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NUMERICAL SOLUTION OF A NON-SMOOTH VARIATIONAL

PROBLEM ARISING IN STRESS ANALYSIS : THE SCALAR

CASE

ALEXANDRE CABOUSSAT AND ROLAND GLOWINSKI

Abstract. A non-smooth constrained minimization problem arising in the

stress analysis of a plastic body is considered. A numerical method for the

computation of the load capacity ratio is presented to determine if the elastic

body fractures under external traction. In the scalar case, the maximum prin-

ciple allows one to reduce the problem to a convex one under linear constraints.

An augmented Lagrangian method, together with an approximation by finite

elements is advocated for the computation of the load capacity ratio and the

corresponding elastic stress. The generalized eigenvalues and eigenvectors of

the corresponding operator are computed for various two-dimensional bodies

and fractures are discussed.

Key Words. Non-smooth optimization, Stresses analysis, Augmented La-

grangian method, Finite elements approximation, Elasticity theory.

1. Introduction and Motivations

The numerical solution of a non-smooth minimization problem arising in the
stress analysis of a plastic body is investigated. The problem of interest is the com-
putation of the maximal stress of an elastic three-dimensional body under external
forces [3, 18]. The computation of that threshold allows one to determine if the
material can support the forces applied to it or if the traction on the material or
its boundary is too large.

Consider a homogeneous isotropic elastic body Λ ⊂ R
3. The load capacity ratio,

as defined in [16], is the maximal positive number C such that the body will not
collapse under any external traction field bounded by CY0, where Y0 is the elastic
limit. It is independent of the distribution of external loading. If we neglect the
body forces and consider only forces on the boundary, it implies that no collapse
will occur for any field g on ∂Λ as long as ess supy∈∂Λ |g(y)| < CY0. The load
capacity ratio is a quantity that depends on the geometry of the domain Λ.

The load capacity ratio is a quantity that also appears in the limit analysis prob-
lem in Temam (1985) [18], and which represents, from the mechanical standpoint,
a criterion to determine if the material can support the imposition of both body
and surface external forces.

Load capacity ratio and stress concentration factors are used by engineers to
compare the maximal stress for a given body with the stress computed analytically
for simplified geometries [13, 15]. Such problems also lead to the computation of
optimal stresses as in [17, 18].
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In this paper, we consider the situation without body forces (see [14, 18] for a
theoretical investigation of the addition of body forces). Let us assume that the
boundary of Λ is sufficiently smooth and can be decomposed into γ0 ∪γ1 ∪γ2, such
that γi ∩ γj = ∅, i, j = 0, 1, 2, i 6= j. An external surface traction acts on the
boundary γ1, while the body is fixed on the boundary γ0.

When the domain Λ is an infinite cylinder oriented along one direction of space
and the external surface traction is oriented along that direction, the limit analysis
problem can be written as a scalar problem. The numerical approximation of the
scalar case is considered here, namely to compute the load capacity ratio when
considering a surface traction field oriented along the invariant direction of Λ. Fol-
lowing [1, 2], a numerical method for the approximation of the inverse δ := C−1 of
the load capacity ratio is proposed.

Let Ω be the two-dimensional domain obtained by cutting Λ perpendicularly to
its invariance direction, and Γi = γi∩Ω̄, i = 0, 1, 2. Our aim is therefore to compute
the quantity

δ = inf
v∈Σ

∫

Ω

|∇v| dx,

where Σ =

{

v ∈ V0,

∫

Γ1

|v| dS = 1

}

and V0 =
{

v ∈ H1(Ω), v = 0, on Γ0

}

.

Such non-smooth optimization problems require appropriate solution methods
[1, 4, 9, 10]; they are related to the numerical approximation of the degenerated
eigenvalues of non-smooth operators [2, 12]. In this article, an augmented La-
grangian method is advocated and applied to two-dimensional domains, without
introducing any regularization or convexification parameters [8, 11, 12] (other than
the regularization coming from the space approximation).

In Section 2, the model problem is derived and the scalar problem is justified; the
maximum principle is used to transform the problem into a convex optimization
problem under linear constraints. Section 3 presents an augmented Lagrangian
algorithm for the solution of such non-smooth optimization problems that takes
advantage of linearity properties. The finite element discretization is detailed in
Section 4. Numerical results in various settings are finally given in Section 5, to-
gether with the numerical investigation of fractures when modifying the boundaries
under traction and the fixed boundaries.

