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NUMERICAL METHODS FOR NON-SMOOTH Lt
OPTIMIZATION : APPLICATIONS TO FREE SURFACE FLOWS
AND IMAGE DENOISING
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Abstract. Non-smooth optimization problems based on L1 norms are inves-
tigated for smoothing of signals with noise or functions wit h sharp gradients.
The use of L1 norms allows to reduce the blurring introduced by methods ba  sed
on L2 norms. Numerical methods based on over-relaxation and augm ented La-
grangian algorithms are proposed. Applications to free sur face ows and image
denoising are presented.
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1. Introduction

The need to smooth a given function is a problem that arises irmany elds of
science and engineering. A trade-o between the conservatin of the accuracy and
the regularity properties must be obtained. In volume-of- uid methods pertaining
to computational uid dynamics, the smoothing of volume fractions of materials is
required when calculating interfacial e ects [2, 16]. In image treatment, noise can
be removed by the application of appropriate lters, based a average mean calcu-
lations, low/high-pass lters or PDE-based techniques. Classical smoothing tech-
nigues range from kernel-based methods [2], to PDE-based ¢kniques or wavelet-
based methods [9]. However when using classical techniqydsased on quadratic
or L? norms, blurring of the sharp edges is often introduced. Reagly, meth-
ods based onL! distances have received a lot more attention in various sethgs
[4, 8, 9, 12, 19, 20]. More generally, smoothing is required en a numerical ap-
proximation of the derivatives of a non-smooth function is needed.

In this article, numerical methods for non-smooth optimization problems relying
on L' norms are presented in order to reduce the blurring due to qudratic terms in
classical methods. The solution methods for the smoothingfoa given signal require
advanced techniques since strict convexity and di erentiability properties are not
satis ed. Moreover, the uniqueness of the solution is not garanteed, unless some
regularization terms are introduced [15, 21].

The problems addressed here consist of the minimization ot distance between
a given signal, typically with jumps or noise, and a smooth aproximation whose
rst derivatives are regular. The L! distance is considered rst. A smoothing
term is introduced to add regularity. The regularization term is given either by
the L2 norm or the L norm of the gradient of the approximated solution. Finally
the L2 distance is considered together with aL' smoothing term with bounded
variation. E cient numerical techniques are proposed for the solution of each of
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these problems. The space discretization is addressed withiecewise linear nite
elements. The discretized optimization problems are sola with either an over-
relaxation algorithm [17], or an augmented Lagrangian appoach [17, 18] when the
strict convexity property is not satis ed, or a combination of both.

Numerical results are presented for two kinds of applicatios. First the smooth-
ing of volume fractions in volume-of- uid algorithms for mu ltiphase ows is known
to introduce arti cial numerical errors near the boundarie s of the physical domain
(spurious currents) [2, 3, 16, 24, 27, 28]. The approximatio of the surface ten-
sion e ects near the boundaries requires for instance the itmoduction of ghost cells
outside the domain [13]. This drawback can be corrected by th proposed approach.

On the other hand, image denoising and reconstruction is a wy active eld of
research [6, 8, 10, 25]. The use df! distance has two main properties: it allows
to avoid the blurring of edges due to quadratic regularizaton terms, while being
appropriate for removing the noise. Numerical examples basd on a famous example
(seee.g. [10]), are presented to compare the suggested approaches.

2. Non-Smooth Optimization Models

Let be a bounded domain in R? with a smooth boundary @. Let f 2 L?()
be a given function (or signal), that contains either sharp interfaces, discontinuities
along lines or points, or noise. We want to approximate the gjnal f by a smooth
function u (typically u2 H?*()) in order to (i) be able to approximate the deriva-
tives of f through the derivatives of the function u, or (ii) remove the noise from
the original signal.

Let R? be bounded with partition of the boundary o 1= @ o\ 1= ;.
Let us denote by Vy and Wy the spaces

Vo V2HY(): vj =0 ;
Wo v2WH(): vi =0
The Neumann case o = ; and 1 = @ is also included. We consider three

possible approaches: rst theL! distance between the original function and its
smooth approximation is considered, together with a regulaization term depending
on the gradient of the approximation. This regularization term can be taken as the
L2 or the L* norm of the gradient. The use of theL! distance allows to conserve the
sharp gradient (edges) of the original function. Finally, we consider thel ? distance,

together with a L' smoothing term, and design adequate numerical methods for
each of these problems.

