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Abstract. This paper concerns with the finite element approximation of a

nonlinear second order parabolic system which describes the L2-gradient flow

for a class of linear growth energy functionals. Besides their appeals in differen-

tial geometry and calculus of variations, linear growth energy functionals and

their gradient flows also arise naturally from emerging applications of image

processing such as color image denoising. In this paper, we introduce a family

of variational models for color image denoising which minimize linear growth

energy functionals of maps into the unit sphere in R3. These models gener-

alize the popular 1-harmonic map model which has been studied intensively

in recent years. To compute the solutions of the variational models, we first

derive their L2-gradient flow equations and then introduce some fully discrete

implicit finite element method for the gradient flow equations. It is proved

that the proposed finite element method is uniquely solvable and absolutely

stable, and the finite element solution converges to the PDE solution as the

mesh sizes tend to zero. Numerical experiments are presented to demonstrate

the effectiveness of the proposed variational models for color image denoising

and to show the efficiency of the proposed finite element method. A numerical

comparison of the proposed models with the channel-by-channel model is also

presented.

Key Words. Linear growth energy functionals, gradient flow, p-harmonic

maps, BV functions, color image denoising, finite element methods

1. Introduction

Image denoising and restoration are two most basic tasks in low level image
processing. Tremendous progresses have been made in this area, particularly for
gray images, in the past two decades. In addition to the further development in
the traditional methods, techniques and algorithms, there has been an explosive
development and growth of image processors based on partial differential equations
(PDEs) and variational approach (cf. [4, 23, 6, 21] and the references therein).
Compared with the traditional approaches, PDE and variational methods have
remarkable advantages in both theory and computation. It allows to directly han-
dle and process visually important geometric features such as gradients, tangents
and curvatures, and to model visually meaningful dynamic process such as linear
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and nonlinear diffusion. Computationally, it can greatly benefit from the existing
wealthy amount numerical methods for PDEs (cf. [4, 20, 19, 21]).

A color image is often represented by a vector-valued image function I(x) =
(r(x), g(x), b(x)), where r(x), g(x), and b(x) denote the intensity values of three
primary colors (Red, Green, Blue (RGB)) at an image pixel x. Suppose that I(x)
describes a given scene which contains some random noise, the goal of color image
denoising is to remove the noise such that the recovered image is as close as possible
to the true image. One of the classical approaches for color image denoising is the
median filter which works especially well for enhancing edges [18]. Recently, the
median filter has been generalized to denoising chromaticity features on the unit
sphere [28, 29]. Another approach is to treat the RGB color system directly as a
vector space and to denoise it channel-by-channel [22, 8]. Most recent studies have
proposed the use of the chromaticity and brightness decomposition (CBD). Indeed,
the CBD approach has received a lot attention lately since it is well suited for
denoising, edge detection, and segmentation, see [11, 27, 26, 28] and the references
therein.

Mathematically, the CBD is nothing but the polar decomposition of the vector-
valued image function. That is, we write

(1) I(x) = ρ(x)g,

where

(2) ρ(x) := |I(x)| =
√
r(x)2 + g(x)2 + b(x)2, g :=

I(x)
ρ(x)

.

Therefore, ρ(x), called the brightness of the image, is the length of the RGB color
vector, and g, called the chromaticity of the image, denotes the direction of the color
vector which must lie on the unit sphere S2. One advantage of CBD approach is that
it allows one to denoise the chromaticity and the brightness separately by different
methods. For instance, one can use the well-known total variation (TV) model of
Rudin-Osher-Fatemi [20] (also see [15, 16]) to denoise the rightness ρ(x) and use
another method to denoise the chromaticity g. A number of authors have addressed
color image denoising using directional diffusion of Rn vectors [8, 22, 24]. All these
works extended the well established scalar diffusion flows [3, 20] in different forms
for the vector-valued image and do not separate the chromaticity and brightness.
Blomgren and Chan [8] proposed a new definition of the total variation norm for
vector-valued functions which is the extension of the scalar TV norm and applied
this new TV norm to restore color images. Some authors have used p-harmonic
map flows for chromaticity denoising [30, 26, 5]. Most of these works considered the
case 1 < p <∞ [30, 26]. Barrett, Feng and Prohl [5] proved the existence of weak
solutions for the whole spectrum 1 ≤ p < ∞. Feng [14] extended the 1-harmonic
map results of [5] to gradient flows of linear growth functionals. Chan, Kang and
Shen [10] applied the general framework of non-flat TV denoising model [11] to
chromaticity denoising.

