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A THREE-STAGE OPERATOR-SPLITTING/FINITE ELEMENT
METHOD FOR THE NUMERICAL SIMULATION OF LIQUID

CRYSTAL FLOW

ROLAND GLOWINSKI, PING LIN, AND XING-BIN PAN

Abstract. In this article, we investigate the application of an operator-

splitting/finite element method to the numerical simulation of a liquid crys-

tal flow. The operator-splitting is achieved through three stages, so that each

stage is simpler and easier to deal with than the step of any un-split implicit

scheme. The first stage deals with the system coupling a Stokes equation for

velocity with an equation modeling the diffusion of the liquid crystal director

field. The second stage deals with the convection of both the velocity and di-

rector field; a wave-like equation approach is used to treat this advection part

and proves being quite efficient. Finally, the third stage deals with the nonlin-

ear terms; a (quasi) closed form solution can be derived for this stage. Overall,

with this type of splitting, the nonlinear terms in the liquid crystal model can

be treated quite easily. The results of several numerical experiments show the

good performances of the three-stage splitting method discussed in this article.

Key Words. liquid crystal, incompressible flow, finite element method, operator-

splitting method.

1. Introduction

The last two decades have been witnessing a strong interest among physicists,
engineers and mathematicians for the theory and numerical modeling of liquid
crystal related phenomena, including the flow of such materials. Liquid crystals do
not show a single transition from solid to liquid, but rather a cascade of transitions
involving new phases. The classical Oseen-Frank theory suggests that the nematic
phase of liquid crystals can be described by a director field d, which minimizes
the so-called Oseen-Frank energy. The mathematical analysis and computational
results for some special cases of the Oseen-Frank model can be found in [1, 4, 5,
11, 20, 12, 2, 3, 9, 17]. In order to describe liquid crystal flows we need not only
the orientation, as represented by the director field d, but also the velocity field u.
Ericksen and Leslie were able to derive a hydrodynamic model for nematic liquid
crystals: a nematic flow behaves like a regular liquid with molecules of similar size.
However, such a liquid displays anisotropic properties due to the molecule alignment
described by the local director field d. In order to facilitate the mathematical
understanding of the Ericksen-Leslie theory, F. H. Lin and Liu proposed in [13] to
consider a simplified model retaining most of mathematical and physical significance
of the original model, but simple enough to make possible a rigorous mathematical
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discussion. The model reads as follows:

ut + (u·∇)u− ν∇ ·D(u) +∇p+ λ∇ ·
(
(∇d)T∇d

)
= 0 in Ω× (0, T ),(1)

∇ · u = 0 in Ω× (0, T ),(2)
dt + (u · ∇)d− γ (∆d− f(d)) = 0 in Ω× (0, T )(3)

where in (1)-(3): (i) Ω (⊂ Rd) denotes the flow region and (0, T ) the time interval
during which the flow is taking place. (ii) u represents the flow velocity and p the
associated pressure. (iii) d represents the orientation of the liquid crystal molecules.
(iv) D(u) = (1/2)

(
∇u + (∇u)T

)
and (∇d)ij = ∂di

∂xj
. (v) f(d) = (1/ε2)(|d|2 − 1)d.

The vector-valued functions u and d (resp., the real valued function p) are defined
over Ω × (0, T ) and take their values in Rd (resp., R). For our computations
we will consider only test problems with d = 2. Concerning f(·), it is a penalty
operator, used to enforce (approximately) the condition |d| = 1 (where |d| denotes
the canonical Euclidian norm of d; actually, f(d) is the differential at d of the
penalty functional F defined by

F (d) = (1/4ε2)(|d|2 − 1)2.

The condition |d| = 1 follows from the fact that the liquid crystal molecules are of
similar size. Equation (1) describes the conservation of the linear momentum; it
combines terms describing the flow of an isotropic fluid with an additional nonlinear
term which is anisotropic. The second equation models the incompressibility of the
liquid crystal material. The third equation is associated with the conservation of
the angular momentum.

Of course, (1)-(3) have to be completed by initial and boundary conditions, such
as:

(4) u|t=0 = u0, d|t=0 = d0, u|∂Ω = u0|∂Ω = gu, d|∂Ω = gd.