2. Modeling of Elastic Bodies and the Limit Analysis Problem

Let us consider a elastic material body that occupies a domain Λ ⊂ R
3. The

smooth boundary of the domain Λ is partitioned into ∂Λ = γ0 ∪ γ1 ∪ γ2 such that
γi ∩ γj = ∅, i 6= j. The elastic material is under body forces f ∈ L2(Λ)3 and
boundary forces g ∈ L2(γ1)

3. The variational problem for the computation of the
elastic displacement of the body reads as follows

(1) inf
v∈V0

[
∫

Λ

ψ(D(v))dV − L(v)

]

,

where D(v) =
1

2

(

∇v + ∇vT
)

is the deformation tensor, ψ(·) is a proper, lower

semi-continuous convex function that characterizes the material properties,

L(v) =

∫

Λ

f · vdV +

∫

γ1

g · vdS,
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and V0 =
{

v ∈ H1(Ω)3, v|γ0
= 0

}

. The function ψ(·) can be expressed, for in-

stance, in terms of the Lamé coefficients in linear elasticity models.
Problem (1) has a finite objective value when the elastic body can resist external

forces. Following [18], let us introduce an equivalent formulation for (1) to give a
criterion for such a situation to happen. The equivalent problem reads as follows:

(2) inf
v∈W0

∫

Λ

|D(v)| dV − L(v),

where W0 =
{

v ∈ H1(Ω)3, v|γ0
= 0 , ∇ · v = 0

}

, when homogeneous Dirichlet

boundary conditions are considered, and by noticing that the infimum is realized
on the set of divergence free functions.

The following problem is closely related to (2) and allows one to give a criterion
on the finite value of the solution to (1). It can be derived as

(3) inf
v∈W̃0

∫

Λ |D(v)| dV

L(v)
,

where W̃0 = {v ∈ W0 : L(v) > 0}. This particular optimization problem is not
convex, but because of the homogeneity of the L1-norm, it is equivalent to the
so-called limit analysis problem:

(4) δ := inf
v∈Ŵ0

∫

Λ

|D(v)| dV,

where Ŵ0 =
{

v ∈ H1(Ω)3, v|γ0
= 0 , ∇ · v = 0, L(v) = 1

}

. Problem (4) is a non-

smooth convex optimization problem.
One can show (see e.g. [18]) that the infimum of (1) is finite if and only if δ ≥ 1

in (4). This result is a strong incentive to be able to compute δ for a given three-
dimensional domain Λ, and to determine a priori if the elastic body sustains the
external forces or if the elastic body fractures (i.e. if the displacement v becomes
discontinuous).

In the sequel, let us consider the case without body forces f = 0. By taking the
supremum over all possible traction fields g ∈ L2(γ1)

3 such that |g| ≤ 1, one has
g · v = |v| and (4) reads:

(5) inf
v∈W

∫

Λ

|D(v)| dV,

where W =

{

v ∈ H1(Ω)3, v|γ0
= 0 , ∇ · v = 0,

∫

γ1

|v| dS = 1

}

.

Let us consider Λ ⊂ R
3 an infinite cylinder, oriented for instance along the Ox3

axis. Let us consider traction fields g ∈ L2(γ1), |g| ≤ 1 on the boundary γ1 that
are aligned with the Ox3 axis, as illustrated in Figure 1.

The elastic stress field v ∈ H1(Λ)3 can therefore be written as v(x1, x2, x3) =
(0 , 0 , v(x1, x2, x3))

T . In that case, |D(v)| = |∇v| and ∇ · v = ∂v
∂x3

= 0 implies

v(x1, x2, x3) = v(x1, x2). Problem (5) becomes a scalar problem that we detail
as follows: let Ω ⊂ R

2 be a bounded domain (in the Ox1x2-plane) obtained by
cutting Λ perpendicularly to Ox3, with a smooth boundary ∂Ω = Γ0 ∪ Γ1 ∪ Γ2,
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Figure 1. Infinite three-dimensional cylinder Λ with cross-section
Ω: sketch and notations.

Γi = γi ∩ Ω. Within this framework the solution of (5) corresponds to solving the
following non-smooth problem (with dx = dx1dx2):

(6) δ := inf
v∈Σ

∫

Ω

|∇v| dx,

where

Σ =

{

v ∈ V0,

∫

Γ1

|v| ds = 1

}

,

V0 =
{

v ∈ H1(Ω), v = 0, on Γ0

}

.

