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NUMERICAL METHODS FOR NON-SMOOTH L1

OPTIMIZATION : APPLICATIONS TO FREE SURFACE FLOWS

AND IMAGE DENOISING

ALEXANDRE CABOUSSAT, ROLAND GLOWINSKI, AND VICTORIA PONS

Abstract. Non-smooth optimization problems based on L1 norms are inves-

tigated for smoothing of signals with noise or functions with sharp gradients.

The use of L1 norms allows to reduce the blurring introduced by methods based

on L2 norms. Numerical methods based on over-relaxation and augmented La-

grangian algorithms are proposed. Applications to free surface flows and image

denoising are presented.
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1. Introduction

The need to smooth a given function is a problem that arises in many fields of
science and engineering. A trade-off between the conservation of the accuracy and
the regularity properties must be obtained. In volume-of-fluid methods pertaining
to computational fluid dynamics, the smoothing of volume fractions of materials is
required when calculating interfacial effects [2, 16]. In image treatment, noise can
be removed by the application of appropriate filters, based on average mean calcu-
lations, low/high-pass filters or PDE-based techniques. Classical smoothing tech-
niques range from kernel-based methods [2], to PDE-based techniques or wavelet-
based methods [9]. However when using classical techniques, based on quadratic
or L2 norms, blurring of the sharp edges is often introduced. Recently, meth-
ods based on L1 distances have received a lot more attention in various settings
[4, 8, 9, 12, 19, 20]. More generally, smoothing is required when a numerical ap-
proximation of the derivatives of a non-smooth function is needed.

In this article, numerical methods for non-smooth optimization problems relying
on L1 norms are presented in order to reduce the blurring due to quadratic terms in
classical methods. The solution methods for the smoothing of a given signal require
advanced techniques since strict convexity and differentiability properties are not
satisfied. Moreover, the uniqueness of the solution is not guaranteed, unless some
regularization terms are introduced [15, 21].

The problems addressed here consist of the minimization of the distance between
a given signal, typically with jumps or noise, and a smooth approximation whose
first derivatives are regular. The L1 distance is considered first. A smoothing
term is introduced to add regularity. The regularization term is given either by
the L2 norm or the L1 norm of the gradient of the approximated solution. Finally
the L2 distance is considered together with a L1 smoothing term with bounded
variation. Efficient numerical techniques are proposed for the solution of each of
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these problems. The space discretization is addressed with piecewise linear finite
elements. The discretized optimization problems are solved with either an over-
relaxation algorithm [17], or an augmented Lagrangian approach [17, 18] when the
strict convexity property is not satisfied, or a combination of both.

Numerical results are presented for two kinds of applications. First the smooth-
ing of volume fractions in volume-of-fluid algorithms for multiphase flows is known
to introduce artificial numerical errors near the boundaries of the physical domain
(spurious currents) [2, 3, 16, 24, 27, 28]. The approximation of the surface ten-
sion effects near the boundaries requires for instance the introduction of ghost cells
outside the domain [13]. This drawback can be corrected by the proposed approach.

On the other hand, image denoising and reconstruction is a very active field of
research [6, 8, 10, 25]. The use of L1 distance has two main properties: it allows
to avoid the blurring of edges due to quadratic regularization terms, while being
appropriate for removing the noise. Numerical examples based on a famous example
(see e.g. [10]), are presented to compare the suggested approaches.

2. Non-Smooth Optimization Models

Let Ω be a bounded domain in R
2 with a smooth boundary ∂Ω. Let f ∈ L2(Ω)

be a given function (or signal), that contains either sharp interfaces, discontinuities
along lines or points, or noise. We want to approximate the signal f by a smooth
function u (typically u ∈ H1(Ω)) in order to (i) be able to approximate the deriva-
tives of f through the derivatives of the function u, or (ii) remove the noise from
the original signal.

Let Ω ⊂ R
2 be bounded with partition of the boundary Γ0∪Γ1 = ∂Ω, Γ0∩Γ1 = ∅.

Let us denote by V0 and W0 the spaces

V0 =
{

v ∈ H1(Ω) : v|Γ0
= 0
}

,

W0 =
{

v ∈ W 1,1(Ω) : v|Γ0
= 0
}

.

The Neumann case Γ0 = ∅ and Γ1 = ∂Ω is also included. We consider three
possible approaches: first the L1 distance between the original function and its
smooth approximation is considered, together with a regularization term depending
on the gradient of the approximation. This regularization term can be taken as the
L2 or the L1 norm of the gradient. The use of the L1 distance allows to conserve the
sharp gradient (edges) of the original function. Finally, we consider the L2 distance,
together with a L1 smoothing term, and design adequate numerical methods for
each of these problems.

2.1. Optimization with L1 Distance and L2 Smoothing Term. For f ∈
L2(Ω), solve

(1) min
v∈V0

∫

Ω

|v − f |dx +
ε

2

∫

Ω

|∇v|2 dx.

