simulated by elastic
spring model are stable in blood plasma.

3.2. Tank-treading in shear flows. Tank-treading of RBC membrane in
shear flow has been observed experimentally by Fischer et al. [14] and many
others, e.g., [32]. It was observed that at equilibrium, although the global
shape of the RBC is stationary, the membrane circulates along the contour
like a tank tread with the cell orientating to a fixed inclination angle. It was
also found that the tank-treading frequency was dependent on the shear rate
and the viscosity of the surrounding viscous fluid [14]. We place the RBC
obtained in static blood plasma with kb in the range given in the previous
section at the center in shear flow with dimension of 20µm × 20µm. Figure
4 shows the velocity fields for the biconcave and ellipse shaped RBCs when
they are in a tank-trading motion in a shear flow of shear rate 500 s−1. In
Figure 5, the elastic spring model is validated by comparing with previous
experimental data [14], theoretical KS model [19], and simulations [3] for
the inclination angles and tank-treading frequencies of RBC in shear flows.
From Figure 5, we can see that our simulation results agree very well with
those calculated by [3] for the inclination angles and with experimental data
[14] for the tank-treading frequency. The small discrepancy between the
simulation results and the theoretical prediction for the inclination angles
may be due to the fact that the KS theory was based on the study of
ellipsoidal shape instead of biconcave shape in [19]. We also keep track of
the cell area and perimeter during the simulations. The change is less than
±0.1% in the area and less than ±0.5% in the perimeter.

3.3. Shape behavior in a Poiseuille flow. We now present the results
of the simulation of shape behavior of RBCs in a Poiseuille flow through a
narrow channel. The flow is from left to right. The pressure gradient is set
as constant for this study so that the Reynolds number for the Poiseuille
flow at the inlet is about 0.17 and the particle Reynolds numbers will be
Re < 1. The cells studied are biconcave (resp., elliptical) shape with reduced
area s∗ = 0.55 (resp., s∗ = 0.9). The membrane constants are set to be
5×10−13N ·m with kl = kb. In Figures 6 and 8, the fluid domain is 20µm×
10µm with single RBC placed in the center of the domain initially. Because
of the periodic boundary condition at the inflow and outflow boundaries, this
configuration conresponds to a hematocrit Hct=0.068 (resp., Hct=0.11) for
the biconcave RBC (resp., the ellipse RBC). In Figures 7 and 9, the fluid
domain is 10µm × 10µm with two RBCs initially placed parallel to each
other with center to center distance 5µm. This configuration conresponds
to a hematocrit Hct=0.27 (resp., Hct=0.44) for the biconcave RBC (resp.,
the ellipse RBC). As shown in Figures 6 to 9 (from (a) to (d)), the well known
parachute shape of RBCs has been observed for all the four cases. Moreover,
the results demonstrated that the shape of the RBCs in a Poiseuille flow is
closely related to the Hct of the blood. When the Hct is low, the cells are far
from each other and the flow has the chance to develop after passing each cell.
The cells are mainly influenced by the viscous force and the shape change
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Figure 4. Velocity fields for the biconcave and ellipse
shaped RBCs undergoing tank-treading motion in a shear
flow of shear rate 500 s−1.

is large (Figure 6 (a)-(d) and Figure 8 (a)-(d)). As the Hct increases, the
flow is more blocked by the cells and the hydrodynamic interaction between
adjacent cells also affect their motion; therefore the cells are less deformed
(Figure 7 (a)-(d) and Figure 9 (a)-(d)). This result qualitatively agreed with
those in [33].

We also study the ability of the cells returning back to initial shapes after
stopping the flow. In Figures 6 to 9, the flow stops at t = 0.5ms and the
results show that the deformed cells induced by flow are able to change back
to their initial shapes as observed in [13]. Figure 10 shows the plot of the
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Figure 5. Equilibrium RBC inclination angle (top) as a
function of reduced area s∗. Tank-treading frequency f (bot-
tom) as a function of shear rate in a fluid with viscosity 23cp.

total energy of the cell membrane versus time for the results of the biconcave
cell shown in Figure 6. The increase in the total energy indicates the changes
of the shape of the cell from a bioconcave shape to a parachute shape under
the flow and the total energy reaches a plateau when equilibrium is obtained.
When the flow stops, the energy returns to the minimum as the cell quickly
changes back to the initial biconcave shape. Similar energy behavior has
been found for the other cases. In many other simulating results presented
in literature, the bioconcave shape is obtained from an description given in,
e.g., [15] and the recovery of the bioconcave shape has not been discussed.
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(a) t=0 ms(Initial state)
 

 

(b) t=0.05ms

(c) t=0.2ms (d) t=0.5ms

(e) t=0.55ms (f) t=1ms

Figure 6. Snapshots of RBC behavior in a Poiseuille flow
for the case of area ratio s∗ = 0.55 (Hct=0.068). The flow is
from left to right and stops at t = 0.5ms.

