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DIMENSION SPLITTING METHOD FOR 3D ROTATING
COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE
TURBOMACHINERY
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Dedicated to Professor Roland Glowinski on the occasion of his 70th birthday

Abstract. In this paper, we propose a dimension splitting method for Navier-
Stokes equations(NSEs). The main idea is as follows. The domain of flow in
3D is decomposed into several thin layers. In each layer, The 3D NSEs can
be represented as the sum of a membrane operator and a normal (bending)
operator on the boundary of layer. And The Euler central difference is used
to approximate the bending operator. When restricting the 3D NSEs on the
boundary in each layer, we obtain a series of two dimensional-three components
NSEs (called as 2D-3C NSEs). Then we construct an approximate solution of
3D NSES by solutions of those 2D-3C NSEs.

Key Words. 2D Manifold, Semi-Geodesic Coordinate Navier-Stokes Equa-
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1. Introduction

In [1, 2], the authors studied two dimensional flow on the stream surface, de-
rived a nonlinear boundary value problem satisfied by stream function defined on
the stream surface, and studied its finite element approximation. In [3, 4], Kaitai
Li propose a dimensional splitting method for the linearly elastic shell based on
differential geometry and tensor analysis. In this paper we will use classical tensor
calculation to propose a new method , called “dimensional splitting method” for
3D rotating NSEs (compressible or incompressible).

The main idea is that, a 3D flow domain €2 bounded by four 2D-surfaces is decom-
posed into several thin layers Q! _; bounded by 2D surfaces 3y, i =1, 2, -+, m.
3D rotating Navier-Stokes operators in thin layer Q¢ ;| U Q:™! under local semi-
geodesic coordinate based on the surface &; can be represented into the sum of a
membrane operator on J; and a normal (bending) operator to &, then applying
Euler central difference approximate bending operator. Then we obtain a restric-
tion of 3D rotating NSEs on the $;, that is a three components-two dimensional
NSEs (called 2D-3C NSEs). Solving 2D-3C NSEs on 3y, ¢ =1, ---, m by parallel
algorithms and reiterating until convergence , we can obtain approximate solution
of 3D rotating NSEs. It is obvious that the method is different from the classical
domain decomposition method because we only solve a two dimensional problem
in each sub-domain(stream surface layer), instead of solving a 3D problem, and the
3D domain is decomposed into sub-domains by two dimensional manifold instead
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of flat plane. In addition , this paper provide three methods to solve 2D-3C NSE;,
those are artificial viscous method, streamline-FEM and stream functions methods.

The contents are organized as following : provide the mathematical description
of the blade’s surface in section 1; a domain partition’s method and rotating NSEs
in semi-geodesic coordinate based on two dimensional manifold & in section 2; a
2D-3C NSEs-a restriction of 3D rotating Navier-Stokes equation to & in section 4;
provide a Korn’s inequality on the & in section 5; prove the existence of solution
to corresponding variational formulation in section 6.

2. Geometry of the Channel in the Impeller and Navier-Stokes Equa-
tions

Let us consider the geometry of the channel €. bounded by two blade’s surfaces
'Y, T and top- and bottom- surfaces I'y, T, in a impeller. Let D C $2 simply-
connected open subset of 2, E denotes a three-dimensional Euclidean space. The
surface of blade is a two dimensional manifold & which is a smooth injective im-
mersion £ € C° (D; E®):

(2. 1) D ={(z, 1)} C R*= R® R(z, r) =ré. +rO(z, r)é + 2k,

where (€, €y, k) are base vectors of cylindrical coordinate system rotating with the
impeller and (z! = 2z, 22 = r) are the parameters describing the surface < of blade
as a submanifold embedding into E® | are also usually called Gaussian coordinate
system on .

In this case the Riemannian metric tensors of manifold & are given by

(2. 2) Gap = Fre bus = prwans + 170005 + gia g5 = dap + 17040,
a = det(aap) =1+ 7%(07 + 63),
where

00
Oe = Gam

bas second fundamental form of the surface &
~ TaB  Yap Zap
’R

bo‘ﬁ = 3900‘905(% x %)/\/&Z ﬁ T1 Y1 21 ’
X2 Y2 Z2

where (z, y, z) denote Cartan coordinate, and z, = (,)‘1%, Yo = a%v Tag =
63(2;79;[,, -+, Therefore

bll = %($2611 + @2((1 — 1)),

bia = (22012 + O1a) = ba1,
(2. 3) 12 \45(372 12 1(1) 21

bay = —=(2"O22 + O2(a + 1)),

3

a

b= det(ba,g) = b11b22 — b%Q

The mean curvature H and Gaussian curvature K are given by
1 b
(2. 4) 2H = aaﬁbag = %(anbm — 2a12b12 + (1221)22), K= .

It is clear that

(aap) € C*(D;82), (bap) € C*(D;S?)
are two matrix fields where S? and S2 denote the sets of all symmetric matrices of
order two , and of all symmetric, positive definite matrices. (ang) : D — S2 and
(bag) : D — 82 are the covariant components of the first and second fundamental
forms of the surface .
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As well known that the geometry of  is completely determined by (aag), (bas) in
the following meaning. We recall that O3 denotes the set of all orthogonal matrices
Q order three and that O3 = {Q € 0?;det(Q) = 1} denotes the set of all proper
orthogonal matrices of order three. J | (z) = ¢ + Qox is a proper isometry of E® :
E’ — E® with c € E*, Q € 03.

Theorem 2. 1(]9]) Two immersions R € C*(D; E?*) and R € C'(D;E?) share
the same fundamental forms (aqg) and (bag) over an open connected subset D of
3 if only if
(2. 5) R=J,0R, where J, isa proper isometry of EZ
Furthermore, If two matrices fields (ang) € C%*(D;S2) and (bag) € C*(D;S8?)
satisfy Gauss and Godazzi equations in D

8ﬁraa, T 60Fa/3, r+ FZﬁFJT, n FZUF/BT, w = baobﬂ‘r - baﬁbara
8gbag — 8Uba5 + Fgobﬁu — Fgﬁbgu =0,

where
Fa@ T = %(8aaozr + aaa/g.,. — 8Taaﬁ)7
I'0g=a"Tap, 7, where (a*P) = (aap) ™!,

Then there exist an immersion R € C3(D;E?) such that
61]‘? X 82E }
|81]§ X 82R| .