The distance term
∫

Ω
|v − f |dx is not differentiable, but the addition of the

smoothing term ε
2

∫

Ω
|∇v|2 dx forces uniqueness through (strict) convexity. The

following theorem holds:

Theorem 1. Problem (1) admits a unique solution u ∈ V0 (also if Γ0 = ∅). The
solution is characterized by

(2) ε

∫

Ω

∇u · ∇(v − u)dx +

∫

Ω

|v − f |dx −

∫

Ω

|u − f |dx ≥ 0, ∀v ∈ V0.
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Proof. See [17, 20]. �

Problem (1) is approximated with finite elements and solved with an over-
relaxation iterative method in Section 3.1.

2.2. Optimization with L1 Distance and L1 Smoothing Term. For f ∈
L2(Ω), solve

(3) inf
v∈W0

∫

Ω

|v − f |dx + ε

∫

Ω

|∇v| dx.

Problem (3) does not necessarily admits a minimizer, and if this exists, the
uniqueness is not guaranteed. Following [9], the formulation (3) is suitable for
image denoising and in particular edge detection, to reduce the boundary layers
introduced by the smoothing term.

Remark 1. Since only L1-norms are involved, problem (3) has to be solved in
W 1,1(Ω). Its numerical approximation presented in the sequel is however defined
in a H1(Ω) framework.

Remark 2. In order to ensure uniqueness, a regularization term can be added to
(3) as in [21] for instance, leading to the following problem:

min
v∈V0

∫

Ω

|v − f |dx + ε

∫

Ω

|∇v| dx +
α

2

∫

Ω

|∇v|2 dx,

where α is a given (small) parameter. The corresponding solution has to be in
V0. Numerically, the regularization term is not needed when using the proposed
augmented Lagrangian method.

Problem (3) is solved with an augmented Lagrangian approach [17, 18]. Let us
define q = ∇v ∈ L1(Ω)2. Problem (3) becomes

(4) inf
(v,q)∈K

∫

Ω

|v − f | dx + ε

∫

Ω

|q| dx,

where K =
{

(v,q) ∈ W0 × L1(Ω)2 : ∇v − q = 0
}

. In order to write an augmented
Lagrangian, the solution to (4) has to be more regular. From now on, the space K
in (4) is replaced by K̃ =

{

(v,q) ∈ V0 × L2(Ω)2 : ∇v − q = 0
}

.

Let µ ∈ L2(Ω)2 be the Lagrange multiplier corresponding to the constraint
∇v − q = 0 and r ≥ 0 a positive penalty constant. The augmented Lagrangian
functional is defined as

(5) Lr(v,q; µ) =

∫

Ω

|v − f |dx+ε

∫

Ω

|q| dx+
r

2

∫

Ω

|∇v − q|2 dx+

∫

Ω

µ·(∇v−q)dx.

Problem (4) consists in finding the saddle points of (5), namely looking for
{u,p, λ} ∈ V0 × L2(Ω)2 × L2(Ω)2 such that

(6) Lr(u,p; µ) ≤ Lr(u,p; λ) ≤ Lr(v,q; λ),

for all {v,q, µ} ∈ V0 × L2(Ω)2 × L2(Ω)2. The augmented Lagrangian functional
has the same saddle-points as the classical Lagrangian functional (i.e. when r = 0)
[17]. An Uzawa-Douglas-Rachford algorithm is chosen to solve (6), which consists
of the following iterative algorithm:
Let u−1 ∈ V0 and λ0 ∈ L2(Ω)2 be given. Then, for n = 0, 1, 2, . . .
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• Solve Lr(u
n−1,pn; λn) ≤ Lr(u

n−1,q; λn) for all q ∈ L2(Ω)2. This corre-
sponds to

(7) min
q∈L2(Ω)2

ε

∫

Ω

|q| dx +
r

2

∫

Ω

|q|2 dx −

∫

Ω

(r∇un−1 + λn) · qdx

• Solve Lr(u
n,pn; λn) ≤ Lr(v,pn; λn) for all v ∈ V0. This corresponds to

(8) min
v∈V0

r

2

∫

Ω

|∇v|2 dx −

∫

Ω

(rpn − λn) · ∇vdx +

∫

Ω

|v − f | dx

• Update the multiplier λ
n ∈ L2(Ω)2 by

(9) λn+1 = λn + r(∇un − pn)

Remark 3. Problem (8) is equivalent to (1) (except for the addition of a lin-
ear term), in which the augmented Lagrangian parameter r plays the role of the
smoothing coefficient ε. Solution methods for (1) described in the following section
can therefore be used inside the iterative method (7) (8) (9).

The solution of (7) (8) (9) is addressed for the discretized version in Section 3,
when approximations by finite elements are introduced.

2.3. Optimization with L2 Distance and L1 Smoothing Term. For f ∈
L2(Ω), find u ∈ W0 ∩ L2(Ω) satisfying

(10) min
v∈W0∩L2(Ω)

∫

Ω

|v − f |2 dx + ε

∫

Ω

|∇v| dx.