2.1. Optimization with L! Distance and L? Smoothing Term. For f 2
L?(), solve

y4 4

. . . . .2 i
Q) \r/Tz“vr:, v dex+§ jr vji©dx:

The distance teﬁn jv fjdx is not dierentiable, but the addition of the
smoothing term § jr vj2 dx forces uniqueness through (strict) convexity. The
following theorem holds:

Theorem 1. Problem (1) admits a unigue solutionu 2 Vy (also if ¢ = ;). The

solution is characterized by
Z z

(2) " rur (v uwdx+ jv fjdx ju fjdx 0; 8v2 Vg
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Proof. See [17, 20].

Problem (1) is approximated with nite elements and solved with an over-
relaxation iterative method in Section 3.1.

2.2. Optimization with L! Distance and L' Smoothing Term. For f 2
L?(), solve

z z
3) Vlzn\xl0 jv fjdx+ jrovjdx:

Problem (3) does not necessarily admits a minimizer, and if his exists, the
uniqueness is not guaranteed. Following [9], the formulatin (3) is suitable for
image denoising and in particular edge detection, to reducehe boundary layers
introduced by the smoothing term.

Remark 1. Since only L'-norms are involved, problem (3) has to be solved in
WLL() . Its numerical approximation presented in the sequel is hoaver de ned
ina HY() framework.

Remark 2. In order to ensure uniqueness, a regularization term can be dded to
(3) as in [21] for instance, leading to the following problem:
z z z
. . . " . . . .2 X

\52'\2 jv  fjdx+ ir v1dx+§ jr v dx;
where is a given (small) parameter. The corresponding solution ha to be in
Vo. Numerically, the regularization term is not needed when usg the proposed
augmented Lagrangian method.

Problem (3) is solved with an augmented Lagrangian approact17, 18]. Let us
dene g=rv2LY) 2 Problem (3) becomes

Z Y4

4 inf jv fjdx+" jogjdx;
(4) Wi v Tidx jgj dx
whereK = (v;q)2Wo LY() 2:rv qg=0 . Inorder to write an augmented
Lagrangian, the solution to (4) has to be more regular. From row on, the spaceK
in (4) is replaced by K = (v;q)2Vo L2() 2:rv q=0 .

Let 2 L?() 2 be the Lagrange multiplier corresponding to the constraint
rv gq=0andr 0 a positive penalty constant. The augmented Lagrangian
functional is de ned as

z z rZ z
(5) Li(v;q; )= jv  fjdx+" jqjdx+§ jrv qudx+ (rv g)dx:

Problem (4) consists in nding the saddle points of (5), namdy looking for
fu;p; g2Vo L2() 2 L?() 2 such that

(6) Le(uip; ) L r(uips ) L r(via; )

forall fv;q; g2 Vo L?() 2 L?) 2. The augmented Lagrangian functional
has the same saddle-points as the classical Lagrangian fuinal (i.e. whenr = 0)
[17]. An Uzawa-Douglas-Rachford algorithm is chosen to s@k (6), which consists

of the following iterative algorithm:
Letu 12 Voand °2L2() 2 be given. Then, forn=0;1;2;:::



358 A. CABOUSSAT, R. GLOWINSKI, AND V. PONS

SolveL,(u"™ L;p"; ™) L ,(u" %;q; ") forall g2 L?() 2. This corre-

sponds to
z ; z z
. " . r ) n 1 n

(1) 2min jgjdx + 5 lai dx (rru” “+ ) qdx

SolveL,(u";p™; ") L (v;p"; M) forall v2 V,. This corresponds to

; z z z
(8) min - jr vjzdx (rp" M rvdx+ jv fjdx
v2V, 2

Update the multiplier " 2 L?() 2 by

(9) n+1 - n + r(r un pn)

Remark 3. Problem (8) is equivalent to (1) (except for the addition of alin-

ear term), in which the augmented Lagrangian parameter plays the role of the
smoothing coe cient ". Solution methods for (1) described in the following sectio
can therefore be used inside the iterative method (7) (8) (9)

The solution of (7) (8) (9) is addressed for the discretized ersion in Section 3,
when approximations by nite elements are introduced.

2.3. Optimization with L? Distance and L' Smoothing Term. For f 2
L2(), nd u2 Wp\ L2() satisfying
z z
10 [ jv fifdx+" jr vjdx:
(20) vzwroQIEZ() jv  fjodx jr vjdx
R

The Igistance term jv fj2 dx is convex, while the addition of the smoothing
term " jr vjdx is used to give more regularity to the derivatives of the smothed
function. Because of the Sobolev injectionV () I L2(), Wp\ L2()= Wo.