The primary goals of this paper are to introduce a family of variational models
for color image denoising and to develop some fully discrete finite element method
for computing solutions of the proposed models. The proposed models use convex
linear growth functionals instead of the p-energy functional (cf. Section 2). We
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recall that there are two constraints for a chromaticity denoising model, that is,∫
Ω

(v − g) dx dy = 0,(3)

1
2

∫
Ω

(v − g)2 dx dy = σ2(4)

where σ > 0 is the error level and usually given. The first constraint corresponds
to the assumption that the noise has zero-mean, and the second constraint uses a
priori information that the standard deviation of the noise η(x, y) := u − g is σ.
In the proposed models, we enforce the fidelity of an image using general Lq-norm
(1 ≤ q <∞) instead of the usual L2-norm.

The remainder of this paper is organized as follows. In Section 2, we introduce a
family of variational models for color image denoising which minimize linear growth
energy functionals of the maps into the unit sphere in R3. These models generalize
the popular 1-harmonic map model which has been studied intensively in recent
years. We then introduce the L2-gradient flow, which is described by a system of
nonlinear parabolic PDEs, for the energy functionals as a way to solve the variation
problem, and present the mathematical framework and setting for the gradient flow.
In Section 3, we propose a fully discrete finite element method for approximating
the gradient flow and carry out its stability and convergence analysis. In Section
4, we present a few numerical experiments to show the good performance of the
proposed models and numerical method. We conclude the paper by a few remarks
in Section 5.

Standard function and space notation will be adopted in this paper, we refer to
[9, 13] for their precise definitions.

2. Gradient flow for linear growth energy functionals with applications
to color image denoising

Let u,v : Ω ⊂ Rm → Sn−1 ⊂ Rn be vector-valued functions, where Ω is a
bounded domain with Lipschitz boundary ∂Ω and Sn−1 denote the unit sphere
in Rn. For image processing applications, m = 2 and n = 3, but the framework
presented here applies to the general case as well. Let g : Ω ⊂ Rm → Sn−1 ⊂ Rn

be a given map satisfying |g| ≤ 1 a.e. in Ω. g denotes a given noisy chromaticity
of some (unknown) color image in applications. Following [5, 26, 30], we introduce
the following variational models with linear growth energy functionals to “denoise”
the given “chromaticity” g: Find u ∈W 1,1

N (Ω, Sn−1) such that

(5) u = argmin
v∈W 1,1

N (Ω,Sn−1)

Jβ,λ(v),

where

Jβ,λ(v) := β Eϕ(v) +
λ

q

∫
Ω

|v − g|q dx for β > 0, λ > 0, 1 ≤ q <∞,

Eϕ(v) :=
∫

Ω

ϕ(|∇v|) dx,

W 1,1
N (Ω, Sn−1) :=

{
v ∈W 1,1(Ω, Sn−1);

∂v(x)
∂n

= 0 for a.e. x ∈ ∂Ω
}
,

λ is a Lagrangian multiplier which is induced by the constraint (4). The energy
density function ϕ : R+ ∪ {0} → R+ := (0,∞) is assumed to be a real-valued,
continuous, nondecreasing, convex, and linear growth function (cf. [14]). The last
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property implies that there exists positive constants ci for i = 1, 2, 3, 4 such that

c1s− c2 ≤ ϕ(s) ≤ c3s+ c4 ∀s ∈ R+ ∪ {0}.

In addition, we assume that there exists c5 > 0 such that

0 ≤ ϕ′(s) ≤ c5 ∀s ∈ R+ ∪ {0}.

The best known example of the density function ϕ is

(6) ϕ(s) = s ∀ s ∈ R+ ∪ {0}.

In this case, the above model reduces to the so-called 1-harmonic map model studied
in [5]. Another example is

(7) ϕ(s) =
√
s2 + 1 ∀ s ∈ R+ ∪ {0},

which is often called the minimal surface energy density.
We remark that the variational models (5) are slightly different from those pro-

posed in [14] where the number q is set to be 2. Besides their appeal in differential
geometry and calculus of variation, the rationale for using linear growth density
function ϕ(s) in (5) is similar to that for the TV model [20], that is, to allow jumps
in image functions and to minimize the diffusion at the place where |∇u| is rela-
tively large. Recall that the set where |∇u| is large contains the edges of the image
which should be kept in the recovered image. We also note that since the exact
Lagrangian multiplier λ is difficult to determine, it is often estimated or chosen a
priori in practice [8, 11, 20].