The distance term
∫

Ω
|v − f |2 dx is convex, while the addition of the smoothing

term ε
∫

Ω
|∇v| dx is used to give more regularity to the derivatives of the smoothed

function. Because of the Sobolev injection W 1,1(Ω) →֒ L2(Ω), W0 ∩ L2(Ω) = W0.
Problem (10) is treated like (3) with an augmented Lagrangian approach, to-

gether with a Uzawa-Douglas-Rachford iterative scheme. As in the previous sec-
tion, the solution to (10) is assumed to be in V0 in order to write an augmented
Lagrangian function. Let us define q = ∇v ∈ L2(Ω)2. Problem (10) becomes

(11) inf
(v,q)∈K

∫

Ω

|v − f |2 dx + ε

∫

Ω

|q| dx,

where K =
{

(v,q) ∈ V0 × L2(Ω)2 : ∇v − q = 0
}

. Let µ ∈ L2(Ω)2 be the Lagrange
multiplier corresponding to the constraint ∇v −q = 0 and r ≥ 0 a positive penalty
constant. The augmented Lagrangian function is defined as

(12)

Lr(v,q; µ) =

∫

Ω

|v − f |2 dx + ε

∫

Ω

|q| dx +
r

2

∫

Ω

|∇v − q|2 dx +

∫

Ω

µ · (∇v − q)dx.

Problem (11) consists in finding the saddle points of (12), namely looking for
{u,p, λ} ∈ V0 × L2(Ω)2 × L2(Ω)2 such that

(13) Lr(u,p; µ) ≤ Lr(u,p; λ) ≤ Lr(v,q; λ),

for all {v,q, µ} ∈ V0 × L2(Ω)2 × L2(Ω)2. An Uzawa-Douglas-Rachford algorithm
to solve (13) consists in the following iterative algorithm:
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let u−1 ∈ V0 and λ0 ∈ L2(Ω)2 be given. Then, for n = 0, 1, 2, . . .

• Solve Lr(u
n−1,pn; λn) ≤ Lr(u

n−1,q; λn) for all q ∈ L2(Ω)2. This corre-
sponds to solving

(14) min
q∈L2(Ω)2

ε

∫

Ω

|q| dx +
r

2

∫

Ω

|q|2 dx −

∫

Ω

(r∇un−1 + λn) · qdx

Problem (14) is identical to (7).
• Solve Lr(u

n,pn; λn) ≤ Lr(v,pn; λn) for all v ∈ V0. This corresponds to
solving

(15) min
v∈V0

r

2

∫

Ω

|∇v|2 dx +

∫

Ω

|v|2 dx −

∫

Ω

(rpn − λn) · ∇vdx − 2

∫

Ω

vfdx

The elliptic problem (15) is well-posed, even if Γ0 = ∅.
• Update the multipliers λn ∈ L2(Ω)2 as in (9):

(16) λn+1 = λn + r(∇un − pn)

The discrete version of the iterative algorithm (14) (15) (16) is addressed in
Section 3.

3. Finite Element Approximation and Numerical Algorithms

Finite element methods are used for the space discretization of (1), (3), and
(10). Let h > 0 be the space discretization step. A family {Ωh}h of polygonal
approximations of the domain Ω is introduced such that limh→0 Ωh = Ω. Let Th

be a regular triangulation of Ωh satisfying the compatibility conditions between
triangles. Let us denote by Ne the number of elements of Th, Nn the number of
vertices of Th in Ωh\Γ0, and N the total number of vertices of Th in Ωh\Γ0. Let K
denote a generic element (triangle) of Th and Pj , j = 1, . . . , N the vertices of the
triangulation. Let P1 be the space of polynomials of degree 1 and P0 the space of
polynomials of degree 0. Define

Vh = {vh ∈ C0(Ω) : v|K ∈ P1, ∀K ∈ Th},

V0h =
{

q ∈ L2(Ωh) : q|K ∈ P0, ∀K ∈ Th

}

.

as the space of piecewise linear continuous functions and piecewise constant func-
tions respectively. Let {ϕi}N

i=1 be the finite element basis of Vh.

3.1. Numerical Approximation of the Optimization Problem with L1

Distance and L2 Smoothing Term. Problem (1) is approximated by

(17) min
vh∈Vh

∫

Ωh

|vh − fh| dx +
ε

2

∫

Ωh

|∇vh|
2
dx.

Let us decompose the original signal in the finite element basis, such that f(x) =
∑N

i=1 fiϕi(x), and f = [f1, . . . , fN ]T ∈ R
N . Similarly vh(x) =

∑N

i=1 viϕi(x), v =
[v1, . . . , vN ]T ∈ R

N , and the approximated problem reads

min
vh∈Vh

∫

Ωh

∣

∣

∣

∣

∣

N
∑

i=1

viϕi −
N
∑

i=1

fiϕi

∣

∣

∣

∣

∣

dx +
ε

2

∫

Ωh

(

N
∑

i=1

vi∇ϕi

)

·





N
∑

j=1

vj∇ϕj



 dx.
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Using numerical integration (namely trapezoidal formula) for the non-smooth
term, the discretized problem reads:

(18) min
v∈RN

N
∑

i=1

|Ωi|

3
|vi − fi| +

ε

2
vT Av,

where |Ωi| is the area of the domain defined as the union of the triangles having Pi

as a common vertex, A is the symmetric positive definite stiffness matrix defined
as A = (Aij)

N
i,j=1 and Aij =

∫

Ω
∇ϕi · ∇ϕjdx. Following [17], define J(v) =

J0(v) + J1(v), with

J0(v) =
ε

2
vT Av, J1(v) =

N
∑

i=1

|Ωi|

3
|vi − fi| .