Problem (10) is treated like (3) with an augmented Lagrangian approach, to-
gether with a Uzawa-Douglas-Rachford iterative scheme. Adn the previous sec-
tion, the solution to (10) is assumed to be inVp in order to write an augmented
Lagrangian function. Let us dene g =r v 2 L?() 2. Problem (10) becomes

4 4

. . .2 " - .
(11) (v;I(?)fZK jv  fjfdx+ jqj dx;

whereK = (v;q)2 Vo L?%() 2:rv =0 .Let 2L?%) 2 be the Lagrange
multiplier corresponding to the constraint r v. g=0and r 0 a positive penalty
constant. The augmented Lagrangian functionis de ned as

(12) z z z z

Le(vig; )= jv fjifdx+" jqjdx+; ir v ogji®dx+ (rv g)dx:

Problem (11) consists in nding the saddle points of (12), namely looking for
fu;p; g2Vo L2?() 2 L?() 2 such that

(13) Le(uip; ) L c(up; ) L e(via; )
forall fv;q; g2 Vo L?%) 2 L?0) 2. An Uzawa-Douglas-Rachford algorithm
to solve (13) consists in the following iterative algorithm:
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letu 12 Voand °2 L2() 2be given. Then, forn=0;1;2;:::
SolveL,(u"™ L;p"; ™) L ((u" %;q; ")forall g2 L?() 2. This corre-
sponds to solving
Z Z VA

(14) Lmin jqjdx+r§ jgildx  (rru T+ ") qdx

Problem (14) is identical to (7).
Solve L, (u";p™; ™ L (v;p"; ") forall v 2 Vp. This corresponds to
solving

4 4 4 y4

(15) nznvn“E jr vitdx+  jvi®dx (rp"” ") rvdx 2 vfdx
VZ Vo

The elliptic problem (15) is well-posed, even if o= ;.
Update the multipliers " 2 L?() 2 asin (9):
(16) "ML= Mhr(ru p")
The discrete version of the iterative algorithm (14) (15) (16) is addressed in
Section 3.

3. Finite Element Approximation and Numerical Algorithms

Finite element methods are used for the space discretizatio of (1), (3), and
(10). Let h > 0 be the space discretization step. A familyf g, of polygonal
approximations of the domain is introduced such that lim y o = . Let Ty
be a regular triangulation of | satisfying the compatibility conditions between
triangles. Let us denote by N, the number of elements ofT,, N, the number of
vertices of T, in pn o, and N the total number of vertices of T, in 1N o. Let K

triangulation. Let P; be the space of polynomials of degree 1 anéy the space of
polynomials of degree 0. De ne

Vi fvh 2 CO(): Vi 2 P1;8K 2 Thg;
Von a2 L%( n): dix 2 Po; 8K 2Th

as the space of piecewise linear continuous functions andgiiewise constant func-
tions respectively. Let f' igiN=1 be the nite element basis of V.

3.1. Numerical Approximation of the Optimization Problem w ith L?!
Distance and L? Smoothing Term.  Problem (1) is approximated by
z . Z
. . . . .2
+ = :
a7 V::ry\r)h jva  fhjdx 5 jr vhj©dx

h h

Let us decompose the original signal in the nite element ba'sslt,3 such thatf (x) =

P
Nofiti(x), and f =[fq;::f]T 2 RV, Similarly va(x) = L, i i(X), v =
[vi;:::;vn]™ 2 RN, and the approximated problem reads
;0 1
ZA X Lo SN
min Vi' i fi'i dx+ = Vir ' @ er'jAdXZ
Vi 2Vy 2

hoi=1 i=1 hooj=1 j=1
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Using numerical integration (namely trapezoidal formula) for the non-smooth
term, the discretized problem reads:

X
(18) min

Ly fij+ —vTAv;
verRY 3 Vi i 2V Vo

wherej jj is the area of the domain de ned as the union of the triangles laving P;
as a common vertex,A is the sygnmetric positive de nite sti ness matrix de ned
as A = (Aj ),’\JI ., and Ay = r'y r';dx. Following [17], dene J(v) =
Jo(v) + J1(v), with

T Ay - _X\Ijij-_
Jo(v) = 5Y Av;  Ja(v) = —3 fij:

i=1
Problem (18) consists in nding u 2 RN, such that J(u) J(v), forall v 2 RN.