It can be shown that the Euler-Lagrange equation of (5) is given by (cf. [14] for
the case q = 2)

−β divB + λ|u− g|q−2(u− g) = µβ,λu in Ω,(8)

|u| = 1 in Ω,(9)

Bn = 0 on ∂Ω,(10)

where

B :=
ϕ′(|∇u|)
|∇u|

∇u,

µβ,λ := βϕ′(|∇u|)|∇u|+ λ|u− g|q−2(1− u · g).

The term on the right hand side of (8) is caused by the unit length constraint
|u| = 1 a.e. in Ω.

Let X be a Hilbert space and F be a (nonlinear) functional on X. Assume that
F is differentiable with the Fréchet derivative F ′, the gradient flow of F is defined
as (cf. [2]) seeking u : (0,∞)→ X such that

u′(t) = −F ′(u(t)).

If the above equation is interpreted in the dual space X ′ of X, testing the equation
with u′(t) immediately gives

d

dt
F(u(t)) = −‖u′(t)‖2X′ ≤ 0,

where ‖ · ‖X′ denotes the norm of the dual space X ′. The above equation says
that the “energy” F is decreasing along the flow u(t). Under certain conditions
on F (such as convexity) and on the initial data u(0) = u0, it can be proved that
limt→∞ u(t) converges to a minimizer of the functional F . As a result, the idea of
gradient flow can be used to approximate solutions of variation problems such as
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(5), although the identification of the Fréchet derivatives of the given functionals
could be troublesome.

Nevertheless, it can be shown that (cf. [14] for the case q = 2) the L2-gradient
flow for the energy functional Jβ,λ is given by

ut − β divB + λ|u− g|q−2(u− g) = µβ,λu in ΩT := Ω× (0, T ),(11)

|u| = 1 in ΩT ,(12)

Bn = 0 on ∂ΩT := ∂Ω× (0, T ),(13)

u = u0 in Ω0 = Ω× {t = 0},(14)

where u0 is a given initial map. We remark that from the PDE point of view the
idea of using linear growth density function ϕ(s) in (5) is to minimize the diffusion
produced by the first term in equation (8) and the second order term in equation
(11) around the image edges where |∇u| is relatively large.

By inspecting the PDE system, one easily sees that three nonlinear terms appear
in (11) which are expected to cause difficulties. The first one is the term involving B
due to nonlinearity of ϕ, the second one is the fidelity term due to the nonlinearity
of Lq-norm, the last one is the right-hand side due to the nonconvex constraint
|u| = 1. To handle the degeneracy of the leading term and the fidelity term in
(11), we approximate the energy Eϕ by the regularized energy Eεϕ based on the
approximation

|z| ≈ |z|ε :=
√
z2 + ε2.

To handle the nonconvex constraint |u| = 1, we approximate it by the well known
Ginzburg-Landau penalization [7], that is, instead of applying the exact constraint
|u| = 1, we enforce it approximately by adding a penalization term to the regular-
ized energy Eεϕ. We then introduce the following regularized variation problem as
an approximation to (5)

(15) uε,δ = argmin
v∈W 1,1

N (Ω,Rn)

J ε,δβ,λ(v) for ε, δ > 0,

where

J ε,δβ,λ(v) := βEε,δϕ (v) +
λ

q

∫
Ω

|v − g|qε dx,(16)

Eε,δϕ (v) :=
εα

2

∫
Ω

|∇v|2 dx+
∫

Ω

ϕ(|∇v|ε) dx+
1
β
Lδ(v) (α > 0),(17)

Lδ(v) :=
1
δ

∫
Ω

F (v)dx,(18)

F (v) :=
1
4

(|v|2 − 1)2.(19)

Again, it can be shown that the gradient flow for the regularized energy functional
J ε,δβ,λ is given by (cf. [14] for the case q = 2)

uε,δt − β divBε,δ + λ|uε,δ − g|q−2
ε (uε,δ − g)

+
1
δ

(|uε,δ|2 − 1)uε,δ = 0 in ΩT ,(20)

Bε,δn = 0 on ∂ΩT ,(21)

uε,δ = u0 in Ω0,(22)
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where

Bε,δ :=
ϕ′(|∇uε,δ|ε)
|∇uε,δ|ε

∇uε,δ.