Problem (18) consists in finding u ∈ R
N , such that J(u) ≤ J(v), for all v ∈ R

N .

Theorem 2. Problem (18) admits a unique solution u ∈ R
N . This solution ap-

proximates the solution of (1) and is characterized by

(19) εuTA(v − u) + J1(v) − J1(u) ≥ 0, ∀v ∈ R
N .

Proof. See [17, 20]. �

Following [17], an over-relaxation algorithm is proposed to construct an iterative
sequence

{

uk
}

k≥0
that converges to the solution of (18).

• Initialize u0 arbitrarily (typically u0 = f). Let ωn
i ∈ (0, 2) be relaxation

parameters, defined iteratively as explained later. Then, for n = 0, 1, 2, . . .,
compute the iterate un+1 = [un+1

1 , . . . , un+1
N ]T ∈ R

N as follows.

• For i = 1, . . . , N , find ûn+1
i satisfying

(20) J(un+1
1 , . . . , un+1

i−1 , ûn+1
i , un

i+1, . . . , u
n
N) ≤ J(un+1

1 , . . . , un+1
i−1 , v, un

i+1, . . . , u
n
N),

for all v ∈ R. Problem (20) consist in a scalar optimization with respect to
each component of the vector un+1 successively.

• Set

(21) un+1
i = un

i + ωn
i (ûn+1

i − un
i )

The problem (20) has a unique solution ûn+1
i ∈ R characterized by:

(22)















∂J0

∂ui

(un+1
1 , . . . , un+1

i−1 , ûn+1
i , un

i+1, . . . , u
n
N)(wi − ûn+1

i )

+
|Ωi|

3

(

|wi − fi| −
∣

∣ûn+1
i − fi

∣

∣

)

≥ 0, ∀wi ∈ R.

This corresponds to the relation

(23)

























ε
i−1
∑

j=1

Aiju
n+1
j + εAiiû

n+1
i + ε

N
∑

j=i+1

Aiju
n
j



 (wi − ûn+1
i )

+
|Ωi|

3

(

|wi − fi| −
∣

∣ûn+1
i − fi

∣

∣

)

≥ 0, ∀wi ∈ R.
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The diagonal term Aii is strictly positive since A is positive definite. The explicit
solution to (23) is

(24) ûn+1
i = min







bn+1
i +

|Ωi|

3
εAii

, max






fi,

bn+1
i −

|Ωi|

3
εAii












.

where bn+1
i := −ε

∑i−1
j=1 Aiju

n+1
j − ε

∑N

j=i+1 Aiju
n
j .

The parameters ωn
i in (21) are updated iteratively to improve the convergence

speed of the algorithm [17]. Let ω0
i = ωf , where ωf ∈ [1, 2) is an optimal relaxation

parameter for the solution of the linear systems associated to the matrix A. The
adaptive strategy to update ωn

i is the following. If

ûn+1
i − fi

un
i − fi

≤ 0, set ωn
i = 1.

This leads to un+1
i = ûn+1

i . Otherwise if

ûn+1
i − fi

un
i − fi

≥ 1, set ωi = ωf ,

Otherwise if

0 ≤
(ûn+1

i − fi)

(un
i − fi)

< 1, set ωn
i = min

(

un
i − fi

un
i − ûn+1

i

, ωf

)

.

Based on numerical experiments, we set ωf = 1.5. The over-relaxation algorithm
converges to the solution of the variational inequality (2):

Theorem 3. Consider the algorithm (20) (21) with adaptive choice of the param-
eter ωn

i . Then, for all u0 ∈ R
N ,

(25) lim
n→+∞

un = u,

where u is the solution of (18).

Proof. See [17, 20]. �

3.2. Numerical Approximation of the Optimization Problem with L1

Distance and L1 Smoothing Term. The discrete version of the algorithm (7)-
(9) consists in looking for approximations uh ∈ Vh, qh ∈ (V0h)2 and λh ∈ (V0h)2 of
u,q and λ respectively. The subscripts h are omitted in the sequel.

Let u−1 ∈ Vh and λ0 ∈ (V0h)2 be arbitrary given functions. Then, for n =
0, 1, 2, . . . The discretized Uzawa-Douglas-Rachford algorithm to solve (6) reads as
follows:

• Set Xn := r∇un−1 + λn, with constant value Xn
i on each triangle, and

solve

(26) min
q∈(V0h)2

ε

∫

Ωh

|q| dx +
r

2

∫

Ωh

|q|2 dx −

∫

Ωh

Xn · qdx

Locally on each element K, it corresponds to solving

(27) min
qi∈R2

[

ε |qi| +
r

2
|qi|

2 − Xn
i · qi

]

, i = 1, . . . , Ne.
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The minimum occurs when qi = αiX
n
i , αi ∈ R, αi ≥ 0, and solving the

first order optimality conditions leads to αi =
1

r

(

1 −
ε

|Xn
i |

)+

[14], where

(

1 −
ε

|Xn
i |

)+

=







(

1 −
ε

|Xn
i |

)

, when

(

1 −
ε

|Xn
i |

)

≥ 0,

0, otherwise.