Even if the initial velocity is zero, the evolution of the director field may induce
a velocity, which in turn will affect the evolution of the director field. Since the
mathematical study of these interactions (between u and d) is difficult, their nu-
merical study is a most natural alternative. In [18] (resp., [19]), Liu & Walkington
used an energy preserving C1-conforming finite element method (resp., mixed fi-
nite element method) for the solution of problem (1)-(4). In [16], Lin & Liu further
simplified the space approximations discussed in [18, 19] by deriving an energy pre-
serving C0-conforming finite element method. Some other methods have been used
for the space approximation of (1)-(4); for example, the spectral method discussed
in [6] appear to be efficient on rectangular domains when u and d verify periodic
boundary conditions.

Considering the good results presented in [9], by the authors of the present
article, for a simplified Oseen-Frank liquid crystal model, we would like to apply
to the solution of problem (1)-(4) a variation of the operator-splitting scheme we
employed in the above reference. As shown in, e.g., [8], the operator-splitting
methodology provides quite often simple and efficient methods for the solution of
complicated partial differential equations. In the particular case of problems such
as (1)-(4), an appropriate operator-splitting time discretization scheme will allow
us to treat rather easily the contribution of the nonlinear operator f(·), through the
solution of simple cubic equations in one variable, reducing thus considerably the
associated computational time compared to an implicit un-split time discretization
scheme. In this article we are going to discuss a three-stage time-splitting scheme for
the solution of problem (1)-(4); this scheme will have the ’nice’ properties mentioned
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above concerning the treatment of the nonlinear operator f(·). Our method is
easy to implement, and due to its modularity, it can take advantage of existing
solvers and mesh generators, further reducing thus the complexity of the computer
implementation.

A weak formulation and a fully discrete scheme combining finite element ap-
proximation with the backward Euler time-discretization scheme will be provided
in Section 2. The three-stage operator-splitting time discretization scheme will be
described in Section 3. In Section 4, we will use the methodology discussed in the
Sections 2 and 3, in order to solve test problems of physical interest associated with
various shapes for Ω.

We hope that the numerical results presented in this article will motivate analysts
at further investigating the mathematical properties of the solution of liquid crystal
flow problems.

2. Weak formulation and full discretization of problem (1)-(4)

From now on, we assume that Ω is bounded in Rd with d = 2 or 3. We denote
by Γ the boundary ∂Ω of Ω and we assume that Γ is reasonably smooth (Lipschitz-
continuous, for example). Define the functional spaces H1(Ω), H1

g and L2(X) by
H1(Ω) = (H1(Ω))d, H1

g = {v|v ∈ H1(Ω),v = g on Γ} and L2(X) = (L2(X))d,
respectively. A weak formulation of problem (1)-(4) reads as follows:

Find {u, p,d} ∈ [H1(0, T ; H−1(Ω))∩L2(0, T ; H1(Ω))]×L2(0, T ;L2(Ω)/R)×
[H1(0, T ; H1(Ω)) ∩ L2(0, T ; H1(Ω))] such that a.e. on (0, T ):∫

Ω

(
ut · v + (u · ∇)u · v + ν∇u : ∇vdx− p(∇ · v)− λ(∇d)T∇d : ∇v

)
dx = 0

∀v ∈ H1
0(Ω),(5) ∫

Ω

(∇ · u)qdx = 0 ∀q ∈ L2(Ω),(6) ∫
Ω

(dt · e + (u · ∇)d · e + γ(∇d : ∇e− f(d) · e)) dx = 0 ∀e ∈ H1
0(Ω).(7)

u|t=0 = u0, d|t=0 = d0, u|Γ = gu, d|Γ = gd.(8)

Rigorously speaking, the functional space we need is W1,3(Ω) for d and the test
function of the momentum equation. But we will not explore this in this com-
putational paper. We are going to use C0 finite elements in our computation,
which are conformal to all these functional spaces. Problem (5)-(8) is equiva-
lent to (1)-(4); it can be solved by a method combining finite differences for the
time-discretization with finite elements for the space approximation. A fully im-
plicit time-discretization scheme will guarantee temporal stability (even so, the
time-discretization step has to be small enough, since, in particular, the nonlinear
operator f(·) is not monotone). Concerning the space approximation of problem
(5)-(8), let us denote by H the space H1(Ω)×L2(Ω)×H1(Ω) and by H0 the space
H1