It is easy to see that (20)-(22) is an approximation to the gradient flow (11)-
(14). In [14] the first author of this paper gave a comprehensive analysis for the
above regularized flow in the case q = 2. It was proved that for each fixed pair of
positive numbers (ε, δ) the flow has global weak solutions provided that |u0| ≤ 1
and |g| ≤ 1 a.e. in Ω, and has global classical solutions if the domain and the data
are sufficiently smooth. Moreover, it was shown that (11)-(14) possesses global (in
time) weak solutions in BV (Ω), the space of functions of bounded variations (cf.
[1]), which was done by developing a much involved compactness technique and
passing to the limit in (20)-(22) as ε, δ → 0. It is expected that the techniques and
results of [14] can be easily extended to the case q 6= 2. We leave the verification
to the interested reader. We also note that the regularized flow (20)-(22) plays
an important role not only for establishing existence result for the gradient flow
(11)-(14) but also provide a practical and convenient formulation for computing
the solution of the gradient flow. Indeed, in the next section we shall develop some
fully discrete finite element method for computing the solution of the gradient flow
(11)-(14) via the regularized flow (20)-(22), and shall also present a few numerical
experiment results in §4.

We conclude this section by giving definitions of solutions to problem (20)-(22)
and stating two well-posedness results for the problem without giving proofs. We
refer the reader to [5, 14] for their proofs in some special cases.

Definition 2.1. A map uε,δ : ΩT → Rn is called a global weak solution to (20)-
(22) if

(i) uε,δ ∈ L∞((0, T );H1(Ω,Rn)) ∩H1((0, T );L2(Ω,Rn)),
(ii) |uε,δ| ≤ 1 a.e. in ΩT ,
(iii) uε,δ satisfies (20)-(22) in the distributional sense.

Definition 2.2. A weak solution uε,δ to (20)-(22) is called a strong solution
if uε,δ ∈ L2((0, T ); H2(Ω,Rn)). It is called a regular solution if in addition
uε,δ ∈ H1((0, T ); H1(Ω,Rn)). It is called a classical solution if uε,δ ∈ C2,1(ΩT )
and satisfies (20)-(22) pointwise.

Theorem 2.1. Let Ω ⊂ Rm be a bounded domain with smooth boundary. Suppose
that u0 and g are sufficiently smooth functions (say, u0,g ∈ [C3(Ω)]n) with |u0| ≤ 1
and |g| ≤ 1 in Ω. Then, the regularized flow (20)-(22) has a unique global classical
solution uε,δ for each fixed pair of positive numbers (ε, δ). Moreover, uε,δ satisfies
the following energy law

(23) J ε,δβ,λ(uε,δ(s)) +
∫ s

0

‖uε,δt (t) ‖2L2 dt = J ε,δβ,λ(u0) ∀s ∈ [0, T ].

For less regular datum functions u0 and g, and less regular domain Ω, we have
the following weaker existence result.

Theorem 2.2. Let Ω ⊂ Rm be a bounded Lipschitz domain, suppose that u0 ∈
H1(Ω,Rn), |u0| ≤ 1 and |g| ≤ 1 a.e. in Ω. Then, for each fixed pair of positive
numbers (ε, δ) the regularized flow (20)-(22) has a unique global weak solution uε,δ.
Moreover, uε,δ satisfies the following energy inequality

(24) J ε,δβ,λ(uε,δ(s)) +
∫ s

0

‖uε,δt (t) ‖2L2 dt ≤ J ε,δβ,λ(u0) ∀s ∈ [0, T ].
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3. Finite element approximations

3.1. Formulation of fully discrete finite methods. We assume m = 2 and
n = 3 in this section. Let Th = {K1, . . . ,KM} be a quasi-uniform triangulation of
Ω with mesh size h ∈ (0, 1) and Ω = ∪

K∈Th

K. Let Jτ := {tk}Lk=0 be a quasi-uniform

partition of [0, T ] with mesh size τ := T
L , and

∂tvk :=
vk − vk−1

τ
.