Note that δ defined by (6) is the inverse of the load capacity ratio defined as
in [16] (δ = 1/C). If δ ≥ 1, the infinite cylinder of cross-section Ω sustain all
(normalized) surface traction g. Otherwise, the material presents a fracture. This
statement will be confirmed by numerical experiments in Section 5. The objective
function and equality constraint in (6) are both non-smooth. However, the infimum
has the following property:

Lemma 1. If v ∈ Σ satisfies the infimum in (6), then |v| also satisfies the same
infimum.

Proof. Clearly, if v ∈ Σ, then |v| also belongs to Σ. Moreover

∫

Ω

|∇ |v||dx =

∫

Ω

|∇v| dx,

implying that if the infimum is realized for v, it is also realized for |v|, and conclusion
follows. �

The corollary of this result is that one can actually look for

v ∈ Σ⋆ =

{

v ∈ V0,

∫

Γ1

vds = 1 , v ≥ 0

}

and the equality constraint in Σ⋆ becomes a linear equality constraint, that can be
handled with a Lagrange multiplier.

Remark 1. This transformation is not valid for the vectorial case, when v ∈

H1(Ω)d, d = 2, 3 and

∫

Γ1

|v| ds = 1, and the situation is not invariant along Ox3.
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In the following sections, we present a numerical method based on an augmented
Lagrangian algorithm to compute finite element approximations of δ and corre-
sponding functions v satisfying the infimum (6). The computation of these numer-
ical approximations allows one to determine if the elastic stress of an elastic body
with cross-section Ω presents a discontinuity under a surface traction.

3. Numerical Algorithm : An Augmented Lagrangian Approach

In the sequel, we address the solution of (6) via an augmented Lagrangian method
(keeping in mind the equivalence with alternating direction iteration methods).
Let us define q = ∇v ∈ L2(Ω)2, y = v ∈ L2

+(Ω) =
{

ϕ ∈ L2(Ω) : ϕ ≥ 0
}

, and

Σ+ =
{

v ∈ V0,
∫

Γ1
vds = 1

}

. Problem (6) is equivalent to

(7) δ = inf
(v,q,y)∈K

∫

Ω

|q| dx,

where

K =
{

(v,q, y) ∈ Σ+ × L2(Ω)2 × L2
+(Ω) : ∇v − q = 0, v − y = 0

}

.

Let r1, r2 be two positive parameters and r = {r1, r2}. Let us define the following
scalar products

(8)

(p,q) :=

∫

Ω

p · qdx ∀p,q ∈ L2(Ω)2

< ϕ,ψ > :=

∫

Ω

ϕψdx ∀ϕ, ψ ∈ L2(Ω)

The augmented Lagrangian method discussed here [9, 10] consists of searching
for a saddle point of the following augmented Lagrangian functional:

Lr(v,q, y; µ1, µ2) =

∫

Ω

|q| dx+
r1
2

∫

Ω

|∇v − q|2 dx + (µ1,∇v − q)

+
r2
2

∫

Ω

|v − y|2 dx+ < µ2, v − y > .(9)

Namely, we are looking for {u,p, z,λ1, λ2} ∈ Σ+×L2(Ω)2×L2
+(Ω)×L2(Ω)2×L2(Ω)

such that

(10) Lr(u,p, z; µ1, µ2) ≤ Lr(u,p, z; λ1, λ2) ≤ Lr(v,q, y; λ1, λ2),

for all {v,q, y,µ1, µ2} ∈ Σ × L2(Ω)2 × L2
+(Ω) × L2(Ω)2 × L2(Ω). Note that the

introduction of the auxiliary variables p ∈ L2(Ω)2 and z ∈ L2
+(Ω) allows one to

decouple the constraint on the positiveness of the variable u, the non-smooth term
|∇v|, and the constraint on the boundary Γ1.

An Uzawa-Douglas-Rachford type algorithm reads as follows:
let u−1 ∈ V0, λ0

1 ∈ L2(Ω)2 and λ0
2 ∈ L2(Ω) be arbitrary given functions. Then, for

n = 0, 1, 2, . . .

(a) Solve

(11) pn = arg min
q∈L2(Ω)2

[
∫

Ω

|q| dx+
r1
2

∫

Ω

|q|2 dx− (r1∇u
n−1 + λn

1 ,q)

]

.
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Problem (11) does not involve any derivatives and can be solved pointwise a.e.
in Ω. It leads to the following closed form solution for pn [2, 5, 7]:

pn(x) =







1

r1

(

1 −
1

|Xn(x)|

)

Xn(x), if |Xn(x)| > 1,

0, if |Xn(x)| ≤ 1,
, a.e. x ∈ Ω,

where Xn = r1∇un−1 + λn
1 ∈ L2(Ω)2.