Lemma 2. 1([2]) Third fundamental tensor is not independent of first and
second fundamental tensors a,g, b,s they have following relationships

Ea/\Eﬁgba,Bb)\o' = 2K7 baﬁb)\a - boz)\bﬁa = Kgaagﬁ)\a
(2. 6) Kaag —2Hbog + cag = 0, Ka®P — 2Hp*B  ¢oF = 0,
a®? — 2HDB + KcoB =0,

QapB = 8aéaﬁé7 Olﬁ - 82 R {

@7 { Kb = 2Ha*P —poP | K260 = (4H? — K)a®? — 2Hb*P,

KboP = gorehop, 2008 = codgbog,

where b8 ,¢*P are inverse matrixes of bag, Cap, respectively. Following formulae
are useful throughout this paper
b8 =@y, @B =N, by =0
carxby = —2HKanp + (A4H? — K)bag,
(2. 8) carcy = —K(4H? — K)aap + 2H(4H? — 2K )b,
@ =a"Fcyp = b*Pbyg = AH? — 2K;
bVBeop =8H? —6HK; cPeoup =16H* — 16H*K + 2K2.
Assume that there are number N blades of an impeller . Then expansion angular of

the channel between two successively blades is 2¢ = QW” The channel between two
blade’s is denoted by

CB\,

Q. :{(xl_z 2 =r)€ D, —s+@(z z?) <0 <e+0O(zt, )},
(2.9) { R@', z )_xe,+x(ss+@( : ))eg—&-mlEEQE,
V(acl, HeD, sel-1, 1].

Let us make variable transformation

(2. 10) r=x2, f=es+0, z=z' -1<s<1,



DIMENSION SPLITTING METHOD FOR 3D ROTATING COMPRESSIBLE NSE 423

V s = constant means that it represents a 2D-manifold & , its geometric position
is reached by angle es of rotation. Take (2!, 2%, s) as new coordinates system:

xt=2 a22=7r, s=¢c"10—0). The channel Q. becomes a cylindrical body

0= {(zl, 2?)eD, -1<s< 1} C R3. Jacobi determinate of the transformation

is given by J % =¢, . It is clear that it is nonsingular

RIRy =118 [~
RRy=1.1

TE (Sta. 2)
9%

Ryg/Rp = 0486

Ryp/Ry g =0.395
bRz -0.079
AZ/AR=0759

(splitter LE)

LE (sta.1)

Fig. 1 and Fig 2. Blade and Channel €. and boundaries of projection at meridian plane
where D = (2!, 2?) € R? :

D =~ Um, ~=ABUCD, ~ =CBUDA,

there are four positive functions vo(z), Y0(z), v1(2), 71(2) such that

r:=12%=v(z!) =90(2) on AB, a?= Fo(x') on CD

ri=a2=y(2') =n(z) on DA, 22=7(2}) on BC,
(2. 11) ro <7(z) <r; on @, r <1<

ro <m(z) <ry, Vzu <2<z4, on DA

ro <71(2) <ry, Vz <z<z. on BC.

Assume that turbo-machinery flow in the impeller is stationary flow. We employ
rotating coordinate system with same angular velocity w as impeller. The governing
equations are Compressible Navier-Stokes equations

Continuous Equation div(pw) = 0,
Dynamical Equations — V-0 + div(pww) + 2pw x w
(2. 12) = pw X (w x R) + f,
Energy Equation div(pFEw) + pdivw — div(kegradT) — ® = 0,
State Equation p=p(p, T),

where w is relative velocity of fluid, w angular velocity of the rotator, p density
of the fluid, p pressure, £ = C, T inner energy in a unite volume, C, specific
heat at constant volume, and p viscosity, T temperature, kg the coefficient of heat
conductivity, 2w x w Coriolis force, F' = % + w X (w x R) volume force including
centrifugal force, stress tensor o and dissipative function ® are given by

(2.13) o (w) = (=p + Fpdivw)g” + 2ue (w) = —gp + AT e, (w),
’ P = 2ue (w)ey;(w) + Zp(divw)?, e (w) = 3(Viw’ + Viw'),
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where

(2. 14) V??,‘jj = v ﬂ’;Fimw"ZL, - Y"wj = g*Vw,

AV = 2pg" T + g g

are covariant derivative and contravariante derivative and viscosity tensor. T, is
Christoffel symbolism in coordinates z in R3. The e;;(w) is the deformation rate
tensor of the velocity w.

1 1

(2. 15) eij(w) = g(Viwj + iji) = §(gjkViwk + gikv]"wk).
In sequence we employ entropy equation in stead of energy equation (for the poly-
tropic gas state equation)

w'V;S — ﬁ(%AT—}— ®/0) =0,
(2. 16) W = g;;w'w’ module of velocity[2],

S=Rlog(T77 [p), p=A4p", |
where S is the entropy, 1 < v < 5/3 is heat specific radio, A is a constant.

Let T, entrance boundary, Ty, exit boundary, I'y = T'f U, positive and
negative surfaces of the blade, I'; top boundary , I', bottom boundary:

aQEZF:].—‘lUF(), ' =T Ul ou, FOZF:UFS_ uly Uly.

Then boundary conditions are

wir, ZO, ’w‘pb :O, ’U}|Ft :0,
U'”'Fm :gina 0'n|Fout :gouta
(2. 17) oT

87+A(T—To) :0, on FtUFbUFSUFm“g,
n
T\r,, =Tin, where A >0

3. Domain Partition and Navier-Stokes Equations in Semi-geodesic co-
ordinate

Fig. 3 Section of the Channel and Angular Expansion, Fig. 4 Domain Decomposition

Let consider domain Q = {(z!, 2?) € D, —1 < s < 1} decomposition. Making
partition on
-1, 1]={so=-1, ss41 =8, +As,i=0, 1, --- |, m, s, =1}
it is obvious that each s = s; corresponds a 2D manifold <. By theorem 2. 1 they
have the same geometry as the surface of blade. &;, i =0, 1, 2, --- , m decompose
Q. into m sub-domain (is called thin flow’s layer and denote byQ:_ ;, see Fig. 4).
Flow layer Qi“ is bounded by J;, ;41 and 9. Assume that €. consists of

the flow layers of number m. In the neighborhood {Q} ; UQI!} of §; we establish
semi-geodesic coordinate (the abbreviations S-coordinates) (x®, &) based on J; and
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Jap(z, &) denote metric tensor of E? in this coordinate. Then we find relationship
between g;; and aqg(see [2]):