Theorem 2. Problem (18) admits a unique solutionu 2 RN . This solution ap-
proximates the solution of (1) and is characterized by

(19) "uTA(v u)+ Ji(v) Ji(u) ©O; 8v2RN:
Proof. See [17, 20].

Following [17], an over-relaxation algorithm is proposed to construct an iterative

sequence u « o that converges to the solution of (18).

Initialize u® arbitrarily (typically u® = f). Let " 2 (0;2) be relaxation
parameters, de ned iteratively as explained later. Then, forn=0;1;2;:::,

compute the iterate u"** =[uf* ;U™ T 2 RN as follows.
Fori=1;:::;N, nd ’Ui’”l satisfying
(20) J(ui*t;ou™ et ul, ) It ™ viul s uR);

for all v 2 R. Problem (20) consist in a scalar optimization with respectto
each component of the vectoru"*! successively.
Set

(21) uMt o=l +rortt )

The problem (20) has a unique solutionu{J+l 2 R characterized by:

® @4

3 Qu UM et un, s )(w o ottty
22
22 2 il ; n+1

. +T jw o fij o fi 0;8w; 2 R:

This corresponds to the relation
1

8 0
E X1 X
@ Aij ujn+1 + A Oin+1 + " Aij ujnA (Wi oin+1)
j=1

j=i+l
,E J il

+Tjwi fij oMt 0;8w; 2 R:

(23)
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The diagonal term Aj; is strictly positive since A is positive de nite. The explicit
solution to (23) is

. .11
+1+JiJ ] il

(24) oM = min %A;max@i;bgg :

"Ajj "Ali

P, P
wherel*! .= T _PA UMt T L AU
The parameters! " in (21) are updated iteratively to improve the convergence
speed of the algorithm [17]. Let! 0 = I ¢, where! ¢ 2 [1;2) is an optimal relaxation
parameter for the solution of the linear systems associatedo the matrix A. The
adaptive strategy to update ! " is the following. If
ot
- 0; set!{=1:
Uin fi :

This leads to u'** = 4"*! . Otherwise if

artt o,
-t . . = 1;."
T? 1, set!;=1y4;
Otherwise if

Mt f) ur o f

<1 set!l"=mn ———;!;
' ur att

(ut fi) nooo;
Based on numerical experiments, we sét; = 1:5. The over-relaxation algorithm
converges to the solution of the variational inequality (2):

Theorem 3. Consider the algorithm (20) (21) with adaptive choice of theparam-
eter ! . Then, for all u®2 RN,

(25) lim u" = u;
nt +1

whereu is the solution of (18).

Proof. See [17, 20].

3.2. Numerical Approximation of the Optimization Problem w ith L?!
Distance and L! Smoothing Term.  The discrete version of the algorithm (7)-
(9) consists in looking for approximationsun 2 Vi, gn 2 (Von)? and 2 (Von)? of
u;q and respectively. The subscriptsh are omitted in the sequel.

Letu 1 2 V,, and ° 2 (Von)? be arbitrary given functions. Then, for n =
0;1;2;::: The discretized Uzawa-Douglas-Rachford algorithm to sole (6) reads as
follows:

Set X" = rru" 1+ ", with constant value X on each triangle, and

solve
. ,,Z - I’Z ) z n
(26) 2N, thJ dx+ 3 th1 dx h X" qdx
Locally on each elementK , it corresponds to solving
; h..- LT n ! e e .
(27) B e R A N
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The minimum occurs whenqg; = X!, i 2 R, 0, and solving the
n +
rst order optimality conditions leads to | = 1 1 -+ [14], where
8 " r " X7
+ <
" 1 - ; when 1 0;
TR JX7] X
147 "0 otherwise.
Therefore:
8 1 .,
< - .
=1 —— X if jXDj>"
pl= iX{=_r xpy T B
T0; if X7 "
SetY" ;= rp" ", with constant value Y on each triangle, and solve
; z z Z
(28) min = jr vjZdx rv Yhdx+  jv fjdx
v2V, 2 " " "

P
Following the steps of Section Qpl let us de nef (x) = iNzl fi' i (x),
f=[fynfa]” 2RY  andv(x) = 1 vt i(x), v =[va;iiuw]T 2 RN,

ZARNY 10 ! z
min - vir'i o @ yrtAdx Vi r'i Y"hdx:
vave 2 hoj=1 j=1 i=1 h
ZAN X
+ V|I| fill dx

hj=1 i=1
Using numerical integration (namely trapezoidal formula) for the non-
smooth term, the discretized problem reads:

(29) min X j—‘jjv- fij+ “VTAY Vb
v2RN 3 : 2 '
Z
whereb =[h]Y, 2 RN isdened by b = r'; Y"dx. Starting from

(29), we de ne '

J(v) = Jo(v) + Ju(v);
with Jo(v) = svTAv  vTband Ji(v) = %, =djvi  fij. An over-
relaxation algorithm similar to the one detailed in Section 3.1 is advocated
to determine the sequencd u”gﬁ:O RN such that u™! u andJ(u")
J(v), forall v2 RN,
Update the multipliers " 2 (Von)? as

(30) "= i rr(ruie plig)s 8K 2T

The solution to the original problem (3) is not unique in Wy. However the use
of augmented Lagrangian techniques allows to construct a ewerging sequence in
Vo by solving only well-posed problems (32). The use of relaxan terms as in [21]

for instance, is therefore not necessary.
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3.3. Numerical Approximation of the Optimization Problem w ith L?
Distance and L?! Smoothing Term.  The discrete version of the algorithm (14)-
(16) consists in looking for approximationsup 2 Vi, gnh 2 (Von)? and 2 (Von)?
ofu;qand respectively. The subscriptsh are omitted in the sequel. Letu ! 2 V,
and © 2 (Von)? be arbitrary given functions. The Uzawa-Douglas-Rachfordalgo-
rithm to solve (6) reads as follows: forn =0;1;2;:::

Set X" := rru” 1+ " with constant value X! on each triangle, and

solve

4 Z Z

(D) SJhn T jajdcr 5o jafdx X" gdx
h

This problem is equivalent to (26).
SetY" ;= rp" ", with constant value Y on each triangle, and solve
. z Y4 z z
(32) min = jr vildx+  jvj®dx Y™ rvdx 2 vfdx
h

V2V h h h

h h

This classical elliptic problem is solved with piecewise hiear nite ele-
ments. The corresponding linear system reads:

(33) (rA+ M)v =b;
where the rigidity matrix A is computed exactly, the mass matrixM is
computed with thegrapezoidal formulgg(mass lumping), and b = [N,
is dened by iy = T i Ynd 2 ) " ifdx. The right-hand side is
numerically approximated by b ' Koty T il Yk IK] %j il f(xi).
The linear systems (33) are solved with a sparse conjugate gdient method.
Update the multipliers " 2 (Von)? as

(34) "= i rr(ruie plig)s 8K 2T
4. Applications and Numerical Results

Let us consider =(0 ;1) (0;1). Figure 1 illustrates the structured triangula-
tion T, of , = used for the two applications considered here, namely the smooth-

ing of volume fractions in free surfaces ows, and the denoiag of images/signals
composed of pixels.

Figure 1. Domain = (0 ;1) (0O;1)and the corresponding struc-
tured triangulation T, (for N, = 16 = 42, N = 36 = 62 and
Ne = 50).
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4.1. Interfaces Reconstruction in Free Surface Flows. In volume-of- uid
methods for multiphase ow, the volume fractions of each maetrial are typically
approximated by piecewise constant functions on each cellfoa nite volume or
nite di erences discretization. Consider a two-dimensional nite volume mesh
composed by square cells. The triangulation of Figure 1 is ebedded into such a
nite volume discretization, by splitting each cell into tw o triangles along its rst
diagonal. The original piecewise constant approximation 6 the volume fraction
can be projected onto the nite element space of piecewiserear functions by an
L? projection [5], in order to address smoothing techniques ina nite elements
framework.

The smoothing of volume fractions typically introduces a bias near @ when
using kernel-based methods [2, 3, 16, 24]. The following reks show that this
drawback is removed with the proposed techniques (via the abence of deformations
at the boundary).

Results are illustrated only for the rst method ( L! distance together with L?
regularization terms); results are similar for the three approaches.

First, a planar interface between two uids is considered. The original volume
fraction is the step function given by zero on one side of theriterface linex = 1=2,
and by one on the other side (characteristic function). In this case, the curvature of
the interface is zero and no interfacial force appear on thenterface. Figure 2 shows
the level lines of the original function f and the smoothed function u for various
values of the smoothing parameter' (dependent on the grid sizeh) and show that
the level lines remain perfectly parallel near the boundarés of . The larger ", the
larger the smoothing of the characteristic function, but no spurious curvature is
created.