3.4. Lateral migration. In this section, we describe the motion of a single,
isolated RBC in shear flow with shear rate γ = 750s−1 in a rectangular
domain of 20µm × 20µm. The shear flow is generated by moving the top
wall to the left at a speed of 7500µm/s and the bottom wall moving to the
right at a same speed. Three different RBC shapes have been studied and
the results are shown in Figure 11. All of them are with membrane constants
kl = kb = 5 × 10−13N · m. At time t = 0, the cells are located horizontally
close to the bottom wall of the channel with a center to wall distance 5µm.
As the flow starts, the cells move longitudinally along the flow direction and
laterally to the center of the domain with the shapes almost unchanged. For
the biconcave and elliptical RBCs, the cell quickly oriented to a fixed angle as
the flow starts. The inclination angles are stable for the entire computation
and are the same as in the tank-treading case discussed in Section 3.2. It is
also found that the migration velocity decreases with the increase of reduced
area s∗. The biconcave RBC migrated to the center of the channel in 0.1
second; the elliptical RBC reached the center of the domain in 0.3 second,
while it took more than 1 second for the almost circular RBC to move to
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(a) t=0 ms (Initial state)

 

 

(b) t=0.05ms

(c) t=0.2ms (d) t=0.5ms

(e) t=0.55ms (f) t=1ms

Figure 7. Snapshots of RBC behavior in a Poiseuille flow
for the case of area ratio s∗ = 0.55 (Hct=0.27). The flow is
from left to right and stops at t = 0.5ms.

the center in the same channel. This indicates that the lateral migration
velocity is closely related to the shape of the RBCs and the biconcave shape
enhances this migration. In [1] it was pointed out that the lateral migration
velocity also depends on how easily the cell deforms; an easily deformable
cell migrates faster toward the center of the vessel in a parabolic flow than
a less deformable cell.
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(a) t=0 ms (Initial state)

 

 

(b) t=0.05ms

(c) t=0.2ms (d) t=0.5ms

(e) t=0.55ms (f) t=1ms

Figure 8. Snapshots of RBC behavior in a Poiseuille flow
for the case of area ratio s∗ = 0.9 (Hct=0.11). The flow is
from left to right and stops at t = 0.5ms.

4. Conclusions

In summary, a numerical model is developed in this paper to investigate
the rheology of RBCs in microvessels. Specifically, a novel elastic spring
model is adopted to describe the cell membrane. Based on the available
mechanical properties of RBCs, cells in Poiseuille flows and shear flows have
been studied using a two-dimensional approximation. In a simple shear
flow, tank-treading behavior of the cell membrane has been observed. The
inclination angle and tank-treading frequency have been studied for various
elastic constants and reduced areas. By comparing with the experimental
data and other people’s simulation results, it can be concluded that the
elastic membrane model is capable of simulating the deformable property
of the RBCs. In a Poiseuille flow of low Reynolds numbers, the RBCs in a
narrow vessel deform themselves into parachute shapes. The steady shapes
depend on the deformability of the membrane and the Hct of the blood.
When the pressure gradient for generating the flow is taken off, the parachute
shaped RBCs change back to the initial shapes that are obtained in static
plasma, which shows the shape memory ability of the membrane describe
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(a) t=0 ms (Initial state)

 

 

(b) t=0.05ms

(c) t=0.2ms (d) t=0.5ms

(e) t=0.55ms (f) t=1ms

Figure 9. Snapshots of RBC behavior in a Poiseuille flow
for the case of area ratio s∗ = 0.9 (Hct=0.44). The flow is
from left to right and stops at t = 0.5ms.

by this model. Moreover, if a cell is placed asymmetrically with respect
to the center in a shear flow, the cell migrates to the center with a fixed
inclination angle as it drifts cross the streamline. The migration velocity
is the fastest for the biconcave cells which shows that the RBCs tend to
move to the center of the vessels, and thus a cell free layer can be formed.
In addition, the numerical results are quantitatively/qualitatively similar to
experimental observations and other investigators’ findings showing that the
potential of the numerical method described here for future studies of blood
flow in microcirculation.
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Figure 10. Example of the history of the change of elastic
energy in a RBC membrane in a Poiseuille flow. The flow
stops at t = 0.5ms.
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