9a8(2, §) = aap(x) — 26bap() + E3cap(2);
ga?)(xv f) (Z‘, f) =0, .q33(x7 E) =1,

(3.1) Oz, §) = v *(a(x) — 2Kb°P ()€ + K?€2¢°F (x)),
S (x, &) = (SU» =0, ¢¥@ &=1,

g(x £) = det(gw) =r2(alx); k() =1-2HE+ K2

where the third fundamental form is given by (cas = a* barbgs) and (b*P) =

(bap)~", and (6*7) = (cap) ™
Let h := A& denotes the distance along the normal from J; to &1, then

(3. 2) h=NA¢=As -reya= (sipr1 — si)reva.

. * *
Let I'}, Vi, and I'*g,, Vo denote Christoffel symbols and covariant derivative
in 3 and on & respectively,

_ 1(0gik 99;k 9gij m _ . mk
Lijorn = 2050 + 2ar — a0 )s T =9 Tij
*
1
2

* *
dag dagx daagp A A
Tap, 3= 3(F + 5% — 30),  TPap=0a"" Tag, o

For the tensors of two and one order, covariant derivatives are given by

Viul = 9% + T u Va ul = aza"" Fﬂa,\ ul,
(3. 3) divu = Viu_ _, d1v u Va @,
vkeij _ Qe emi +PJ zm

%)\ eaﬁ _ 86 + ]_"a)\ 6aﬁ+ 1"6)\ eao’

Then we have

Lemma 3. 1([2]) Under S-coordinate system, Christoffel symbols (I‘l > Lij, k)

*
in B3 can be expressed in means of Christoffel symbols of & (I'“g,, Fag, A)

Lo, x = 9xro ['7ap +E(HE — 1) Vi bag

(3. 4) +26(HE — 1) 82 boa — bao I'70g],
Faﬁ, 3= aﬁ(f)a Fa3, 8 = 1_\3(1, B = Ja,@(ﬁ)a
I'yj, » = 0, other case,

(3. ) { Lop = 3a@ +93_1Riﬁv Ty =T85 =075, Top=Jag
F33 = 1—‘35 = F63 = ng =0

and where

(3. 6) R, = (2HE? —€) Va b — €20y Vi b,

Ig = —b% + K{(Sg, Jag = baﬁ — gcag

Lemma 3. 2(]2]) Under S-coordinate system covariant derivative of a vector
#% in E3 can be expressed by covariant derivative of its components on the tangent
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space at &. Furthermore it is a rational function of transversal variable £

Voub :%a uP + 0~ (IPu? + Ri/\uA), Vaub = 22,
(3.7) ViuP :*% + 9_1Ifu>‘; Vau? :%a ud 4 Jaau;
divu =div u + 88—7?
PR 2HW? + (2Ku® — 20 Vo H)E +u® Va K2,
where and in sequence we consider third component u? of @ as scale function on

the 2D manifold S.
Taking into account of

(3. 8) Vigjk =0, Va s = 0,

which will frequently be used throughout this paper and u* = ¢~ u; , by using
contravariant component of vector u instead of covariant component of vector, the
strain rate tensor of velocity on & is defined by

s
3.9 %
(3.9) >

(u) = 5(Va us+ Vg ta) = 3(apy Vo vt + aar Vs ut),
e u

(u) = a®a% ey, (u)
Lemma 3. 3(]2]) Under S-coordinate system the deformation rate tensor of
the velocity u are the polynomials of two degree with respect to &
1 2
(8- 10) eij (1) = 73 (u)+ Vg (WE+ Vi (w7,
where

* 1 1 *
Yap(u) =€ap (u) = bapt®,  Vap (1) =€ap (u) + capu®~ Vi bagu,
2 2 * 8 *
Vap (u) =€ap (u) + % Vi Captt,  y3a(u) = %(%58@%4- Va u?),
! o’ 2 1 ou”
Yoz (u) = _baﬂTgv Yoz (u) = 3CaB g

. 1 2
Ya3(u) = 8371?, Va3 (u) =733 (u) = 0.

(3. 11)

where the strain rate tensors on the two-dimensional manifold & are given as :

Zaﬁ (u) = %(aa)ﬁg + agrd7) %a u;
(3. 12) Cap (1) = —(bard5 +bsndg) Vo u;
625 (u) = %(cag(% + cgo0,) %/\ u?;

Lemma 3. 4 The divergence of the strain rate tensor e(w) of the velocity in
S-coordinate is given by

div(e(w)) = {V,e" (w), i =1, 2, 3},

Vet (w) = g*Pg*7 Vi ego(w) + [Va (g% g*7)
+r7 (RS0, + Rﬁﬁﬁ)g”ﬁg“"]eaa(g)
(3. 13) +3 (k7 I2g"7 + I39%7) + 0:9°7) Vo w*
— vo (o8 o wﬂ
3[R (I2977 + 1297 + 06 (977 9o )] %
* w3 2wa
+19*F Vg 837& + %83?,
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X * % * *
Vel (w) = 1g* VaVe w? + (Vg g% + ffleAgA”) Vo w3

(3. 14) +9N g Tngeu(w) + 5t + 1
*
+10¢ divw + $r 1R, 2%

Proof the proof is omitted here.
In order to compute Coriolis force and centrifugal force we have to introduce
permutation tensor in Euclid space E? and on 2D manifold S

NGE %, (i, j, k) is even permutation of (1, 2, 3),
€ijk =4 —V9 Eijk = —ﬁ, (i, j, k) is odd permutation of (1, 2, 3),
0, 0, otherwise,

where g = det(g;;), g;; is metric tensor of R3. Similarly

va, ﬁ, (a, B) is even permutation of (1, 2),
€ = —Va@, Eap= 7ﬁ, (a, B) is odd permutation of (1, 2),
0, 0, otherwise,