(b) Solve

(12) zn = arg min
z∈L2

+
(Ω)

[

r2
2

∫

Ω

|z|2 dx− < r2u
n−1 + λn

2 , z >

]

.

The first order conditions relative to (12) read: find zn ∈ L2
+(Ω) such that, for

all w ∈ L2(Ω),

(13) r2 < zn, w >=< r2u
n−1 + λn

2 , w > .

This equation consists of an L2-projection on the set of positive functions in
L2(Ω) and can also be solved pointwise. The positiveness is ensured pointwise
by truncation, so that z ∈ L2

+(Ω). Therefore:

(14) zn(x) =
1

r2

(

r2u
n−1(x) + λn

2 (x)
)

+
, a.e. x ∈ Ω.

(c) Solve

un = arg min
v∈Σ+

[

r1
2

∫

Ω

|∇v|2 dx+
r2
2

∫

Ω

|v|2 dx

− < r2z
n − λn

2 , v > −(r1p
n − λn

1 ,∇v)] .(15)

The constraint v ∈ Σ+ implies that the solution must satisfy

∫

Γ1

vds = 1. A

Lagrange multiplier χ ∈ R is introduced to handle the above scalar equality
constraint. The corresponding Lagrangian reads:

L(v, χ) =
r1
2

∫

Ω

|∇v|2 dx+
r2
2

∫

Ω

|v|2 dx

− < r2z
n − λn

2 , v > −(r1p
n − λn

1 ,∇v) + χ

(
∫

Γ1

vds− 1

)

.(16)

The first order optimality conditions corresponding to (15) (16) read as follows:
find un ∈ Σ+ and χn ∈ R such that, for all w ∈ V0:

r1(∇u
n,∇w) + r2 < un, w >=

< r2z
n − λn

2 , w > +(r1p
n − λn

1 ,∇w) + χn

∫

Γ1

wds.(17)

∫

Γ1

unds = 1.(18)
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Equation (17) is linear with respect to the multiplier χn. It suffices therefore
to solve (17) for two values of χn, e.g. χn = 0 and χn = 1, with correspond-
ing solutions being un

0 and un
1 , and then consider the linear combination that

satisfies (18), namely:

un = (1 − fn)un
0 + fnun

1 ,

where

fn =

1 −

∫

Γ1

un
0ds

∫

Γ1

un
1ds−

∫

Γ1

un
0ds

∈ R,

so that the linear combination satisfies

∫

Γ1

unds = 1.

(d) Update the multipliers λn
1 ∈ L2(Ω)2 and λn

2 ∈ L2(Ω) as follows:

λn+1
1 = λn

1 + r1(∇u
n − pn),(19)

λn+1
2 = λn

2 + r2(u
n − zn),(20)

until convergence is reached.
The augmented Lagrangian algorithm produces a sequence of iterates {un}n≥0

that eventually converges to the function realizing the infimum of (6).
Let us define BV (Ω) as the space of functions of bounded variation over Ω.

Numerical experiments show that there are situations where the sequence {un}n≥0

converge to a limit belonging to BV (Ω)\H1(Ω). However, the sequence {un}n≥0

may converge to a limit in a functional space consisting of functions smoother than
the generic BV (Ω) ones (as illustrated in the numerical results when the sequence
converge to a limit in V0). The regularity of the limit depends, among other things,
on the boundaries Γ0 and Γ1.

4. Finite Element Approximation

Finite element techniques are used for the numerical implementation of algo-
rithm (11)-(20). Let h > 0 be a discretization step. A family {Ωh}h of polygonal
approximations of the domain Ω is introduced such that limh→0 Ωh = Ω, together
with limh→0 Γ0,h = Γ0, and limh→0 Γ1,h = Γ1. Let us consider a triangulation Th

of the domain Ωh satisfying the usual compatibility conditions between triangles.
Let us denote by Ne the number of elements of Th, Nn the number of vertices of
Th in Ωh\Γ0,h, and Nnt

the total number of vertices of Th in Ωh. Let K denote a
generic element (triangle) of Th.

Let Pk be the space of polynomials of degree k. The finite element spaces are
defined by
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V 1
h =

{

v ∈ C0(Ωh) : v|K ∈ P1, ∀K ∈ Th

}

,

V 0
h =

{

q ∈ L2(Ωh)2 : q|K ∈ P
2
0, ∀K ∈ Th

}

,

V 1
0,h =

{

v ∈ V 1
h : v|Γ0,h

= 0
}

.