We introduce the finite element space

Vh := {v ∈ C0(Ω,Rn); vh|K ∈ [Pr(K)]n, ∀K ∈ Th},
where Pr(K) denotes the space of polynomials of degree less than or equal to r on
K. We decompose the density function F , which is not convex, into the difference
of two convex functions W+ and W−, that is,

F (v) = W+(v)−W−(v).

One such example is W+ =
|v|4

4
and W− =

|v|2

2
− 1

4
. Clearly, such a decomposition

is not unique.
Our fully discrete finite element discretization for the initial boundary value

problem (20)-(22) is defined as follows: Find ukh ∈ Vh for k = 1, · · · , L such that

(∂tukh,vh) + β(Bkh,∇vh) + λ((ukh − g)|ukh − g|q−2
ε ,vh)

+
1
δ

(W′
+(ukh),vh) =

1
δ

(W′
−(uk−1

h ),vh) ∀vh ∈ Vh,
(25)

where

Bkh =
ϕ′(|∇ukh|ε)
|∇ukh|ε

∇ukh

with some starting value u0
h ∈ Vh. Note that we have omitted the indices ε and δ

on ukh for notation brevity and clearly the above method is implicit in time.

3.2. Stability and convergence analysis. Since at each time step our finite
element method (25) gives a nonlinear equation in ukh, the well-posedness of the
equation is not obvious and has to be addressed first. After that is done, we
need to analyze the proposed finite element method by addressing the stability and
convergence of the method, which we now describe.

First, the well-posedness and the stability of the method is ensured by the fol-
lowing theorem.

Theorem 3.1. For each fixed k ≥ 1, suppose that uk−1
h is known, then there exists

a unique solution ukh to (25). Moreover, {ukh} satisfies the following energy estimate

τ

2

∑̀
k=1

‖ ∂tukh ‖2L2 + J ε,δβ,λ(ukh) ≤ J ε,δβ,λ(u0
h).(26)

Here J ε,δβ,λ is defined by (16).

Proof. For each fixed k ≥ 1, we define the functional

Gk(v) :=
∫

Ω

{ 1
2τ
|v − uk−1

h |2 +
βεα

2
|∇v|2 + βϕ

(
|∇v|ε

)
(27)

+
λ

q
|v − g|qε +

β

δ
W+(v)

}
dx− β

δ

∫
Ω

W ′−(uk−1
h ) · v dx.
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It is easy to check that Gk is a convex, coercive and differentiable functional, then
it has a unique minimizer ukh ∈ Vh

r (cf. [25]). A direct calculation shows that (25)
is exactly the weak form of the Euler-Lagrange equation of Gk(v). Hence, (25) has
a unique solution ukh which is the unique minimizer of Gk(v).

To derive the desired energy inequality, on noting that ukh is the minimizer of
Gk in Vh

r , we have

(28) Gk(ukh) ≤ Gk(uk−1
h ).

The convexity of W− implies that

W ′−(uk−1
h )

(
ukh − uk−1

h

)
≤W−(ukh)−W−(uk−1

h ).

Combining the above inequality with (28) we get
τ

2
‖ ∂tukh ‖2L2 + J ε,δβ,λ(ukh)− J ε,δβ,λ(uk−1

h ) ≤ 0.

The estimate (26) then follows from applying the summation operator
∑`
k=1 (1 ≤

` ≤ L) to the last inequality. The proof is complete. �

Corollary 3.1. The finite element method (25) is stable for any h, τ > 0, hence,
it is absolutely stable.

Next, we analyze the convergence of the method (25). Two approaches are often
used to address the convergence of a numerical method. The first approach is to
derive error estimates for the numerical solution, which then infer not only the
convergence but also rates of convergence. The second approach directly proves
convergence of the numerical solution in some (function) norm. Clearly, an error
estimate is more desirable because it is a stronger result. On the other hand, error
estimates are only possible if the exact (PDE) solution has certain regularity. In
the case when the exact solution has very low regularities, convergence is usually
the best one could hope and ask for.

It was pointed out in Section 2 that the solutions of the limiting problem (11)-
(14) are expected to belong to L2((0, T ); (BV (Ω))d). Recall that spatial gradient
∇v of a BV function v is only a Radon measure (cf. [1]), that means ∇v is
not even an integrable function. Because this very low regularity of solutions to
problem (11)-(14), it is natural for us to adopt the second approach described above
to address the convergence of the method (25). To this end, we define the linear
interpolation in t of the finite element solution {ukh}

Uε,δ,h,τ (·, t) :=
t− tk−1

τ
ukh(·) +

tk − t
τ

uk−1
h (·)(29)

for any t ∈ [tk−1, tk] and 1 ≤ k ≤ L. Clearly, Uε,δ,h,τ is continuous in both x and t.
We now are ready to state our convergence theorem for the finite element method

(25).