Since /g = Kk+/a it is clear that
3.15 €308 = KEq g30B — —1gob,
( 3ap 2

Let R = R*é, + R37 denote the radius vector of the point (z%, ¢).
Lemma 3. 5 Coriolis force, centrifugal force and angular velocity vector in
semi-geodesic coordinate can be expressed as

C(€) = 20 x @ = C* (&) + C*()7
(3. 16) Je€) =& x (& x R) = f2()a + J2OT,
(€)= wk =W ()2 + WA O, B = R + RO,

where
w(€) = wke® = w1k (a® — EKbO%)F, = wr~(a™ — EKDY),
A R e
RY(&) = k(a7 — EKD7) (2" 601 + 22(1 + ©%)d50 + OO, (27)?),
R3(&) =€ — %(2 + 02)22270,,
Ci(&) = 269k wwy, = 2 e jpwhul,
C*(€) = 2rg*Pepr(ww® — wiw?) = CF (w” + CF (w?,
(3. 18) C3(¢) = 2rerow W’ = C’g({)wﬂ + C3(&w?,
C§ (&) = —2rg*ergw®;  CF(€) = 2ng™ erpw’;

Cg(f) = 2/65)\50.))‘, Cg(f) =0.

fi(€) = €% gjieppgw' WP RY,
3. 19 a &) = aaﬁa)\gg WYWAR? 4+ w3 (w*R3 — w3 RY),
c By
F3(E) = 9K gl P RY = gore (WP R® — 0o RY),
In particular, on 2D manifold S, i. e. £ = 0,

w(0) =wa,  w3(0) = ~Z£0,(2+ ©?),
(3. 20) R*(0) = (zta'® + 22(1 + ©%)a?* + a7 00, (2?)?),
R3(0) = —=(2+©?

2.«
Ta r°r*0,,

~_
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Cf = C5(0) = 2£201(2+ ©%)aepy,  Cf = C5(0) = — 2243,
C3 =C3(0) = 2watrey,, C3=0,
(3. 21) £20) = a*Pepreve (W (0)w” (0)
+aM w3 (0)w3(0))R7(0) + a*? w3 (0)w” (0)R3(0)),
f2(0) = a”eroer,w™ (0) (W (0)R*(0) — w?(0) R¥(0)),

o
N
N

Lemma 3. 6 ([2]) The compressible viscous rotating Navier-Stokes (2. 8) in

semi-geodesic coordinates represent

-2 [go‘ﬁgm Va ego(w) + [ Va (9°Pg™7) + (Riudﬁ R},02)g"P g |
xego (W) + 3(L (19977 + I2g°7) + 0eg°7) Vo 0
o VO oo (%0 wﬁ o *
3 [(FI2977 + 129%7) + 0(9°7 908)] B + 397 Vs

3. 22 A
022 +%8;§U2 ]Jr div (oww®) + L“] w4 owew® Vs Ik
+Qwaw3%§\/&)+gaﬂ V,B [p_gllz(le ( ) 3111 +wﬂ Vﬁlnli
T+ 2RES)]  pCe(6) = pfe,
2u[1 A VAo w4+ 1V 077 + kTR, 0Y) Vo 0
Vg e (w)  + B8+ 5] 85”2 + 10 div w
(3. 23) +1H_1Rg>\85‘2 } + 8%[ - §(d1V w + 2%
+w® Va Ink + w381n(“‘f )]
+ div (puéw ) + g (pwPw?) + puwn? Vg Ink
+pwiw® 5 In(ky/a) + pC?(€) = pf?,
(3. 24) div (ew) =div (ow) + 222 + pw™ Vo In s + gu? 2202 —

w8 + we Vas—ﬁ(;ATJF;)—O
On the surface <, i.e., £ = 0, we have

eij(w)le=o = 7i;(wo),
9°Ple=0 = a®?,  I§le=o = =3,  Japle=o = bap,  Rfyle=0 =0,

* * *
A w® =’ V3V, w*,

3.25 *
( ) WY Vo Inklezo =0, w30 In(ky/a)|ezo = —2HwW?,
bf} %)\ w? = b/\g %)\ Weg = bkg é)\g (U))
= b2 (Yo (W) + brow?) = Bo(w) + (4H? — K)w?.
where
(3. 26). bV Pbos =c* =4H? — K =k? + k3, Bo(w) = bPyas(w).

Substituting (3. 26) into (3. 22-3. 24) leads to
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Lemma 3. 7 The restriction of 3D rotating Navier-Stokes equations (3. 22-3.
24) on S, i. e., & = 0, are given by

271) o ow « * w3 «
—u(% - B§ 8@5 Ne=o — %a"? Vg B |emo + F (pwiw)]e=o
~2u[V5 7% (wo) + Ha*® V5 wd] +a*® Vg (po — % (div wo

—2Hw{))+ div (powowy) + 2po Hwiwg
+po(Cwg + C?wg) = pofS,
2 3 *
(3. 27) *%(%é‘é —2H % e )le=o + [3519 2p0¢ div w + 9¢ (pww®)]|e=o
—p A wg — 2uﬁo(wo) + 4w Vo H — 3(K — 2H)u}
+ d1v (powowo) — 2H powdw + pocﬁwo = pofes

89w le=o+ d1v (0owp) — 2HQ0U)0 =0,

k By \ _
(pATO+p:)J)_O7

Bf :=2(b§ + HOF), 7" (wo) = a® a7 s (wo),  Bo(w) = b yap(w).