V 1
+,h =

{

v ∈ V 1
h : v ≥ 0

}

,

Σ+,h =

{

v ∈ V 1
h : v|Γ0,h

= 0,

∫

Γ1,h

vds = 1

}

.

Let ϕj , j = 1, . . . , Nn and ψi, i = 1, . . . , Ne be the finite element basis functions of
V 1

0,h and V 0
h respectively, based on the triangulation Th. Problem (6) is therefore

approximated by

(21) min
vh∈Σ+,h∩V 1

+,h

∫

Ωh

|∇vh| dx.

Next, we define discrete scalar products. Let Pj be any vertex of Th and Aj be
the area of the polygon which is the union of those triangles of Th which have Pj

as a common vertex. Then:

(22)

(ph,qh)0,h =
∑

K∈Th

|K| ph|K · qh|K , ∀ph,qh ∈ L2(Ω)2

< ϕh, ψh >0,h =
1

3

Nn
∑

j=1

Ajϕ(Pj)ψ(Pj), ∀ϕh, ψh ∈ L2(Ω).

The discrete version of algorithm (11)-(20) consists in looking for approximations
uh ∈ Σ+,h, ph ∈ V 0

h , zh ∈ V 1
+,h, λ1,h ∈ V 0

h and λ2,h ∈ V 1
h of u,p, z,λ1 and λ2,

respectively, that are computed according to the following discretized algorithm.
Some subscripts h are omitted in the sequel.

Let u−1 ∈ Σ+,h (or V 1
0,h), λ0

1 ∈ V 0
h and λ0

2 ∈ V 1
h be arbitrary given functions.

Then, for n = 0, 1, 2, . . .

(a) Solve

pn = arg min
q∈(V 0

h
)2

∫

Ωh

|q| dx+
r1
2

∫

Ωh

|q|2 dx− (Xn,q)0,h,

where Xn := r1∇un−1 + λn
1 . Locally on each element K, this corresponds to

solving

(23) min
qi∈R2

[

|qi| +
r1
2
|qi|

2 − Xn
i · qi

]

, i = 1, . . . , Ne.

The minimum occurs when qi = αiX
n
i , αi ∈ R, αi ≥ 0; solving the first order

optimality conditions leads to αi =
1

r1

(

1 −
1

|Xn
i |

)+

[6], where

(

1 −
1

|Xn
i |

)+

=







(

1 −
1

|Xn
i |

)

, when

(

1 −
1

|Xn
i |

)

≥ 0,

0, otherwise.

Therefore:
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pn
i = αiX

n
i =







1

r1

(

1 −
1

|Xn
i |

)

Xn
i , if |Xn

i | > 1,

0, if |Xn
i | ≤ 1.

(b) Solve

(24) zn = arg min
z∈V 1

+,h

[

r2
2

∫

Ω

|z|2 dx− < r2u
n−1 + λn

2 , z >0,h

]

.

The first order conditions can be written as: find zn ∈ V 1
+,h such that

r1 < zn, w >0,h=< r2u
n−1 + λn

2 , w >0,h, ∀w ∈ V 1
0,h.

In order to take into account the positiveness constraint, the solution is trun-
cated pointwise in order to give:

(25) zn(Pi) =
1

r1

(

r2u
n−1(Pi) + λn

2 (Pi)
)

+
, i = 1, . . . , Nnt

.

(c) Compute un ∈ Σ+,h, χn ∈ R, satisfying, for all w ∈ V 1
0h:

r1(∇u
n,∇w)0,h + r2 < un, w >0,h=

< r2z
n − λn

2 , w >0,h +(r1p
n − λn

1 ,∇w)0,h + χn

∫

Γ1,h

wds,(26)

together with

∫

Γ1,h

unds = 1. By linearity, (26) is solved for χn = 0 and χn = 1

to obtain the respective solutions un
0 and un

1 . Then we set, for i = 1, . . . , Nn:

un(Pi) = (1 − fn
h )un

0 (Pi) + fn
h u

n
1 (Pi), where

fn
h =

1−

∫

Γ1,h

un
0ds

∫

Γ1,h

un
1ds−

∫

Γ1,h

un
0ds

.