Figure 2. Smoothing of volume fractions in the case of planar
interface. Left: Original volume fraction (step function) ; middle:

smoothed volume fraction with " = 3h; right: smoothed volume

fraction with " =5h.

Consider the case of a sinusoidal interface, de ned ag = %sin(Z y)+ % The

volume fraction is given by one on one side of the interface ahby zero on the
other side (characteristic function). Figure 3 shows the catour plot of the original
volume fraction, as well as the smoothed functionu for various values of". One
can note still a small distorsion in the neighborhood of the lmundary of .

The regular function u can be used to approximate the normal vector to the
interface n := Jr’—ﬂj the curvature of the interface = r J{—ﬂ] and the surface
tension e ects, as in [2, 3]. Numerical results show good comrgence properties of
the approximation of based on a variational formulation as in [3].
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Figure 3. Smoothing of volume fractions in the case of sinusoidal
interface. Left: Original volume fraction (characteristi ¢ function);
middle: smoothed volume fraction with " = 3 h; right: smoothed
volume fraction with " =5h.

4.2. Image Denoising. Images composed of pixels consist of an array of square
cells that is similar to a piecewise constant approximationof a given signal (by
shades of gray). ALZ2-projection of such a signal onto the nite element space
V;, related to the triangulation T, is achieved as described in Section 4.1. Start-
ing with a noisy signal, composed of an original signal articially blurred with a
given random noise, the goal is to reconstruct the original gnal, with emphasis on
recovering its sharp edges.

Let f* 2 L2() be the original signal (black/white image). Typically, f" takes
values between 0 and 245 (shades of gray), $0is normalized in the sequel to take
values between 0 and 1 to be apparented to a volume fraction.

Let f 2 L?() be the modi cation of the original signal by the addition of noise.
Two types of noise are considered in this article: (i) salt-ad-pepper noise (see.g.
[1, 7, 11, 26, 29, 30]), and (ii) additive Gaussian noise (see.g. [20, 22, 23]). The
amplitude of the noise varies in the numerical experiments. The goal ahe proposed
algorithms is to reconstruct an approximation of the original signal f* from f .

Salt-and-Pepper Noise. Salt-and-pepper noise represents the addition tof of
randomly occuring white and black pixels, (.e. of value 0 or 1). Una ected pixels
always remain unchanged. The noise is quanti ed by the percetage of pixels which
are corrupted. The addition of salt-and-pepper noise can béormulated as follows.
Let U(x) be a uniform random function, piecewise constant on each pel x; and
taking values between 0 and 1. Letx; be one pixel of the image (namely one vertex
of the underlying mesh). A signal modi ed by % of noise is given by

8
% 0; if U(X;)

E;
f(xi)=_ 1 if Ux) 1 =

: f’\(xi); otherwise
The quantity is the percentage of noise, implying that % of the pixels are
modi ed, half of them taking value one ("salt"), the other ha If taking value zero
("pepper”).
Gaussian noise. Additive Gaussian noise is a modi cation of the signalf* based on
the probability density function of the normal distributio n, with mean and vari-

ance 2, meaning that the values of the additional noise are normaly distributed.
The addition of Gaussian noise can be formulated as follows.Let N. (x) be a
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Gaussian distribution function with mean and standard deviation , piecewise
constant on each pixelx;. A signal modied by % of noise is given by

f(xi)= f(xi)+ Noai(xi):
This means that, unlike the salt-and-pepper noise,every pixel of the original
signal is modi ed by normally distributed values.

Results for the optimization problem with L! distance - L2 smoothing
term. Figures 4{6 illustrate the results of the algorithm presented in Section 3.1
for various settings. Figure 4 shows the original signaf* 2 L2(), together with
the modi ed signal f 2 L?() (modi ed with the salt-and-pepper noise of intensity
2%), and the reconstructed signalu obtained by the algorithm. For such small
intensity of noise, one can see that the original signaf is completely reconstructed.
Although the solution u is in H(), and therefore smoother than f, the edges are
accurately conserved.

50
100)
150)
200)
250)
300)
350)
a0
as0)
s00)

Figure 4. Image Denoising for salt-and-pepper noise.L! L?
smoothing algorithm for a noise level of 2% and' = 0:0003. Left:
original signal f: middle: modi ed signal f; right: signal u after
denoising.