0(Ω)× L2(Ω)/R×H1
0(Ω); we approximate H and H0 by

(9) Hh = Vh ×Qh ×Eh(⊂ H)

and

(10) H0h = V0h ×Qh/R×E0h(⊂ H0),
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respectively, where, in (9), (10), Vh , Qh and Eh are finite element spaces associated
with a triangulation Th of Ω , and where V0h and E0h are defined by

V0h = {v|v ∈ Vh, v = 0 on Γ} and E0h = {e|e ∈ Eh, e = 0 on Γ}.
Taking Eh = Vh and therefore E0h = V0h is a sensible choice. With ∆t (> 0)
a time-discretization step (that we suppose constant for simplicity), a backward
Euler based fully discrete scheme for the space-time approximation of problem (5)-
(8) reads as follows:

An approximation {u0
h,d

0
h} of {u0,d0} is given in Vh ×Eh.(11)

For n > 0, being known, we obtain {un
h, p

n
h,d

n
h} from the solution in Hh of

the following discrete elliptic variational system:

∫
Ω

[
un

h − un−1
h

∆t
· v + (un

h · ∇)un
h · v + ν∇un

h : ∇v − pn
h(∇ · v)(12)

− λ(∇dn
h)T∇dn

h : ∇v
]
dx = 0, ∀v ∈ V0h,∫

Ω

(∇ · un
h) q dx = 0, ∀q ∈ Qh,(13) ∫

Ω

[
dn

h − dn−1
h

∆t
· e + (un

h · ∇)dn
h · e + γ[∇dn

h : ∇e− f(dn
h) · e]

]
dx = 0,(14)

∀e ∈ E0h,

un
h|Γ = guh, dn

h|Γ = gdh,(15)

where, in (15), guh and gdh are approximations of gu and gd belonging to the
spaces γ0Vh and γ0Eh with γ0 the trace operator from H1(Ω) onto H

1
2 (Γ) defined

by γ0v = v|Γ.
The finite-dimensional problem (12)-(15) is highly nonlinear with a strong cou-

pling between (12), (13) and (14). A simple way to make the above system less
nonlinear and weaken the coupling between its various equations is to linearize the
advection terms in (12) and (14); this is easily achieved by substituting (un−1

h ·∇)un
h

(resp., (un−1
h ·∇)dn

h) to (un
h ·∇)un

h (resp., (un
h ·∇)dn

h) in (12) (resp., (14)); based on
our long experience with incompressible viscous flows, we can anticipate that the
resulting scheme will be almost as stable than scheme (12)-(15), its main drawback
being that the associated stiffness matrices vary with n and that the analogue of
(14) is still highly nonlinear. A simple way to overcome these difficulties is to apply
to the solution of problem (5)-(8) a well-chosen operator-splitting method, following
thus a strategy which has been quite successful for the numerical solution of simpler
liquid-crystal problems (see [10, 9] for details).

3. A three-stage operator splitting for the solution of problem (1)-(4)

In order to simplify the presentation, we will describe our operator-splitting
method when applied to the continuous problem (1)-(4); its finite element imple-
mentation is straightforward. Our three-stage splitting scheme reads as follows
(with tn = n∆t):

Initialization:

(16) {u0,d0} = {u0,d0}.
For n ≥ 0, we obtain {un+1, pn+1,dn+1} from {un,dn} via the solution of
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Step 1: Diffusion sub-problems

un+ 1
3 − un

∆t
− µ∇2un+ 1

3 +∇pn+1 = 0 in Ω,(17)

∇ · un+ 1
3 = 0 in Ω,(18)

dn+ 1
3 − dn

∆t
− γ∇2dn+ 1

3 = 0 in Ω,(19)

un+ 1
3 = gu on Γ, dn+ 1

3 = gd on Γ.(20)

Step 2: Advection sub-problems

∂u
∂t

+ (un+ 1
3 · ∇)u = 0 in Ω× (tn, tn+1)(21)