Therefore:

pn
i = αiX

n
i =







1

r

(

1 −
ε

|Xn
i |

)

Xn
i , if |Xn

i | > ε,

0, if |Xn
i | ≤ ε.

• Set Yn := rpn − λn, with constant value Yn
i on each triangle, and solve

(28) min
v∈Vh

r

2

∫

Ωh

|∇v|2 dx −

∫

Ωh

∇v ·Yndx +

∫

Ωh

|v − f |dx

Following the steps of Section 3.1, let us define f(x) =
∑N

i=1 fiϕi(x),

f = [f1, . . . , fN ]T ∈ R
N , and v(x) =

∑N
i=1 viϕi(x), v = [v1, . . . , vN ]T ∈ R

N .
The approximated problem reads

min
v∈Vh

r

2

∫

Ωh

(

N
∑

i=1

vi∇ϕi

)

·





N
∑

j=1

vj∇ϕj



 dx −
N
∑

i=1

vi

∫

Ωh

∇ϕi ·Y
ndx.

+

∫

Ωh

∣

∣

∣

∣

∣

N
∑

i=1

viϕi −
N
∑

i=1

fiϕi

∣

∣

∣

∣

∣

dx

Using numerical integration (namely trapezoidal formula) for the non-
smooth term, the discretized problem reads:

(29) min
v∈RN

N
∑

i=1

|Ωi|

3
|vi − fi| +

ε

2
vT Av − vT b,

where b = [bi]
N
i=1 ∈ R

N is defined by bi =

∫

Ωh

∇ϕi · Y
ndx. Starting from

(29), we define

J(v) := J̃0(v) + J1(v),

with J̃0(v) = ε
2v

T Av − vT b and J1(v) =
∑N

i=1
|Ωi|
3 |vi − fi|. An over-

relaxation algorithm similar to the one detailed in Section 3.1 is advocated
to determine the sequence {un}∞n=0 ⊂ R

N such that un → u and J(un) ≤
J(v), for all v ∈ R

N .
• Update the multipliers λ

n ∈ (V0h)2 as

(30) λn+1
∣

∣

K
= λn|K + r (∇un|K − pn|K) , ∀K ∈ Th.

The solution to the original problem (3) is not unique in W0. However the use
of augmented Lagrangian techniques allows to construct a converging sequence in
V0 by solving only well-posed problems (32). The use of relaxation terms as in [21]
for instance, is therefore not necessary.



NON-SMOOTH L1 OPTIMIZATION 363

3.3. Numerical Approximation of the Optimization Problem with L2

Distance and L1 Smoothing Term. The discrete version of the algorithm (14)-
(16) consists in looking for approximations uh ∈ Vh, qh ∈ (V0h)2 and λh ∈ (V0h)2

of u,q and λ respectively. The subscripts h are omitted in the sequel. Let u−1 ∈ Vh

and λ0 ∈ (V0h)2 be arbitrary given functions. The Uzawa-Douglas-Rachford algo-
rithm to solve (6) reads as follows: for n = 0, 1, 2, . . .

• Set Xn := r∇un−1 + λn, with constant value Xn
i on each triangle, and

solve

(31) min
q∈(V0h)2

ε

∫

Ωh

|q| dx +
r

2

∫

Ωh

|q|2 dx −

∫

Ωh

Xn · qdx

This problem is equivalent to (26).
• Set Yn := rpn − λn, with constant value Yn

i on each triangle, and solve

(32) min
v∈Vh

r

2

∫

Ωh

|∇v|2 dx +

∫

Ωh

|v|2 dx −

∫

Ωh

Yn · ∇vdx − 2

∫

Ωh

vfdx

This classical elliptic problem is solved with piecewise linear finite ele-
ments. The corresponding linear system reads:

(33) (rA + M)v = b,

where the rigidity matrix A is computed exactly, the mass matrix M is
computed with the trapezoidal formula (mass lumping), and b = [bi]

N
i=1

is defined by bi =
∫

Ωh

∇ϕi · Yndx − 2
∫

Ωh

ϕifdx. The right-hand side is

numerically approximated by bi ≃
∑

K∈Th
∇ϕi|K · Yn|K |K|− 2

3 |Ωi| f(xi).

The linear systems (33) are solved with a sparse conjugate gradient method.
• Update the multipliers λ

n ∈ (V0h)2 as

(34) λn+1
∣

∣

K
= λn|K + r (∇un|K − pn|K) , ∀K ∈ Th.