Figure 5 illustrates the capacity of the algorithm in handli ng larger levels of noise,
by showing the modi ed signalsf together with the reconstructed functions u. As
expected, the more noise the more di cult the denoising; however, a signi cant
improvement is obtained, even if the algorithm is applied oy once (one-time lter ).

The smoothing parameter” drives the amount of smoothing/denoising of the
algorithm. When the smoothing parameter" is too large, the resulting signalv is
blurred and the edges are not preservedsmoothed-ou}, while the salt-and-pepper
noise is completely removed. On the other hand, when the smdloing parameter "
is too small, the small peaks introduced by the noise are stilvisible, but the edges
are preserved.

Figure 6 illustrates the denoising results when considerig an additive Gaussian
noise for the modi cation of the signal f*. Since such modi cation alters each pixel of
the image, it is more di cult to recover the original signal. Results show signi cant
denoising of the signal, while conserving edges, and exhtbihe robustness of the
algorithm.

Results for the optimization problem with L! distance - L' smoothing
term. In a second step, results for the algorithm presented in Sean 3.2 are pre-
sented. Figures 7{9 illustrate the results in various setthgs. Figure 7 illustrates
the results of the algorithm under various levels of noise, ¥ showing the modi ed
signalsf together with the reconstructed functions u. Results compare well with
those in Figure 5.
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Figure 5. Image Denoising for salt-and-pepper noise.L® L2
smoothing algorithm for various levels of noise and' = 0:0003.
Left: 10%, middle: 20%, right: 50%. First line: modi ed signal f ;
second line: signalu after denoising.

50 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500

50 100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500

Figure 6. Image Denoising for Gaussian noiseL.? L2 smoothing
algorithm. Top row: modi ed signals f with 10% noise (left) and
25% noise (right). Bottom row: reconstructed signals with " =
0:002.

Figure 8 shows the in uence of the number of iterations of theaugmented La-
grangian algorithm on the regularity of the solution. Let " =1 and r =10 6. The
edges of the signal are blurred when the number of iterationincreases, con rming
than the augmented Lagrangian method acts as a smoother. Whethe parameter
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Figure 7. Image Denoising for salt-and-pepper noise.L* L?
smoothing algorithm with " = 1, r = 10 *, one iteration of the
augmented Lagrangian algorithm, for various levels of nois: left:
10%, middle: 20%, and right: 50%.

r is very small, the regularization e ect induced by r is negligible, but is compen-
sated by the number of iterations of the algorithm. If r is larger, a large number
of iterations leads to a complete blurring of the signal.

50 10 150 200 25 300 0 400 450 50 5 100 15 200 250 00 350 400 450 500 50 100 150 200 25 300 0 400 450 50

Figure 8. Image Denoising for salt-and-pepper noise 10941
L' smoothing algorithm with " =1 and r = 10 6. Regularized
signal after 1 (left), 50 (middle) and 200 (right) iteration s of the
augmented Lagrangian algorithm.

Figure 9 shows the results of the denoising for additive Gausian noise with the
L1 L numerical optimization algorithm after one iteration of th e augmented
Lagrangian. Results compare well with Figure 6. The signals smoothed, and the
noise is removed.

We can conclude that theL? L* optimization algorithm introduces more denois-
ing than the L'  L? optimization algorithm presented earlier; however this results
in a loss of clarity of the signal and a tendency to blur the edgs. On the other
hand, this algorithm introduces more exibility since it in volves two smoothing pa-
rameters: r and ". Results have shown that increasing the number of iteratiors of
the augmented Lagrangian algorithm over a certain threshadl blurs the signal. The
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Figure 9. Image Denoising for Gaussian noiseL* L' smooth-
ing algorithm with " = 1 and r = 0:0009. Top row: modied
signalsf" with 10% noise (left) and 25% noise (right). Bottom row:
reconstructed signalsv.

parameterr (and the augmented Lagrangian iteration algorithm) plays the role of
the smoother.

Results for the optimization problem with L? distance - L' smoothing
term. In a last step, results for the L2 L' optimization algorithm presented in
Section 3.3 are presented. Figure 10 illustrates the resudt of the algorithm when
considering a salt-and-pepper noise of intensity 10%. Likéhe L L?! method, the
augmented Lagrangian iteration algorithm acts as a smoothe The behavior of the
augmented Lagrangian algorithm is very close to the one fortie problem with L*
distance and L' smoothing term, but the L? distance produces more smoothing,
with less iterations.