∂d
∂t

+ (un+ 1
3 · ∇)d = 0 in Ω× (tn, tn+1),(22)

u(tn) = un+ 1
3 , d(tn) = dn+ 1

3 ,(23)
{u,d} = {gu,gd} on Γ− × (tn, tn+1),(24)

un+ 2
3 = u(tn+1), dn+ 2

3 = d(tn+1)(25)

with Γ− = {x | x ∈ Γ,gu(x) · n(x) < 0}, n being the outward unit vector
normal at Γ.
Step 3: Nonlinear sub-problems:

dn+1 − dn+ 2
3

∆t
+ γf(dn+1) = 0(26)

un+1 − un+ 2
3

∆t
= −λ∇ · ((∇dn+1)T∇dn+1) in Ω.(27)

Through the above three-stage operator-splitting scheme, we observe that there is
no coupled system to solve to obtain at each time step the values of u and d. More-
over, in Step 1, the stiffness matrix for either u or d is independent of the time step
n since we do not modify ∆t; if one chooses a direct method (Gauss’ or Cholesky’s,
for example) for the solution of the associated linear systems, these stiffness ma-
trices need to be factored only once; this reduces considerably the computational
time. In Step 3, the nonlinear equation providing dn+1 can be solved point-wise
(in practice at the grid-points of a finite difference or a finite element mesh); a.e.
on Ω , we have to solve the following cubic equation in Rd:

(28) dn+1(x) + α(|dn+1(x)|2 − 1)dn+1(x) = dn+ 2
3 (x),

where, in (28), α = γ∆t/ε2. If α ≤ 1 equation (28) has a unique solution, given by

(29) dn+1(x) =
dn+ 2

3 (x)
1− α+ α|dn+1(x)|2

,

where, in (29), |dn+1(x)| satisfies the following cubic equation:

(30) αz3 + (1− α)z − |dn+ 2
3 (x)| = 0.

If α < 1, in order to compute the unique solution of equation (30), we advocate the
Newton’s method initialized by |dn+ 2

3 |. If α = 1 one has

(31) dn+1(x) =
dn+ 2

3 (x)
|dn+ 2

3 (x)|2/3
if dn+ 2

3 (x) 6= 0.
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If α > 1, relations (28) and (29) still apply; in that case we suggest to take for
|dn+1(x)| the unique positive solution of (29) (to compute it we can use the New-
ton’s method initialized by z = 1).
Concerning Step 2, we will take the approach already used in [7] for the simulation of
a variety of Newtonian and non-Newtonian incompressible viscous flows (possibly
temperature dependent). It relies on a wave-like reformulation of the advection
problems and can be described as follows:

Consider the following pure advection problem

∂φ

∂t
+ V · ∇φ = 0 in Ω× (t0, tf )(32)

φ(t0) = φ0,(33)
φ = g on Γ− × (t0, tf ),(34)

where: (i) Γ− = {x | x ∈ Γ,V(x) · n(x) < 0}. (ii) ∇ ·V = 0 and ∂V
∂t = 0.

(iii) ∂g
∂t = 0.

As shown in, e.g., [7] proving the uniqueness of a solution to problem (32-(34) is an
easy matter (unlike proving the existence of solutions, an issue we will not address
here). Differentiating (32) with respect to t, we observe that (32)-(34) implies
(formally, at least) that φ verifies also

∂2φ

∂t2
−∇ · ((V · ∇φ)V) = 0, in Ω× (t0, tf ),(35)

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0,(36)

φ = g on Γ− × (t0, tf ), V · n(
∂φ

∂t
+ V · ∇φ) = 0 on (Γ\Γ−)× (t0, tf ).(37)

One can easily prove that the wave-like problem (35)-(37) has a unique solution,
this solution is necessarily unique (see, e.g., [7] for details). In order to solve
the above wave-problem by a method combining finite differences for the time-
discretization and finite element for the space approximation we can take advantage
of the following equivalent weak formulation of problem (35)-(37), for a.e. t ∈
(t0, tf ):∫

Ω

[
∂2φ

∂t2
ψ + (V · ∇φ)(V · ∇ψ)

]
dx +

∫
Γ\Γ−

V · n∂φ
∂t
ψdΓ = 0, ∀ψ ∈ V−,(38)

φ(t0) = φ0,
∂φ

∂t
(t0) = −V · ∇φ0,(39)

φ = g on Γ−,(40)

with V− = {ψ | ψ ∈ H1(Ω), ψ|Γ− = 0}. Concerning the time-discretization of
(38)-40) we follow [7], that is:

(i) Let τ = tf−t0
Q , Q being a positive integer (Q = 5, typically).