4. Applications and Numerical Results

Let us consider Ω = (0, 1)× (0, 1). Figure 1 illustrates the structured triangula-
tion Th of Ωh = Ω used for the two applications considered here, namely the smooth-
ing of volume fractions in free surfaces flows, and the denoising of images/signals
composed of pixels.
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Figure 1. Domain Ω = (0, 1)×(0, 1) and the corresponding struc-
tured triangulation Th (for Nn = 16 = 42, N = 36 = 62 and
Ne = 50).
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4.1. Interfaces Reconstruction in Free Surface Flows. In volume-of-fluid
methods for multiphase flow, the volume fractions of each material are typically
approximated by piecewise constant functions on each cell of a finite volume or
finite differences discretization. Consider a two-dimensional finite volume mesh
composed by square cells. The triangulation of Figure 1 is embedded into such a
finite volume discretization, by splitting each cell into two triangles along its first
diagonal. The original piecewise constant approximation of the volume fraction
can be projected onto the finite element space of piecewise linear functions by an
L2 projection [5], in order to address smoothing techniques in a finite elements
framework.

The smoothing of volume fractions typically introduces a bias near ∂Ω when
using kernel-based methods [2, 3, 16, 24]. The following results show that this
drawback is removed with the proposed techniques (via the absence of deformations
at the boundary).

Results are illustrated only for the first method (L1 distance together with L2

regularization terms); results are similar for the three approaches.
First, a planar interface between two fluids is considered. The original volume

fraction is the step function given by zero on one side of the interface line x = 1/2,
and by one on the other side (characteristic function). In this case, the curvature of
the interface is zero and no interfacial force appear on the interface. Figure 2 shows
the level lines of the original function f and the smoothed function u for various
values of the smoothing parameter ε (dependent on the grid size h) and show that
the level lines remain perfectly parallel near the boundaries of Ω. The larger ε, the
larger the smoothing of the characteristic function, but no spurious curvature is
created.
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Figure 2. Smoothing of volume fractions in the case of planar
interface. Left: Original volume fraction (step function); middle:
smoothed volume fraction with ε = 3h; right: smoothed volume
fraction with ε = 5h.

Consider the case of a sinusoidal interface, defined as x = 1
4 sin(2πy) + 1

2 . The
volume fraction is given by one on one side of the interface and by zero on the
other side (characteristic function). Figure 3 shows the contour plot of the original
volume fraction, as well as the smoothed function u for various values of ε. One
can note still a small distorsion in the neighborhood of the boundary of Ω.

The regular function u can be used to approximate the normal vector to the
interface n := ∇u

|∇u| , the curvature of the interface κ := ∇ · ∇u
|∇u| , and the surface

tension effects, as in [2, 3]. Numerical results show good convergence properties of
the approximation of κ based on a variational formulation as in [3].
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Figure 3. Smoothing of volume fractions in the case of sinusoidal
interface. Left: Original volume fraction (characteristic function);
middle: smoothed volume fraction with ε = 3h; right: smoothed
volume fraction with ε = 5h.

4.2. Image Denoising. Images composed of pixels consist of an array of square
cells that is similar to a piecewise constant approximation of a given signal (by
shades of gray). A L2-projection of such a signal onto the finite element space
Vh related to the triangulation Th, is achieved as described in Section 4.1. Start-
ing with a noisy signal, composed of an original signal artificially blurred with a
given random noise, the goal is to reconstruct the original signal, with emphasis on
recovering its sharp edges.

Let f̂ ∈ L2(Ω) be the original signal (black/white image). Typically, f̂ takes

values between 0 and 245 (shades of gray), so f̂ is normalized in the sequel to take
values between 0 and 1 to be apparented to a volume fraction.

Let f ∈ L2(Ω) be the modification of the original signal by the addition of noise.
Two types of noise are considered in this article: (i) salt-and-pepper noise (see e.g.
[1, 7, 11, 26, 29, 30]), and (ii) additive Gaussian noise (see e.g. [20, 22, 23]). The
amplitude of the noise varies in the numerical experiments. The goal of the proposed

algorithms is to reconstruct an approximation of the original signal f̂ from f .

Salt-and-Pepper Noise. Salt-and-pepper noise represents the addition to f of
randomly occuring white and black pixels, (i.e. of value 0 or 1). Unaffected pixels
always remain unchanged. The noise is quantified by the percentage of pixels which
are corrupted. The addition of salt-and-pepper noise can be formulated as follows.
Let U(x) be a uniform random function, piecewise constant on each pixel xi and
taking values between 0 and 1. Let xi be one pixel of the image (namely one vertex
of the underlying mesh). A signal modified by α% of noise is given by

f(xi) =



















0, if U(xi) ≤
α

2
,

1, if U(xi) ≥ 1 −
α

2
,

f̂(xi), otherwise.

The quantity α is the percentage of noise, implying that α% of the pixels are
modified, half of them taking value one (”salt”), the other half taking value zero
(”pepper”).

Gaussian noise. Additive Gaussian noise is a modification of the signal f̂ based on
the probability density function of the normal distribution, with mean µ and vari-
ance σ2, meaning that the values of the additional noise are normally distributed.
The addition of Gaussian noise can be formulated as follows. Let Nµ,σ(x) be a
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Gaussian distribution function with mean µ and standard deviation σ, piecewise
constant on each pixel xi. A signal modified by α% of noise is given by

f(xi) = f̂(xi) + αN0,1(xi).