3as|£ o+ w§ Va So —

where

Next, the differential operators along normal to the surface &; are approximated
by Euler central difference operators

ow — Wi—woy 2w — wi—2wotw_y
(3. 28) o€ le=0 = =55 DE2 le=0 = 02 ,
’LU()({E) = U)|§:0 = U)(:L'7 0)7 w,l(l') = W|s;_q, W1 = Ws;y15
and denote
= gph™2((0F SBé“h)wf + (03 + Bgh)w’ )
(3. 29) :_5 or V % h_ (le1w1 —p wd 1w°‘1)
F}:= Suh~ (w bwdy) — SHA (wd —wd,) — LhL(py — p_1)]
+5m diy 215 — sh Hprww? — p_qwd jwd).
Since
(3.30)  divwy — 2Hw{ = a* (exs (wo) — baow) = a* g (wo) = o (wp)

and vanish covariant derivatives for the metric tensor (3. 8), we claim

—2uV 77 (wo)] = a®” Vs (3 (divwo — 2Hw())
= —2ua°*aP7 V3 o (wo) — 2paPa” Vg g (wo)
= —(2ua®*a”? + 31a*?a’?) Vg ao(wo)

*
= —a""*? Vg vr0 (wo),
aoz['})\a — 2luao¢)\aﬁa 4 %‘uaaﬁa)\a

(3. 31)

To sum up we assert that the restriction of 3D rotating Navier-Stokes equations
on the 2D manifold $;:
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Theorem 3. 1 The restriction of 3D rotating Naver-Stokes equations (3. 8) on
F(i. e. £ = 0) are given by

—a*P? V5 g (wo) + ph~?wi+ div (powow') + 2p0 Hwiwg

+a*? Vg po + 1%(po, wo) = pof& + F,

(3. 32) —p A wy tuh_zwng div (powows) — 2H powgwy + 1*(po, wo)
’ = pofc + Fh)

div (gowo) — 2H gow + do = 0,
* 3
w(?VaSO_F%(Sl_S—) WoTo( AT+¢.O):07

where
1%(po, wo) = —2pHa*" Vﬂ wy + PO(Cﬁwo + Cgwy),

(3. 33) 12 = —2pfh(wo) + p(3 (21 — K))uf + + (3 Ve Hywj + poCiuwf),
do = g5 ((pw?)1 — (pw?)-1),

Let boundary of Ry

(3.34) v =TsNSy, Yin =Lin NS4, Yout = Lout NSis Y0 = Yin U Yout,

Taking (3. 9) into account the boundary condition (2. 11) become

. =0,

(ZW Mg (wo)n” — (po)n®) |y, = 95

.39) (210 Vg win’ = (o)), =
( [L(Z ’)’)\g(’wo)’ﬂ,ﬁ - (po)na)|’}/om = gguta
(% Vﬁ wonﬁ - (po) )"Yout = ggut’

(3 36) gzn = gzn %Ma/aﬁ(wla - wgl)nﬁ’ in Yout,

gout ggut - %;u'aaﬁ(w? - wgl)nﬂ, in Yout
4. The Navier-Stokes Equations on the Surface <

In sequence we only discuss isentropic ideal gases, in particular for the polytropic
gas: p = ApY where A is constant and % > v > 1 is the specific heat radio. Hence
we omit energy equation. Taking (3. 28) into account, the equations (3. 29) on
2D-manifolds become

* * *
—a®PA7 g g (wo) +a*? Vg (Ap7)+ div (powows) — 2H pow§wi
+la(p0> ’U}O) = F(?7
—p A wi+ div (powowd) — 2H powgwg + 1% (po, wo) = F,
div (powo) — 2H powg + do = 0,
where [®, [3 are defined by (3. 35).
Unless there is a statement to the contrary, the Einstein summation convention,

e. , repeated indices indicate summation, is used, and a “”’ denotes transposition.
For the simplicity, we use the abbreviations

(4. 1)

I llo. o =1l llz2(pys - llo, . D= I - 2o (D),
(4.2) |- llm, p, D= I lrm. P(D)) H llm, o =1+ [lm, 2, D
V(D) ={wlwe H'D)* wl, =0, }.
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Noting that

Yas(W0) =€ag (wo) — bagw?,
Yo(wo) = a®*Pya5(wp) :d>ikv wo — 2Hw},
(4. 3) a®P27 5 5 (wo)bag = 21180 (wo) + 3 uHo(wo),
P75 (wo) €ap (V) = a“F 73, (w0)Yaps (V)
+(2uB0(wo) + 5 puHo(wo))v®.

Vv e V(D). Since %w a®P*? = 0, Green formula shows

[pl=a*P2? V5 yae (wo)valvade
== faD a7y g (wo)ngvady + fD a®PA7 50 (wo) Vg vav/ade
(4 4) = — aﬁ)‘U’}/)\U(’wo)nﬁ’UQd’Y + fD aaﬁAU’y)\U(wO) Cap (’U)\/Zld.’t

Yo
f a“Pr o (wo)nguedy

+f aa,\g%\” wo)%ﬁ( v) + (2B (wo) + 3uH~o(wo))v®]y/adz,
where we used the symmetry of index. Similarly,
a®? Vg (ApY), va) = [, ApYaasn®oPdy — (Ap7, div (v)),

*
§): va) = [, po(wing)(w§ve)dy — (powwy, €as (v),

—pAwg, V)=~ [ pa®? o wingvddy + (p V wg, v v?)
6w0 V3

(
( )

(4-5) 9 (div (powoud), v*) = [, po(wing)(wiv®)dy — (powgus, Va v?),
(

=(uVvuwg, Vo) = [ ngrvidy,

Multiplying v, with both sides of the first of (4. 1) , v® with both sides of second
of (4. 1), adding and taking (4. 4), (4. 5) and (3. 35) into account, and applying

4 4 * 4
?NH'YO(WO) + ?uwg Vs H = #70(Hw0),
the variational formulation for (4. 1) and (3. 42) reads
Find (wg, po) € V(D) x LY(D),such that V¥ (v, q) € V(D) x L?(D),

ao(wo, v) — (Ap?, div v) + bo(po; wo, wo, v) + (Lpo,wo), v)
=< G, v>

(diV (po’wo) — QHPOwg + do, Q) =0,

(4. 6)

where

ao(wo, v) = (6773, (w0), Yag(v)) + (1 V wd, V v9)
+(ph~2agpwf, v7) + (uh=? wSﬁ v?),

bo(po; wo, wo, U) —(pow§wy, €ap (v)) — (2H pow§wd, aapv”?)
_(Powgww Va v?) — (2Hp0w0w0)7 v3),

(470 (Upo, wo), v) = —puH Vs w?, o) + (o Huy), )

+(poChwp,v®) + (3 (2H2 K)wm v3) + (poCapwf + Casw, v*),

<G, v>=<Fy, v> +f [aap APo - §ﬂ’¥0(w0)) — 2uYap(wo)In® o?
-/ /Jaw0 vidy+ [ po (wona) (aapwfv” + wiv®)dy,