The boundary integrals on Γ1 are approximated by numerical quadrature (trape-

zoidal formula). By setting un =
∑Nn

j=1 ujϕj , (26) reads, for χn given,

Nn
∑

j=1

uj (r1(∇ϕj ,∇ϕi)0,h + r2 < ϕj , ϕi >0,h) =

< r2z
n − λn

2 , ϕi >0,h +(r1p
n − λ

n
1 ,∇ϕi)0,h + χn

∫

Γ1,h

ϕids, i = 1, . . . , Nn.

This corresponds to the solution of a linear system A~u = ~b, with ~u = (ui)
Nn

i=1,
~b = (bi)

Nn

i=1 and A = (Aij)
Nn

i,j=1 defined by

Aij = r1(∇ϕj ,∇ϕi)0,h + r2 < ϕj , ϕi >0,h,

bi = < r2z
n − λn

2 , ϕi >0,h +(r1p
n − λn

1 ,∇ϕi)0,h + χn

∫

Γ1,h

ϕids.
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(d) Update the multipliers λn
1 ∈ (V 0

h )2 and λn
2 ∈ (V 1

h ):

λn+1
1

∣

∣

K
= λn

1 |K + r1(∇u
n|K − pn|K), ∀K ∈ Th,(27)

λn+1
2 (Pj) = λn

2 (Pj) + r2(u
n(Pj) − zn(Pj)), ∀j = 1, . . .Nnt

,(28)

until convergence is reached.

5. Numerical Results

Numerical results are presented for various geometries, first to validate the pro-
posed approach and then to discuss the regularity of the solution for large traction.
The position of the boundaries Γ0 and Γ1 is discussed. Convergence of the finite
element approximation when the space parameter h tends to zero is investigated.

5.1. A Linear Problem. A model problem is considered first to validate the
proposed algorithm. Consider Ω = (0, 1) × (0, 1), Γ0 = {(0, x2) : x2 ∈ (0, 1)},
and Γ1 = {(1, x2) : x2 ∈ (0, 1)}. The problem has linear characteristics since
no transverse gradients is created in the Ox2 direction, and one can show that
the minimizer of (6) is given by v(x1, x2) = x1, with corresponding value δ =
1. Figure 2 illustrates the eigenfunction u solution of (6). The corresponding
eigenvalue δh corresponds to the maximal load and is given by δh = 1, which
implies that the elastic body resists external surface forces. One can verify that
no transverse gradient are created by the numerical approximation, and that the
solution is therefore invariant along Ox2. Finer meshes also give the exact value
δh = δ = 1.
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Figure 2. Computation of load in a square domain Ω = (0, 1) ×
(0, 1). Linear case when Γ0 = {(0, y) : y ∈ (0, 1)}, and Γ1 =
{(1, y) : y ∈ (0, 1)}.

5.2. Load Capacity in Bars. Let us consider the domain consisting of the hor-
izontal bar Ω = (0, 5) × (0, 1). Let a ∈ (0, 5) be a variable parameter. Two cases
are considered for the boundary conditions:

(a) The traction is forced at the extreme right part of the bar. The boundary
where the body is supported is not the complement of the boundary where
the traction is imposed, and there exists Γ2 ⊂ ∂Ω without load, or essential
boundary conditions:
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Γ0 = {(0, x2) : x2 ∈ (0, 1)} ∪ {(x1, 0) : x1 ∈ (0, a)} ∪ {(x1, 1) : x1 ∈ (0, a)},

Γ1 = {(5, x2) : x2 ∈ (0, 1)},

Γ2 = ∂Ω\(Γ0 ∪ Γ1).

(b) The traction is also forced at the extreme right part of the bar. The boundary
where the body is supported is the complement of the boundary where the
traction is imposed:

Γ0 = {(0, x2) : x2 ∈ (0, 1)} ∪ {(x1, 0) : x1 ∈ (0, a)} ∪ {(x1, 1) : x1 ∈ (0, a)},

Γ1 = ∂Ω\Γ0,

Γ2 = ∅.

In both cases, the symmetry of the boundary conditions is respected and the
solution is symmetric with respect to the axis x2 = 0.5.

Let us consider the case (a) first and vary the parameter a from 0 to 5. As a
increases, a constant traction is conserved on the extreme right end of the domain
Γ1. The boundary Γ1 remains identical, but Dirichlet conditions are imposed on a
larger part of the boundary. The case (a) is illustrated in Figure 3, for various values
of the parameter a. As in Figure 2, the solution does not contain any transverse
gradients in the Ox2 direction. The solution u satisfying the minimum in (21) is
equal to zero in the subdomain (0, a) × (0, 1) and is linear between x1 = a and
x1 = 5.