This means that, unlike the salt-and-pepper noise, every pixel of the original
signal is modified by normally distributed values.

Results for the optimization problem with L1 distance - L2 smoothing

term. Figures 4–6 illustrate the results of the algorithm presented in Section 3.1

for various settings. Figure 4 shows the original signal f̂ ∈ L2(Ω), together with
the modified signal f ∈ L2(Ω) (modified with the salt-and-pepper noise of intensity
2%), and the reconstructed signal u obtained by the algorithm. For such small

intensity of noise, one can see that the original signal f̂ is completely reconstructed.

Although the solution u is in H1(Ω), and therefore smoother than f̂ , the edges are
accurately conserved.
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Figure 4. Image Denoising for salt-and-pepper noise. L1 − L2

smoothing algorithm for a noise level of 2% and ε = 0.0003. Left:

original signal f̂ ; middle: modified signal f ; right: signal u after
denoising.

Figure 5 illustrates the capacity of the algorithm in handling larger levels of noise,
by showing the modified signals f together with the reconstructed functions u. As
expected, the more noise the more difficult the denoising; however, a significant
improvement is obtained, even if the algorithm is applied only once (one-time filter).

The smoothing parameter ε drives the amount of smoothing/denoising of the
algorithm. When the smoothing parameter ε is too large, the resulting signal v is
blurred and the edges are not preserved (smoothed-out), while the salt-and-pepper
noise is completely removed. On the other hand, when the smoothing parameter ε
is too small, the small peaks introduced by the noise are still visible, but the edges
are preserved.

Figure 6 illustrates the denoising results when considering an additive Gaussian

noise for the modification of the signal f̂ . Since such modification alters each pixel of
the image, it is more difficult to recover the original signal. Results show significant
denoising of the signal, while conserving edges, and exhibit the robustness of the
algorithm.
Results for the optimization problem with L1 distance - L1 smoothing

term. In a second step, results for the algorithm presented in Section 3.2 are pre-
sented. Figures 7–9 illustrate the results in various settings. Figure 7 illustrates
the results of the algorithm under various levels of noise, by showing the modified
signals f together with the reconstructed functions u. Results compare well with
those in Figure 5.
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Figure 5. Image Denoising for salt-and-pepper noise. L1 − L2

smoothing algorithm for various levels of noise and ε = 0.0003.
Left: 10%, middle: 20%, right: 50%. First line: modified signal f ;
second line: signal u after denoising.
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Figure 6. Image Denoising for Gaussian noise. L1−L2 smoothing
algorithm. Top row: modified signals f with 10% noise (left) and
25% noise (right). Bottom row: reconstructed signals with ε =
0.002.

Figure 8 shows the influence of the number of iterations of the augmented La-
grangian algorithm on the regularity of the solution. Let ε = 1 and r = 10−6. The
edges of the signal are blurred when the number of iterations increases, confirming
than the augmented Lagrangian method acts as a smoother. When the parameter
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Figure 7. Image Denoising for salt-and-pepper noise. L1 − L1

smoothing algorithm with ε = 1, r = 10−4, one iteration of the
augmented Lagrangian algorithm, for various levels of noise: left:
10%, middle: 20%, and right: 50%.

r is very small, the regularization effect induced by r is negligible, but is compen-
sated by the number of iterations of the algorithm. If r is larger, a large number
of iterations leads to a complete blurring of the signal.
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Figure 8. Image Denoising for salt-and-pepper noise 10%. L1 −
L1 smoothing algorithm with ε = 1 and r = 10−6. Regularized
signal after 1 (left), 50 (middle) and 200 (right) iterations of the
augmented Lagrangian algorithm.

Figure 9 shows the results of the denoising for additive Gaussian noise with the
L1 − L1 numerical optimization algorithm after one iteration of the augmented
Lagrangian. Results compare well with Figure 6. The signal is smoothed, and the
noise is removed.

We can conclude that the L1−L1 optimization algorithm introduces more denois-
ing than the L1 −L2 optimization algorithm presented earlier; however this results
in a loss of clarity of the signal and a tendency to blur the edges. On the other
hand, this algorithm introduces more flexibility since it involves two smoothing pa-
rameters: r and ε. Results have shown that increasing the number of iterations of
the augmented Lagrangian algorithm over a certain threshold blurs the signal. The
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Figure 9. Image Denoising for Gaussian noise. L1 − L1 smooth-
ing algorithm with ε = 1 and r = 0.0009. Top row: modified

signals f̂ with 10% noise (left) and 25% noise (right). Bottom row:
reconstructed signals v.

parameter r (and the augmented Lagrangian iteration algorithm) plays the role of
the smoother.
Results for the optimization problem with L2 distance - L1 smoothing

term. In a last step, results for the L2 − L1 optimization algorithm presented in
Section 3.3 are presented. Figure 10 illustrates the results of the algorithm when
considering a salt-and-pepper noise of intensity 10%. Like the L1−L1 method, the
augmented Lagrangian iteration algorithm acts as a smoother. The behavior of the
augmented Lagrangian algorithm is very close to the one for the problem with L1

distance and L1 smoothing term, but the L2 distance produces more smoothing,
with less iterations.
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Figure 10. Image Denoising for Gaussian noise. L2−L1 smooth-
ing algorithm with ε = 0.028 and r = 0.0002. Regularized signal
after 2 (left), 4 (middle) and 10 (right) iterations of the augmented
Lagrangian.
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Table 1. PSNR for the reconstruction of the 512 × 512 image
”Lena” in Figures 4–10, for various levels of salt-and-pepper noise.