(ii) Take

(41) φ0 = φ0.
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(iii) Compute φ1 and φ−1, verifying φ1 = g on Γ− and φ−1 = g on Γ−, from∫
Ω

φ1 − φ−1

2τ
ψ dx = −

∫
Ω

V · ∇φ0ψ dx, ∀ψ ∈ V−,(42) ∫
Ω

[
φ1 − 2φ0 + φ−1

τ2
ψ + (V · ∇φ0)(V · ∇ψ)

]
dx

+
∫

Γ\Γ−
V · nφ

1 − φ−1

2τ
ψ dΓ = 0,(43)

∀ψ ∈ V−.

(iv) For q = 1, . . . , Q − 1, φq and φq−1 being known, compute φq+1 verifying
φq+1 = g on Γ−, from∫

Ω

[
φq+1 − 2φq + φq−1

τ2
ψ + (V · ∇φq)(V · ∇ψ)

]
dx(44)

+
∫

Γ\Γ−
V · nφ

q+1 − φq−1

2τ
ψdΓ = 0, ∀ψ ∈ V−.

The finite element implementation of the scheme (42)-(44) is straightforward (it
has been discussed with many details in [7]).

Remark 3.1. In this article, the divergence free condition (18) is treated by a so-
called sequential regularization formulation, so that general C0 polynomial elements
can be used and that we do not need to worry beforehand whether our finite element
approximation of Stokes problem (17),(18),(20) passes the Babuska-Brezzi test (al-
though this test may be automatically satisfied for formulations like those discussed
in, e.g., [14, 15]). For this flow problem discussed in this article, it turns out that
the penalty formulation, which is the simplest sequential regularization formulation,
works very well. Thus, in practice, we replace (18) by

(45)
∫

Ω

(∇ · un+ 1
3

h + δ pn+1
h ) q dx = 0, ∀q ∈ Qh.

We choose δ = 10−6 for our computation.

4. Numerical experiments

In this section, we will apply a finite element realization of the three-stage split-
ting method discussed in Section 3, to the solution of two-dimensional liquid crystal
flow test problems. The first test problem originates from [18, 19, 13] where one dis-
cusses its un-split solution using C1-conforming, C0 mixed and C0-conforming finite
element approximations. As in the above references, we take λ = ν = γ = 1 and
Ω = (−1, 1)2 and use a uniform finite element triangulation (like the one in Figure
1) for the space approximation. We use C0-conforming piecewise quadratic finite
element space approximations for u and d, while C0-conforming piecewise linear
approximations are used for p. The resulting approximation of the Stokes prob-
lems in (17), (18), (20) is therefore of the Hood-Taylor type (see, e.g., [7][Chapter
5] for further information on the Hood-Taylor approximation of Stokes problems),
implying that Babuska-Brezzi inf-sup condition is automatically verified and that
the penalty approximation associated with (45) is not a necessity anymore. We
kept nevertheless (45) has an extra robustness device, making possible the solution
of the associated discrete Stokes problem by a direct method (the iterative solution
of continuous and discrete Stokes problem is discussed in [7][Chapters 4 and 5]).
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Figure 1. A uniform triangulation on a 32× 32 grid

Example 4.1. We consider an example borrowed from [18]. The initial director
field d0 is given by

d0(x) = d̃(x)/
√
|d̃(x)|2 + η2,

where
d̃(x) = (x2

1 + x2
2 − α2, 2αx2)

and α = 0.5. This director field has singularities at x = (±α, 0) with unit degrees
of opposite signs. We choose this example in order to illustrate how director field
singularities of opposite sign in the director field will move together and annihilate
each other. Concerning the initial velocity, we took u0 = 0, first. For boundary
conditions we took

(46) gu = u0|Γ, gd = d0|Γ.

For these computations, we took ε2 = η2 = 2.5×10−3 and ∆t = 10−4. On Figure 2
we have represented the initial director field (left) and the computed director field at
t = 1 (right), the computations taking place on a 32×32 finite element grid. Figure
3 shows the computed director (left) and velocity (right) fields near the time of
annihilation of singularities. In our computations the energy is decreasing and |d| ≤
1, which shows that our method well preserves the energy law and the maximum
principle for the director variable d. Also, the singularity transport pattern is the
same as those in [18, 13] for the same example.