The case (b) is illustrated in Figure 4. As a increases, the size of the boundary Γ1

decreases and the corresponding traction is concentrated onto a smaller portion of
the boundary. The symmetry is preserved. The solution u satisfying the minimum
(21) is therefore equal to zero in the subdomain (0, a) × (0, 1), is constant in the
subdomain (a, 5)× (0, 1), and jumps on a vertical interface. The material fractures
for each value of the parameter a.

Comparing Figures 3 and 4 leads to the following conclusions: when Γ0 ∪ Γ1 6=
∂Ω, the solution u belongs to H1(Ω), due to the part of the boundary Γ2 that
does not contain any constraint. The eigenfunction solution of (6) relative to the
minimal eigenvalue therefore belongs to H1(Ω). When there is no such boundary
Γ2 to allow the ”evacuation” of the load, the minimizing sequence produced by the
augmented Lagrangian algorithm converges to a limit that is in BV (Ω)\H1(Ω), the
space of functions with bounded total variation on Ω, and the total stress presents
a jump along the vertical line. The eigenfunction solution of (6) relative to the
minimal eigenvalue therefore belongs only to BV (Ω)\H1(Ω).

The numerical approximation of the load capacity ratio (or more precisely its
inverse) for various values of the parameter a is illustrated in Table 1. The load
capacity ratio corresponds to the infimum of the objective function appearing in
the limit analysis problem in [18].

Table 1. Value of the objective function δh vs. Γ0. First row: case
(a) with free boundary Γ2; Second row: case (b) with Γ0 ∪ Γ1 =
∂Ω.

a 0 1 2 3 4 5
δh (a) 1 1 1 1 1 1
δh (b) 0.09259 0.11111 0.14286 0.20000 0.33333 1.0000
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Figure 3. Elastic stress for various definitions of the boundary
Γ0. The case when Γ0 ∪Γ1 6= ∂Ω: Γ1 = {(5, x2) : x2 ∈ (0, 1)} and
Γ0 = {(0, x2) : x2 ∈ (0, 1)} ∪ {(x1, 0) : x1 ∈ (0, a)} ∪ {(x1, 1) :
x1 ∈ (0, a)}, for a = 0, 1, 2, 3, 4, 5 (left to right, top to bottom).
The solution is continuous, piecewise linear, and belongs to H1(Ω).

Table 1 allows one to conclude that, when a part of the boundary Γ2 is let to be
free and Γ1 is constant, the load capacity ratio is invariant with the choice of the
fixed Dirichlet boundary, and depends only on the part of the boundary Γ1 where
the traction is enforced. Moreover, since δh = 1, the elastic body material resists the
external surface traction and there is no discontinuity of the elastic displacement.
On the other hand, when Γ0 ∪ Γ1 = ∂Ω, increasing Γ0 (which corresponds to
concentrating the same traction on a smaller part of the boundary Γ1), leads to a
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Figure 4. Elastic stress for various definitions of the boundary
Γ0. The case when Γ0 ∪ Γ1 = ∂Ω: Γ0 = {(0, x2) : x2 ∈ (0, 1)} ∪
{(x1, 0) : x1 ∈ (0, a)}∪{(x1, 1) : x1 ∈ (0, a)}, for a = 0, 1, 2, 3, 4, 5
(left to right, top to bottom) and Γ1 = ∂Ω\Γ0. The solution is
piecewise constant, and belongs to BV (Ω)\H1(Ω).

decrease of the load capacity ratio δh. The value of the eigenvalue δh is 1 when Γ1

is minimal, and the material resists the traction; then δh < 1 and a fracture occurs
in the elastic body. In the sequel, we concentrate on the case Γ2 = ∅, since it results
in the convergence of the minimizing sequence to a solution in BV (Ω)\H1(Ω) with
less regularity.
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5.3. Symmetry Breaking and Fractures. Results exhibited in the previous
section have shown that imposing Γ0 ∪ Γ1 = ∂Ω leads to a solution u in BV (Ω).
The case considered here is the unit disk of radius one centered at the origin.

Figure 5 shows the limit solution u for various choices of boundary conditions.
Typically Γ0 is chosen to be a set of segments or points on the boundary. Results
show that the solution of (6) is still a function in BV (Ω)\H1(Ω) that presents line
and/or point discontinuities induced by the Dirichlet boundary conditions. The line
discontinuities are approximated by piecewise linear functions due to the finite ele-
ment approximation. The point discontinuities are approximated by discrete Dirac
measures. Note that, if Γ0 consists only of a finite set of points, the eigenfunction
(i.e. the limit of the minimizing sequence) is in H1(Ω) and is still regular (imposing
pointwise Dirichlet boundary conditions does not create line discontinuities). In all
cases δ < 1, which confirms the fracture of the elastic body.