α% PSNR⋆ PSNR(L1 − L2) PSNR(L1 − L1) PSNR(L2 − L1)
(noise level) (ε = 3 · 10−4) (ε = 1, r = 10−4) (ε = 0.0028, r = 2 · 10−5)

(1 − 2 iterations) (2 − 4 iterations)
10 23.38 db 29.01 db 29.07 db 26.16 db
20 18.79 db 26.47 db 26.79 db 23.68 db
50 11.71 db 20.31 db 20.43 db 19.45 db

Peak Signal-to-Noise ratios. The performance of algorithms can be quantified
by considering the peak signal-to-noise ratio (PSNR), which represents the distance
between two signals. In the literature [7, 23, 26], the classical distance to consider is
the distance between the modified signal f and the reconstructed signal u. However,

when the original signal f̂ is known, it is more accurate to consider the PSNR

comparing the original signal f̂ and the reconstructed signal u. Keeping in mind

that f̂ is normalized in this paper and takes value between 0 and 1, the PSNR for
a signal of N × M pixels is defined by

PSNR = 10 log10

(

1

MAE2

)

, MAE =

N
∑

i=1

M
∑

j=1

∣

∣

∣uij − f̂ij

∣

∣

∣

MN
.

To evaluate the performance of the denoising algorithm, the PSNR comparing the

original signal f̂ and the noisy signal f is computed as a reference, namely

PSNR⋆ = 10 log10

(

1

(MAE⋆)2

)

, MAE⋆ =

N
∑

i=1

M
∑

j=1

∣

∣

∣fij − f̂ij

∣

∣

∣

MN
.

Results for the three methods are presented in Table 1 for the salt-and-pepper noise
at various intensities. The larger the PSNR, the better the approximation of the

original signal f̂ . These results confirm the optimal choice of parameters and the
performance of the three methods to denoise f . The results of the first two methods
compare well, but the one relying on the L2 distance is less efficient.

4.3. Multiphase Flow with Noise. Consider now the situation of a multiphase

flows containing sharp edges and corners. Let Ω = (0, 1)2 and f̂ ∈ L2(Ω) be defined
as the characteristic function of a V-shape domain, as follows:

f̂(x, y) =























1, −2x + 1.2 ≤ y ≤ 0.8, 0.2 ≤ x ≤ 0.3
1, −2x + 1.2 ≤ y ≤ −2x + 1.4, 0.3 ≤ x ≤ 0.5
1, 2x − 0.8 ≤ y ≤ 2x − 0.6, 0.5 ≤ x ≤ 0.7
1, 2x − 0.8 ≤ y ≤ 0.8, 0.7 ≤ x ≤ 0.8
0, otherwise.

A salt-and-pepper noise with α% of noise, as defined in the previous section,

is added to the signal f̂ to define the original signal f . The goals are now two-
fold: first to smoothen the edges representing the interfaces between the various
materials, in order for instance to compute curvatures and interfacial effects, and
then to denoise the signal f . Consider the triangulation Th illustrated in Figure 1
with 2N2 triangles and N = 128.
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The signal f , after modification by a salt-and-pepper noise of intensity 10% or
20% is illustrated in Figure 11.
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Figure 11. Smoothing of sharp interfaces. Signal f after alter-
ation with a salt-and-pepper noise of intensity α = 10% (left) or
α = 20% (right) (N = 128).

Figures 12 and 13 show the results of the smoothing procedures (1), (3), and
(10) applied to the function f . In such as multi-objective optimization framework
(smoothing edges and denoising), the choice of the smoothing parameter allows to
emphasize one goal or the other. Figure 12 illustrates the results obtained with the
three algorithms, for a level of noise of α = 10%. Figure 13 illustrates the results
obtained with the three algorithms, for a level of noise of α = 20%. Comparisons
show that the method with L2 distance and L1 smoothing term adds more blurring
than the other two approaches.

5. Conclusions

Numerical methods for non-smooth optimization problems based on L1 norms
have been proposed for the smoothing of signals with noise or for the regularization
of signals with sharp gradients. Decomposition techniques based on over-relaxation
algorithms and augmented Lagrangian techniques allows to efficiently compute min-
imizing sequences.

Numerical results are presented for applications in free surfaces flows and im-
age denoising. For the smoothing of volume fractions, the drawback encountered
through other methods of creating artificial curvature near the boundaries of the
physical domain is avoided. Although the first motivation of the work is from me-
chanical engineering and computational fluid dynamics, the methods have provided
efficient results for the treatment of signals with salt-and-pepper noise.
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Figure 13. Multiphase Flow with Noise: reconstruction and
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