Next, we did a simulation with d0 and gd as before, but this time we choose for
initial velocity u0 the rotating field (−ωx2, ωx1), with ω = 20 (approximately three
revolutions per time unit) and gu still defined from u0 by (46). Figure 4 depicts
the velocity field at t = ∆t (left) and the computed velocity field at t = 0.5 (near
steady state); we observe that the velocity field almost did not change through the
time. Figure 5 depicts the director field at (a) t = 0.1, (b) t = 0.2, (c) t = 0.24
(annihilation) and (d) t = 0.5 (near steady state). The computed results coincide
essentially with those in [18, 13].

Example 4.2. In this example, we consider a domain Ω with a circular hole in
the center of a square, as shown in Figure 6, where a triangulation of Ω is also
depicted. The initial director field is defined as in Example 4.1, as is gd. To solve
the corresponding liquid crystal flow problem we employ the operator-splitting/finite
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Figure 2. Example 4.1 (u0 = 0): Initial director field (left), di-
rector field at t = 1 (right, very close to the steady state)

Figure 3. Example 4.1 (u0 = 0): Director (left) and velocity
(right) fields near the annihilation time

Figure 4. Example 4.1 (u0(x) = (−ωx2, ωx1)): Rotational veloc-
ity field
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(a) (b)

(c) (d)

Figure 5. Example 4.1 (u0(x) = (−ωx2, ωx1)): Director field at
(a) t = 0.1, (b) t = 0.2, (c) t = 0.24 (annihilation) and (d) t = 0.5
(steady state)

Figure 6. A triangular mesh on a square domain with a circular hole

element based methodology we used to treat Example 4.1, the finite element trian-
gulation being the one depicted in Figure 6 (it contains 2254 triangles); the other
physical and computational parameters are as in the above example.
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(a) (b)

(c)

Figure 7. Example 4.2 (u0 = 0): (a) Initial director field. (b)
Director field at t = 0.3. (c) Velocity field at t = 0.3

Assuming that u0 = 0 and gu = 0, we obtain the results depicted in Figures 7.
We observe that the singular points move towards the center of Ω; however, they
eventually stop near the boundary of the circular hole. If u0 = (−ωx2, ωx1), with
gu still given by (46), we obtain the results depicted in Figure 8; they show that the
two singularities rotate around the circular hole and suggest that it is unlikely that
they will meet and annihilate each other.

Example 4.3. We consider finally an example where the initial director field is
defined by

d0(x) = −(cos2θ, sin2θ),

with cos θ = x1/r, sin θ = x2/r and r =
√
x2

1 + x2
2. The domain Ω is the square

encountered in Example 4.1. The boundary function gd is still defined from d0 by
relation (46). Concerning the initial velocity field, we take for u0 the steady state
solution of the celebrated wall-driven cavity flow problem with u = (1, 0) on the
top boundary and u = 0 elsewhere. For boundary conditions on u and d in the
liquid crystal flow problem, we still use (46) to define gu and gd from u0 and d0,
respectively. All the other physical and computational parameters are as in Example
4.1. The solution of a simplified Oseen-Frank minimum energy model with the same
initial director field was computed in [9] and two singularity segments were observed
in the steady state solution. From the theory of harmonic maps with the same kind
of topological degree 2 boundary condition, one expects a steady state solution with
two singularities at least if the domain Ω has a smooth boundary. For this liquid
crystal cavity flow problem we observe on Figures 9 to 11 that two singularities
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(a)

(b) (c)

Figure 8. Example 4.2 (u0(x) = (−ωx2, ωx1)): (a) Initial veloc-
ity field. (b) Director field at t = 0.1. (c) Director field at t = 0.2

separate from the initial singularity at the center of Ω, then move apart, roughly
along a diagonal of the square domain, and then slowly shuffle off the diagonal line
until being close to the steady state before t = 20 (we computed the solution till
t = 60 and did not observe any significant difference from the solution at t = 20).
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Figure 10. Example 4.3: (e) Director field at t = 1. (f) Velocity
field at t = 1. (g) Director field at t = 3. (h) Velocity field at t = 3
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(i) (j)

(l) (m)

Figure 11. Example 4.3: (i) Director field at t = 10. (j) Velocity
field at t = 10. (l) Director field at t = 20. (m) Velocity field at
t = 20