Figure 5. Approximation of the elastic stress u ∈
BV (Ω)\H1(Ω) for various sets of boundary conditions
on Ω the unit disc satisfying Γ0 ∪ Γ1 = ∂Ω: Γ0 =
{

(x1, x2) : x2
1 + x2

2 = 1, x1 ≥ 0, x2 ≥ 0
}

δh = 0.920075968

(top left); Γ0 =
{

(x1, x2) : x2
1 + x2

2 = 1, x1 ≤ 0, x2 ≥ 0
}

δh = 0.295571999 (top right); Γ0 =
{

(x1, x2) : x2
1 + x2

2 = 1, x1 ≥ 0, x2 ≤ 0
}

∪ {(0, 1)} ∪ {(−1, 0)}
δh = 0.354174083 (bottom left); Triangulation Th (bottom right).
The boundary conditions create point and line discontinuities.

5.4. Convergence Analysis. Let us consider the case of the horizontal bar Ω =
(0, 5) × (0, 1). In order to avoid any mesh effects, let us consider the case Γ0 =
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{(0, x2) : x2 ∈ (0, 1)} ∪ {(x1, 0) : x1 ∈ (0, a)} ∪ {(x1, 1) : x1 ∈ (0, b)}, with
a = 2 and b = 3, and Γ1 = ∂Ω\Γ0 (i.e. diagonal cut of the bar), as illustrated
in Figure 6 (top line). In that case, the discontinuity line is not aligned with
the mesh and mesh effects are avoided. The solution minimizer of (6) belongs to
BV (Ω)\H1(Ω).

Figure 6 illustrates the level lines of the approximated eigenfunction that min-
imizes (6) when the mesh size decreases. As expected, the limit does belong to
BV (Ω)\H1(Ω) and a discontinuity occurs along a line, creating a line discontinu-
ity. However, the fracture does not occur along the separation line between Γ0 and
Γ1, but along a line with a smaller angle: when applying such boundary conditions,
the traction imposed by the boundary conditions cannot be sustained and the frac-
ture occurs with a smaller angle. Table 2 shows the values of the approximation δh
of the eigenvalue δ. As expected, the sequence is decreasing as h decreases.

Since the values in Table 2 are aligned, a least squares method is used to ex-
trapolate a theoretical value of δ ≃ 0.19637413 for the limit value h = 0. This
extrapolated value is used to obtain convergence orders. Figure 7 shows the error
plot on a log-log scale of the error |δh − δ|. One can observe a convergence of order
one for the finite element approximation of the load capacity ratio.

Table 2. Convergence analysis of the approximation of the load
capacity ratio for the case of an horizontal bar with diagonal frac-
ture.

h 0.10 0.05 0.025 0.0166
δh 0.210653697 0.203507772 0.199944976 0.198746035

Remark 2. When the discontinuity occurs along a vertical interface as in Figure 4,
the approximation of the eigenpairs is much more accurate, since the discontinuity
occurs along the mesh direction, and convergence orders are not meaningful.

6. Conclusions

A non-smooth optimization problem arising in stress analysis and modeling of
elastic materials has been investigated. The first generalized eigenvalue of the oper-
ator corresponds to the load capacity ratio. The value of that eigenvalue determines
if an elastic body with a given geometry resists external surface traction.

The non-smooth problem has been written as a convex problem under linear
constraint by using the maximum principle. An augmented Lagrangian method,
together with piecewise linear finite elements, has been presented. The influence of
boundary conditions on the regularity of the elastic displacement has been investi-
gated, and the formation of fractures has been exhibited. Convergence orders have
been obtained for the approximation of the first generalized eigenvalue.

Future work will include the design of numerical methods for the investigation
of vectorial problems arising when the traction is perpendicular to the invariance
direction of the infinite cylinder.
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Γ0 Γ1

Figure 6. Computation of the elastic stress in an horizontal bar
with diagonal fracture and convergence of the approximation of
the load capacity ratio. Definition of boundary conditions (top
picture) Representation of the level lines of the eigenfunction for
h = 0.10, h = 0.05, h = 0.025, and h = 0.0166 (second to bottom
pictures).
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