Theorem 3.2. Suppose that u0 ∈ H1(Ω,Rn), |u0| = 1 and |g| ≤ 1 a.e. in Ω.
For each pair of positive numbers (ε, δ), let Uε,δ,h,τ be defined by (29). Then, there
exists uε,δ ∈ L∞(ΩT ) such that

(30) lim
h,τ→0

‖Uε,δ,h,τ − uε,δ ‖L`(ΩT ) = 0 ∀` ∈ [1,∞),

provided that
lim
h→0

‖u0
h − u0 ‖H1 = 0.

Moreover, uε,δ solves (20)-(22) in the sense of Definition 2.1.
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Proof. Since the proof is similar to that of Theorem 1.5 of [12], where the con-
vergence of a general Galerkin approximation of the p-harmonic map heat flow for
p ≥ 2 was proved, and to that of Theorem 7.2 of [5], where the convergence of a fully
discrete finite element method for the p-harmonic map heat flow with 1 ≤ p < ∞
was presented, we shall only outline the main idea and key steps of the proof in the
following.

The main idea of the proof is to use the method of compactness. The proof can
be divided into three steps.

Step 1: Energy estimates. The goal of this step is to derive uniform (in h, τ ,
and possibly in ε) energy estimates for the finite element solution {Uε,δ,h,τ} (or
{ukh}). On noting that ∂tukh = Uε,δ,h,τ

t and τ
∑L
k=1 ‖ ∂tukh ‖2L2 = ‖Uε,δ,h,τ

t ‖L2(L2),
the discrete energy estimate (26) then immediately infer the uniform (in h and
τ) boundedness of {Uε,δ,h,τ} in L∞((0, T );H1(Ω,Rn)). We note that this bound
is not uniform in ε. On the ohter hand, uniform in ε estimate can be proved in
L∞((0, T );W 1,1(Ω,Rn)).

Step 2: Extracting convergent subsequence. The uniform energy estimates ob-
tained in Step 1 allow us to extract a convergent subsequence of {Uε,δ,h,τ} which
converges weakly in L`((0, T );H1(Ω)) for 1 < ` < ∞ and strongly in L`(ΩT ) (by
Sobolev embedding) to some function uε,δ ∈ L∞(ΩT ) as h, τ → 0, which shows
(30) holds for the subsequence.

Step 3: Passing to the limit as h, τ → 0. The final step of the proof is to pass
to the limit in the finite element method (25). Clearly, this can be done easily in
the first term on the left-hand side because it is a linear term. Passing to the limit
in all low order nonlinear terms (i.e., the third and fourth term on the left-hand
side and the term on the right-hand side) is not hard either because the strong
convergence of the subsequence in L`-norm for all ` ∈ [1,∞). So the only term
remains is the second term on the left-hand side which has strong nonlinearity. To
pass to the limit in this term, we need to appeal to a compactness result given by
Lemma 13 of [14]. Using this result we can pass to the limit in this nonlinear term
and show that the corresponding subsequence of Bkh converges to Bε,δ weakly in L2.
Consequently, we prove that uε,δ is a weak solution of (20)-(22).

Finally, we note that the uniqueness of uε,δ (cf. Theorem 2.2) ensures that (30)
in fact holds for the whole sequence {Uε,δ,h,τ}. �

Remark 3.1. Several practical choices of u0
h are possible. For instance, both the

H1-projection of u0 and the Clemént finite element interpolation of u0 into Vh
r (cf.

[13]) are qualified candidates for u0
h.

An immediate consequence of Theorem 3.2 and the convergence of uε,δ (see
the discussion in the paragraph before Definition 2.1) is the following convergence
result.

Theorem 3.3. Let Uε,δ,h,τ be defined by (29), assume the assumptions of Theorems
3.2 hold. Then, there exists a subsequence of {Uε,δ,h,τ} (still denote by the same
notation) and a weak solution u of (11)-(14) such that

(31) lim
ε,δ→0,

lim
h,τ→0,

‖u−Uε,δ,h,τ ‖L`(ΩT ) = 0 ∀` ∈ [1,∞).