50 100 150 200 250 300 30 400 450 500 50 100 15 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500

Figure 10. Image Denoising for Gaussian noiseL? L?! smooth-

ing algorithm with " = 0:028 andr = 0:0002. Regularized signal
after 2 (left), 4 (middle) and 10 (right) iterations of the au gmented

Lagrangian.
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Table 1. PSNR for the reconstruction of the 512 512 image
"Lena" in Figures 4{10, for various levels of salt-and-pepger noise.

% PSNR? | PSNR(LT L?) | PSNR(LT LY) PSNR(LZ L)
(noise level) ("=3 10% | ("=1;r=10 % | ("=0:0028r =2 10 )
(1 2 iterations) (2 4 iterations)
10 23.38 db 29.01 db 29.07 db 26.16 db
20 18.79 db 26.47 db 26.79 db 23.68 db
50 11.71 db 20.31 db 20.43 db 19.45 db

Peak Signal-to-Noise ratios.  The performance of algorithms can be quanti ed
by considering the peak signal-to-noise ratio(PSNR), which represents the distance
between two signals. In the literature [7, 23, 26], the clagsal distance to consider is
the distance between the modi ed signalf and the reconstructed signalu. However,

when the original signal f* is known, it is more accurate to consider the PSNR
comparing the original signalf'\ and the reconstructed signalu. Keeping in mind

that " is normalized in this paper and takes value between 0 and 1, #n PSNR for
a signal ofN M pixels is de ned by

XN
uj

i=1 j=1

PSNR = 10log,, . MAE =

MAE ? MN
To evaluate the performance of the denoising algorithm, thePSNR comparing the
original signal f* and the noisy signalf is computed as a reference, namely

X
. fi

. 2 _ =l j=1
(MAE?)2 MAE *= MN
Results for the three methods are presented in Table 1 for thealt-and-pepper noise
at various intensities. The larger the PSNR, the better the goproximation of the
original signal f. These results con rm the optimal choice of parameters and he
performance of the three methods to denoisé. The results of the rst two methods
compare well, but the one relying on theL ? distance is less e cient.

PSNR’ = 10log,,

4.3. Multiphase Flow with Noise. Consider now the situation of a multiphase
ows containing sharp edges and corners. Let = (0;1)2 and f* 2 L2() be de ned
as the characteristic function of a V-shape domain, as follws:
% 1; 2x+1:2 y 08 02 x 03
1; 2xX+1:2 vy 2x+1:4;, 03 x 05
E 1, 2x 08 y 2x 06,05 x 07
1

;22X 08 y 08 07 x 08
0; otherwise.

A salt-and-pepper noise with % of noise, as de ned in the previous section,
is added to the signalf'\ to de ne the original signal f. The goals are now two-
fold: rst to smoothen the edges representing the interface between the various
materials, in order for instance to compute curvatures and nterfacial e ects, and
then to denoise the signalf . Consider the triangulation T, illustrated in Figure 1
with 2N 2 triangles and N = 128.

(xy) =
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The signal f , after modi cation by a salt-and-pepper noise of intensity 10% or
20% is illustrated in Figure 11.

20 20

40 40

60 60

100 100

120 120

Figure 11. Smoothing of sharp interfaces. Signaf after alter-
ation with a salt-and-pepper noise of intensity = 10% (left) or
=20% (right) ( N =128).

Figures 12 and 13 show the results of the smoothing proceduse(1), (3), and
(10) applied to the function f. In such as multi-objective optimization framework
(smoothing edges and denoising), the choice of the smoothinparameter allows to
emphasize one goal or the other. Figure 12 illustrates the mults obtained with the
three algorithms, for a level of noise of = 10%. Figure 13 illustrates the results
obtained with the three algorithms, for a level of noise of = 20%. Comparisons
show that the method with L2 distance andL' smoothing term adds more blurring
than the other two approaches.

5. Conclusions

Numerical methods for non-smooth optimization problems baed onL! norms
have been proposed for the smoothing of signals with noise dor the regularization
of signals with sharp gradients. Decomposition techniqguebased on over-relaxation
algorithms and augmented Lagrangian techniques allows to eiently compute min-
imizing sequences.

Numerical results are presented for applications in free stiaces ows and im-
age denoising. For the smoothing of volume fractions, the dawback encountered
through other methods of creating arti cial curvature near the boundaries of the
physical domain is avoided. Although the rst motivation of the work is from me-
chanical engineering and computational uid dynamics, the methods have provided
e cient results for the treatment of signals with salt-and- pepper noise.
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