Fo =pofe+ Fn, do=55((pow)1 — (powd)—1).
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Remark 4. 1
(4. 8) (1) 2(wxw|g= (poCaﬁwg + Cazw)v™ + pngw€v3,

' (ii) 2H?> — K = (k¥ + k%), ko — Princinple curvatures of
Therefore
(4. 9) (U(po, wo), v) = —(2uH Vg wi, v7) + (vo(Huwo), v°)

F( (R + kw3, v3) + (2(w x w)lg, v),

5. Korn’s Inequality on the Surface <

In the sequel, the constant C(©, D) may be different from line to line but should
be independent of the vector field w. The inner product on the tangent bundle TS
induces norms on all tensor space , for example , point-wise norm and Sobolev

norms
|w|? = anpww? = aPuwawg, W = aPwg, Wwo = agpwP,
lwll§, p = Jp lw]*Vadz,

* *
le ( )|2—GMGB” ,@( ) exo (w),

le(w)lI5. p = [p le(w |fd$
| v w|? = a* a7 Va wg Va wo = a®Par, Ve w Vg w,
(5.1) Ivwlg p=J,|VwP/adz,
Ir(*w)\2 :a“*aﬁ"?"aa*(w)ma(w), w)|? = [, Ir(w)?yadz,
| Vo w?II§ p=[]Va wﬁl2¢&daz,
D
|l €as W3 p = [ | €ap (w)*adz.
D
[y (w)[* = a®*a? yag(w)ac(w), |y 5= [ |y(w)*Vadz.
D

What follows that we will frequently used equalities

(5. 2) Vo a® =0, ¥V, a5 =0.
and notation

o () = §(Va wgt Vi wa) = §(aps Vo P+t Vs ),
T(Xﬁ( ) %(va wg— VE wa) = %(aﬁ)\ Voz — Qo) VB wA)
Yap (W) =€ap (W) = bagw®,  fo(w) = b° ﬁ%cﬁ( ), o(w) = a®yap(w).
In this section, we consider the Korn’s inequality on the surface S( a two dimen-
sional Riemannian manifold) which can be found in [8, 9, 16]. For example,
Theorem 5. 1(Th. 2. 7-1, [8])(Korn’s inequality “without boundary conditions”
on the surface) Let D be a domain in &% and let © € C?(D) be an injective
mapping such that the two vectors €, = 0, R(R is defined by (5. 1)) are linearly

independent at all points of D. Given w = (w®, w3) € HY(D) x HY(D) x L*(D),
- Yap(w) =eap (0) = bagw® € L*(D).
Then there exists a constant ¢y = ¢o(D, ©) such that
Xa:|\wa||2 p+Iw?ll5 p <
(5. 3) o lwlI3, o+ Iw?lI§, p + Eﬁ”%xﬁ( M3, p}
Vwe HY(D)x H'(D)x L(D),

Then Riemann version of Korn’s Inequality is given by [15]:
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Theorem 5. 2 Let (M, a) be an oriented Riemann Manifold and TM the
tangent bundle. Assume €2 C M be an open set with boundary 9Q of C*> !, v be a
vector field on the Riemann manifold M. Then there is a positive constant ¢ such
that

(5. 4) IV 0lls, o < C{IIIIIE, o + eI, o},
where
(5. 5) [v]? = aapv®v?,  le(v)]* = a*Par, 6a v %5 v7,

Furthermore, if v C 9Q with Hausdorff dimension dim g (v) > n—2 and 2 is convex
set, then there exists positive constant ¢ such that

(5. 6) (I3, o

for any vector v € H?(Q2, T) N {v|, = 0}.

Theorem 5. 3(Th. 2. 7-3, [8])(Korn’s inequality on the ellipc surface) As-
sumptions in theorem 5. 1 are satisfy. furthermore, the surface is elliptic, i. e. the
curvature tensor( the coefficients of second fundamental form) b.s of the surface
is positive, or negative, definite at all points in D, or equivalently if there exists a
constant ¢ such that

D 1P < elbapg®e?], ¥ (£7) € R

or equivalently if the Gaussian curvature of the surface is everywhere strictly posi-
tive K > 0. Then there exists a constant cp; such that

Z llwg (I3 S cm Zﬁ ||’Yaﬁ(w0)||o D>
Y wy € HO(D) x H}(D) x L*(D),

(5. 7)

Inversely , ellipticity of the surface is also necessary condition for the Korn’s in-
equality: If (5. 7) is valid for all vectors in space

{wolwg € H'(D) x H'(D) x L*(D), wg|, =0, 70 C OD}
Then vy =« := 9D and the surface is elliptic.
Remark 5.1 (5. 6) shows if éag (v) = 0 on the manifold then %a v? =0. It is

well know[15] that if a vectors v satisfy €45 (v) = 0 on the manifolds then the vectors
v are called Killing vector field and let M be a compact Riemannian manifold, then
the vector space of Killing field on M is finite dimensional. In addition, if the vector
v of Killing space satisfies v|, = 0, v € 09 then v vanishes identically on the set
Q. »

Lemma 5. 1 There exist following relationships

|V wol® = fe(wo)[* + [r(wo)*,
I Vw0||o p = lle(wo)ll§, p+Ir (wO)Ho D>
| V wol? + | div w0|2+ div ((wo V)wo — wo div wo) = 2|e(wo)|?,

o1 4 ISl v ol o+ oo Vo —wo divn) - nd
= 2[le(wo) |3, D>
| V wo|?— div ((wo V)wo — wo dlv wo) = | dlv wo|? + 2|r(wo)|?,

| Vwollg p— [op((wo V)wo — wo div wo)ndl

= || div wO“o, D "‘2“7“(1”0)“0, D>
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%(| V wol? + | div wg|?+ div ((wo V)wo — wo div wy))
= "Y(WO)P + 2aa>\a507>\o( )baﬁwo + b Ebaﬁwowga

(17 |V wol? + | div wol?+ div ((wo V)wo — wo div wp)
< Ay (wo)? + (kT + E3)wiwg).
Proof
4le(wo)|? = a‘”aﬂ"(% wog~+ 6;3 wOa)(%)\ wost Vo wo)
= 2ve wp Vaw06+2v/\w0 Va w()\,
\ v wol? = a®raP V Wop VA Woor —ve wy Va WoN,
| div wol? = Va wg V)\ wy,
|V wol2 + | divwol? = 2le(wo)P— Va wd Va wh+ Ve w8 ¥ w)

= 2|e(w0)|2— Va (U/S Vi wg —wg Va w())‘)
= 2le(wp)]*— div ((wo v wop — wp div wp).