4. Numerical Experiments

In this section we present some numerical experiment results for the finite element
method proposed in Section 3. These numerical results not only demonstrate the
efficiency of the proposed numerical method but also show the effectiveness of the
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proposed chromaticity denoising models. Since different density function ϕ and
parameter q can be used in (5), here we consider the following four specific models:

• Model 1: ϕ(s) = s and q = 2.
• Model 2: ϕ(s) = s and q = 1.
• Model 3: ϕ(s) = s

3
2 and q = 2.

• Model 4: ϕ(s) =
√
s2 + 1 and q = 1.

Note that Model 1 is the 1-harmonic map model and Model 3 is the 3
2 -harmonic

map model both considered in [5]. It should be noted that although we use CBD
approach, we only consider the chromaticity denoising in our numerical experi-
ments. That is, we assume no noise in the brightness component. As explained
in Section 1, if there is a noise in the brightness component, one can use any gray
image denoising model, such as the Total Variation (TV) model [20], to denoise the
brightness component.

Figure 1 displays the test results of Models 1 and 2 on a knee image. The
left image is a noisy knee image with 20% Gaussian noise in the chromaticity,
the middle image is the denoised image using Model 2 and the right image is the
denoised image using Model 1. The SNR (signal to noise ratio) of the three images
are 7.4499, 16.5151, 6.9723, respectively.

Figure 2 displays the test results of Models 3 and 4 on the knee image. The left
image is a noisy knee image with 20% Gaussian noise in the chromaticity, the middle
image is the denoised image using Model 3 and the right image is the denoised
image using Model 4. The SNR of the three images are 7.4499, 15.8193, 6.9245,
respectively.

Figure 1. Test results of Models 1 and 2 on a knee image

Figure 2. Test results of Models 3 and 4 on a knee image

Figure 3 displays the test result of Models 1 and 2 on a pepper image. The left
image is a noisy pepper image with 20% Gaussian noise in the chromaticity, the
middle image is the denoised image using Model 2 and the right image is the de-
noised image using Model 1. The SNR of the three images are 2.4936, 2.7659, 2.7659,
respectively.
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Figure 3. Test results of Models 1 and 2 on a pepper image

Figure 4 displays the test result of Models 3 and 4 on the pepper image. The left
image is a noisy pepper image with 20% Gaussian noise in the chromaticity, the
middle image is the denoised image using Model 3 and the right image is the de-
noised image using Model 4. The SNR of the three images are 2.4936, 2.7495, 2.7641,
respectively.

Figure 4. Test results of Models 3 and 4 on a pepper image

As a comparison, we also present a simulation result of the channel-by-channel
approach using the TV model to denoise each chromaticity component in Figure
5, where the left image is the same noisy pepper image as above and the right
image is the denoised image. The result clearly shows that the channel-by-channel
approach does a worse job than the brightness and chromaticity decomposition
approach. However, it should be noted that the channel-by-channel approach takes
less computer time to run the test.

Figure 5. Test results of a channel-by-channel model on a pepper image

5. Summary and concluding remarks

In this paper we present a class of variational models with linear growth energy
functionals for color image denoising based on the chromaticity and brightness
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decomposition approach. To compute the solution of the variational models, we
consider the L2-gradient flow of regularized energy functionals and the nonconvex
constraint u = 1, which is hard to handle numerically, is enforced approximately
using the Ginzburg-Landau approximation. The gradient flows are discretized by
a fully discrete implicit finite element method. It is proved that the proposed
finite element method is absolutely stable and enjoys a discrete energy law. Strong
convergence in L`-norm for ` ∈ [1,∞) is established for the numerical solution using
the method of compactness. Numerical experiments are presented to show good
performance of the proposed finite element scheme and the color image denoising
models.

Our numerical experiment results indicate that all variational models of linear
growth functionals are effective for chromaticity denoising (or directional diffusion),
although the minimal surface model is easier to implement and faster to converge
compared to the popular 1-harmonic map model. In particular, all models of this
family do a very good job on preserving image edges. Mathematically, this is ex-
pected since the solutions of these models are only BV functions instead of Sobolev
functions (which is the case for the p-harmonic map model for p > 1) (see [5, 14]).
It is well-known that BV functions allow jumps while Sobolev functions do not. It
would be interesting to investigate that if the results of this paper can be extended
to nonconvex functionals.
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