This is the first of (5. 16). Since

*

Ve Wop =€as (W0) + Tap(wo)
hence
| v wol? = a** a7 %a wog 6,\ Woo
(5. 18) = a™0"[Cap (w0) + ras(wo)][r0 (w0) + 7ro (o)
— Je(wo) 2 + [r(wo)|2 + a®a (éus (wo)ras (wo)
+ €xo (wo)Tap(wo)),
Owing to anti-symmetry of index for rotation tensor rog(wo) and symmetry of

index for the strain tensor Zag (wo)

Tag(Wo) = —1ga(wo),  €ap (Wo) =€ga (wo)
we claim
a®*aP ZM (wo)rap(wo) = —a%Pagr 20)\ (wo)7rga(wo) = a®aP? *ag (wo)7xe (wo)

Returning to (5. 18) it deduces to (5. 16).
In addition, in similar manner, by virtue of(3. 26)and

(5. 19) { s (16) —irg (w0) — bagw®,  bF — a®NaPoby,
and (5. 16), then

3

12 = |e(wo)|? — 2a°*aP” o (wo)bapwi + a®*a’? by, baswiwd

|7 (wo)
= %(| V wol|? + | div wo|?+ div ((wo V)wo — wo div wp))
—2a°aP7 (w0 )bapwi — b*Pbaswiw,

[y (wo)* + 200"\015”%\0(?110)%,6100 b"‘ﬁbagwowé
= §(| V wol? + | le wol?+ le ((wo V)wo — wp div wyp)).

Owing to

akaﬁa 3

|2aa)\a60’7)\0 (wO)ba,@wg| S a ’Y(xﬁ(w())’y)\a(’wo) + baﬂba,@wngv

we infer

| V wol? + | div wo|?+ div ((wo V)wo — wo div wg) < 4(|y(wo)|? + baﬁbagwg’wg)
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From this and (5. 19) it deduces (5. 17). The proof is complete.
Lemma 5. 2 There exist positive constants A\, A such that

(5. 20) MEP < anp€®e® < AJ€)?, VEe E?
A P = |wol> = A3 w2,

A ZB|Vﬁw8|2Z|Vw0|2Z>\ PONRRT

(5. 21) o, o,
A [ g Pade > flwol, o > NS [ | ads,
Alwol2 p > | V woll2, p = Awol? p.
and
A S Ve (wo)l? 2 [ @) 23 X | éas (wo)l
A;:ﬁhaﬁ(woﬂz > hlwo)l? 2 A 3 hag(uo)
where

wol? p =3 /D |5 wgPyade = | Vs wSlE o
a, B a, B

denote a semi-norm in H!(D) x H'(D)
Proof Since the positive definition of metric tensor a,g, it is obvious that (5.
21-5. 23) are valid. §

Remark 5. 2 It is obvious that | v ‘lo, p is an equivalent semi-norm in
HY(D) x H'(D) . Hence, by virtue of (5. 21), we assert that

. [A
(5. 22) > €as (wo)llo, p < X|w0|1, p, Ywee HYD)x HY(D)
a, B

Lemma 5. 3
|r (wo)|2 + (div wo)? = [e (wO)|2
- Va (w” Vﬁ w§ — w le wo) + Klwo|?,

|7 (WO)HO D+H le wO)Ho D— lle (wO)Ho D—I—fDK|w0\ Vadz
— [5p(w? Vg wy — Wo div wo) - ndl.

(5. 23)

Proof By similar manner,

[r(w0)? = Faa% (Vo w0 = Vs woa)(V 05— Vi win)

= zaaxa&’@ €ap (wo) — 2 Vﬂ wOa)(2 Exe (wo) -2 %a woy)

= le(wo)]* — Maﬁa [éaﬁ (wo) Va 'WOA+ 6,\0 (wo) Vﬁ Woe — 2 Vﬁ wOa Va wo,\]

= le(wo)|* — 1 a*a% [(eqp (w ) Vﬁ w0a) Vo wox + (xo (wo)— Vo wox) VB Woa]
= le(wo)|* — aa/\aﬁg[ Y o Wop Vo wor+ Vﬁ Woa Va Woo |

= |e(wo)|?~ Va wop Vﬁ wy,

Since (5. 3),

(5. 24) [r(wo)[* = le(wo) |~ Va wy Va wg,
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Second term of (5. 24) shows
Vo g Vi wf =V (wg Vo w§) —wg VaVp wf
=Va (wg Vs wf) — wp VaVp 0§,
Furthermore, by virtue of Ricci formula and Ricci curvature tensor formula for 2D
Riemann manifold[1]

(5. 25)

* * A * * A *>\ . *
VoV wy =VgVa Wh+ Rsap Wy, Ras= Kaag,
we deduce
wg %a%g wy = wg %ﬂ%a w§ + wg R*D‘Mg wy = wg %gd}kv wo + wg ]*%m wy
:%5 (wg dﬂiﬁv wp) — wg %gd?v wo — Kawwgwé‘
:%5 (wg dyiﬁv wp) — %ﬁ (wg dx'1<v wp) + (d?v wo)? — K|wo|?
i. e.
(5.26)  wf %a%g wg —V, (wh %5 w§ — w§ div wp) + (d?v wo)? — K|wol?,

To sum up, (5. 25) and (5. 26) imply (5. 23). The proof is complete. f

Theorem 5. 4 Let & be a 2D Surface with boundary 93 of C1 ! defined
previously. Let D be a domain in 2, © € C3(D, E?) be an injective immersion
and wo = {w§, w3} € V(D):

(5. 27) V(D) :={wg € Hl(D) X Hl(D) X LQ(D), wolop =0, or
‘ woly, =0, (wy Vg w§ —w§ divwe)naly, =0, 9D =5, U},
Furthermore let strain tensor of the vector field w
Cap (w0) = §(Va wWop+ Vg woa) = 3(apx Va W) + aax Vs w)) € L3(D),
’yag(wo) ‘=€qap (wg) — bagwg c LQ(D)
Then for all wy € V(D),
A ZBH Vawg |3 p <1V wol? 5 <2le(wo)l? o

(5. 28) * 2
< 2A Zﬁ | €as (wo)ll§, ps

* *
(I v woll3, p + Il divwoll3, p < 4llv(wo)l3, p + Kollwgll3, o,
* *
(5. 29) A Va wgll, o+ Il divwollf, p <

a, 8
4A Zﬁ 1ves(wollI3, b + Kollwilg, p.
a7

dwf 12 |2 o 2 |2
{Zﬁ | gz 15,0 + 22 lwgllg,p} < C(Zﬁ [ €as (wo)ll5,p + 22 [lw§ 5,0
a, «a a, @

owP a M
(5. 30) {Zﬁ 1522118, o + 2 Nwgllf, p + Il div woll§ p}

<C( Zﬂ IYas(wo) I3, p + lwollg, p)-
«,

where

31 K :4 . 2 2 2 — 7112
(5. 31) 0 mén(kl +k3),  lwollo, p Z lws I, b
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Proof Integrating both sides of the first of (5. 18) and using Gauss theorem
and boundary conditions

/ %a (w? %Ig w® —w® div w)y/adz = / (w” %5 w® —w* div w)nads =0
D aD

we infer (5. 28). By similar manner, from the second of (5. 17) and (5. 20) assert
(5. 29).
Next, let consider Sobolev norm. Because the covariant derivative

* owl owl « *
Va U)g = a‘rg + Fﬁa)\ wé‘, 8552 =Va U)g— 1—‘/804)\ U)(/)\
we claim
6“’5 2 x 812 a2
(5. 32) S p 15, 0 <CO I Vawslls, p+ > Ilw§lg, n}s
a, B o, «

To sum-up, (5, 28)(5. 29) and (5. 32) imply (5. 30). The proof is complete. f.

6. Existence of Solution of Variational Problem
In this section we study the variational problem (4. 6) on the manifold &
Find(wg,po) € V(D) x L?*(D), such thatV (v,q) € V(D) x L?(D),

(6 1) GQ(IU(), U) - (p07 div ’U) + bO(P7 wo, Wo, ’U) + (l(P07 ’LUO), ’U)
’ =< G, v>,
(div (powo) — 2H powg +dg, q) =0,
where pg = Ap” and all terms in (6. 1) are defined by (4. 7). Variational problem is

a irregular problem. In order to regularization we introduce an artificial viscosity n
such that

Find(wo, po) € V(D) x L?*(D), such thatV (v,q) € V(D) x L?(D),
ao(wo, v) = (po, divv) + bo(p;wo, wo, v) + (I(po, wo), v)
(6.2)
=< G, v>,
n(V po, V q) + ((div (powo) — 2H pow§ + d§, q) =0,
Our primary objective consist in showing that the bilinear form defined by (4. 7)
is V(D)-elliptic.
Lemma 6. 1 Let there be given a domain D in #2 and an injective mapping

6 e C3( IS;EB) such that the two vectors @, = 9,6 are linearly independent

at all points of D. Let 79 be a dy-measurable subset of v = 9D that satisfies
length 9 > 0. Then bilinear form ag(-, -) in V(D) defined by (4. 7) is symmetric,
continuous and elliptic

(7))  aglw, v) =ag(v, w), V w, ve V(D)
(6. 3) (1) lao(w, v)| < Cllwlly, pllvllo, p, ¥ w, ve V(D);

(791)  ao(w, w) > C0||w|\i p, Yw € V(D).

where V(D) is defined by (5, 27) with the Sobolev norm
lwllf, p =Y (0w}, p + [[w']

(23]

6, o) =wlg, 1 + vl b-

where denote 23 = €.
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Proof Indeed it is enough to prove (iii). Since (3. 32),

a®P 5 (wo)Yas (wo) = 20y (wo)Yas(wo)h + g(le wo)? > 207 (wo)Yap(wo),

it infer
> (2 2 3012 B2 2
ao(wo, wo) > v(2|ly(wo)llo, p + | Vwyllo, p + w5, p)
Taking (5. 32) into account,
owf
ao(wo, wo) = C( Zﬁ 1522118, o + 2 Iwgllf, p) +vIwili, p)
a, «
> C(|w0|i pt2 ||w8‘||87 D)
[e3
Employing Poincare inequality, semi-norm |w|;, p is equivalent to the full norm

|lwll1, p in the V(D) we assert (iii). To sum up, it concludes our proof. f
Lemma 6. 2 Let there be given a domain D in %2 and an injective mapping

6 e C3( 1_); E3) such that the two vectors @, = ﬁaé are linearly independent at

all points of D. Let Yo be a dy-measurable subset of v = JD that satisfies length
v > 0. Then the trilinear form bo(-, -, ) defined by (4. 9) is continuous: there
exists a constant M (©, D) independent of pg, wo

(6. 4) 1bo(po, wo, wo, v)| < Mllwollo, gllpollo, vl]]1, +oo>
' YV wy e LIYD), po € LV(D), ve C>®(D),
2y

where v > 1, ¢= P
Proof From (4. 7) and using Holder inequality it is easy to obtain (6. 4), Proof
is complete. §

Theorem 6. 1 Let there be given a domain D in %2 and an injective mapping
6 e C3( 1_); E3) such that the two vectors @, = ﬁaé are linearly independent at

all points of D. Let 7o be a dy-measurable subset of v = 0D that satisfies length
7o > 0. For given (G, d}) € V*(D) x H~Y(D), there exist the positive numbers
Cy, n satisfying

C C . .
(6.5) Co > ;“GHV*(D) +14+x), n=> §Hd8\|v*(D) +1+x)

for any positive number x and a unique solution (wo, po) : ||woll1, p < X, ||poll1, b <
x of variational problem (6. 2).

Furthermore there exists a sequence (wo(nx), po(nx)) of solution to (6. 2) with
artificial viscosity 7y weakly converging to (wg, po) € (V(D) x Hg(D)) which
satisfy (6. 1).

The proof is omitted.
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