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NUMERICAL METHODS FOR NON-SMOOTH L 1

OPTIMIZATION : APPLICATIONS TO FREE SURFACE FLOWS
AND IMAGE DENOISING

ALEXANDRE CABOUSSAT, ROLAND GLOWINSKI, AND VICTORIA PONS

Abstract. Non-smooth optimization problems based on L 1 norms are inves-

tigated for smoothing of signals with noise or functions wit h sharp gradients.

The use of L 1 norms allows to reduce the blurring introduced by methods ba sed

on L 2 norms. Numerical methods based on over-relaxation and augm ented La-

grangian algorithms are proposed. Applications to free sur face 
ows and image

denoising are presented.

Key Words. L 1 optimization, Over-relaxation algorithm, Augmented La-
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1. Introduction

The need to smooth a given function is a problem that arises inmany �elds of
science and engineering. A trade-o� between the conservation of the accuracy and
the regularity properties must be obtained. In volume-of-
 uid methods pertaining
to computational 
uid dynamics, the smoothing of volume fra ctions of materials is
required when calculating interfacial e�ects [2, 16]. In image treatment, noise can
be removed by the application of appropriate �lters, based on average mean calcu-
lations, low/high-pass �lters or PDE-based techniques. Classical smoothing tech-
niques range from kernel-based methods [2], to PDE-based techniques or wavelet-
based methods [9]. However when using classical techniques, based on quadratic
or L 2 norms, blurring of the sharp edges is often introduced. Recently, meth-
ods based onL 1 distances have received a lot more attention in various settings
[4, 8, 9, 12, 19, 20]. More generally, smoothing is required when a numerical ap-
proximation of the derivatives of a non-smooth function is needed.

In this article, numerical methods for non-smooth optimization problems relying
on L 1 norms are presented in order to reduce the blurring due to quadratic terms in
classical methods. The solution methods for the smoothing of a given signal require
advanced techniques since strict convexity and di�erentiability properties are not
satis�ed. Moreover, the uniqueness of the solution is not guaranteed, unless some
regularization terms are introduced [15, 21].

The problems addressed here consist of the minimization of the distance between
a given signal, typically with jumps or noise, and a smooth approximation whose
�rst derivatives are regular. The L 1 distance is considered �rst. A smoothing
term is introduced to add regularity. The regularization te rm is given either by
the L 2 norm or the L 1 norm of the gradient of the approximated solution. Finally
the L 2 distance is considered together with aL 1 smoothing term with bounded
variation. E�cient numerical techniques are proposed for t he solution of each of
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these problems. The space discretization is addressed withpiecewise linear �nite
elements. The discretized optimization problems are solved with either an over-
relaxation algorithm [17], or an augmented Lagrangian approach [17, 18] when the
strict convexity property is not satis�ed, or a combination of both.

Numerical results are presented for two kinds of applications. First the smooth-
ing of volume fractions in volume-of-
uid algorithms for mu ltiphase 
ows is known
to introduce arti�cial numerical errors near the boundarie s of the physical domain
(spurious currents) [2, 3, 16, 24, 27, 28]. The approximation of the surface ten-
sion e�ects near the boundaries requires for instance the introduction of ghost cells
outside the domain [13]. This drawback can be corrected by the proposed approach.

On the other hand, image denoising and reconstruction is a very active �eld of
research [6, 8, 10, 25]. The use ofL 1 distance has two main properties: it allows
to avoid the blurring of edges due to quadratic regularization terms, while being
appropriate for removing the noise. Numerical examples based on a famous example
(seee.g. [10]), are presented to compare the suggested approaches.

2. Non-Smooth Optimization Models

Let 
 be a bounded domain in R2 with a smooth boundary @
. Let f 2 L 2(
)
be a given function (or signal), that contains either sharp interfaces, discontinuities
along lines or points, or noise. We want to approximate the signal f by a smooth
function u (typically u 2 H 1(
)) in order to (i) be able to approximate the deriva-
tives of f through the derivatives of the function u, or (ii) remove the noise from
the original signal.

Let 
 � R2 be bounded with partition of the boundary � 0 [ � 1 = @
, � 0 \ � 1 = ; .
Let us denote by V0 and W0 the spaces

V0 =
�

v 2 H 1(
) : vj � 0
= 0

	
;

W0 =
�

v 2 W 1;1(
) : vj � 0
= 0

	
:

The Neumann case �0 = ; and � 1 = @
 is also included. We consider three
possible approaches: �rst the L 1 distance between the original function and its
smooth approximation is considered, together with a regularization term depending
on the gradient of the approximation. This regularization t erm can be taken as the
L 2 or the L 1 norm of the gradient. The use of theL 1 distance allows to conserve the
sharp gradient (edges) of the original function. Finally, we consider theL 2 distance,
together with a L 1 smoothing term, and design adequate numerical methods for
each of these problems.

2.1. Optimization with L 1 Distance and L 2 Smoothing Term. For f 2
L 2(
), solve

(1) min
v2 V0

Z



jv � f j dx +

"
2

Z



jr vj2 dx:

The distance term
R


 jv � f j dx is not di�erentiable, but the addition of the
smoothing term "

2

R

 jr vj2 dx forces uniqueness through (strict) convexity. The

following theorem holds:

Theorem 1. Problem (1) admits a unique solutionu 2 V0 (also if � 0 = ; ). The
solution is characterized by

(2) "
Z



r u � r (v � u)dx +

Z



jv � f j dx �

Z



ju � f j dx � 0; 8v 2 V0:
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Proof. See [17, 20]. �

Problem (1) is approximated with �nite elements and solved with an over-
relaxation iterative method in Section 3.1.

2.2. Optimization with L 1 Distance and L 1 Smoothing Term. For f 2
L 2(
), solve

(3) inf
v2 W 0

Z



jv � f j dx + "

Z



jr vj dx:

Problem (3) does not necessarily admits a minimizer, and if this exists, the
uniqueness is not guaranteed. Following [9], the formulation (3) is suitable for
image denoising and in particular edge detection, to reducethe boundary layers
introduced by the smoothing term.

Remark 1. Since only L 1-norms are involved, problem (3) has to be solved in
W 1;1(
) . Its numerical approximation presented in the sequel is however de�ned
in a H 1(
) framework.

Remark 2. In order to ensure uniqueness, a regularization term can be added to
(3) as in [21] for instance, leading to the following problem:

min
v2 V0

Z



jv � f j dx + "

Z



jr vj dx +

�
2

Z



jr vj2 dx;

where � is a given (small) parameter. The corresponding solution has to be in
V0. Numerically, the regularization term is not needed when using the proposed
augmented Lagrangian method.

Problem (3) is solved with an augmented Lagrangian approach[17, 18]. Let us
de�ne q = r v 2 L 1(
) 2. Problem (3) becomes

(4) inf
(v; q )2K

Z



jv � f j dx + "

Z



jqj dx;

where K =
�

(v; q) 2 W0 � L 1(
) 2 : r v � q = 0
	

. In order to write an augmented
Lagrangian, the solution to (4) has to be more regular. From now on, the spaceK
in (4) is replaced by ~K =

�
(v; q) 2 V0 � L 2(
) 2 : r v � q = 0

	
.

Let � 2 L 2(
) 2 be the Lagrange multiplier corresponding to the constraint
r v � q = 0 and r � 0 a positive penalty constant. The augmented Lagrangian
functional is de�ned as

(5) L r (v; q; � ) =
Z



jv � f j dx+ "

Z



jqj dx+

r
2

Z



jr v � qj2 dx+

Z



� �(r v� q)dx:

Problem (4) consists in �nding the saddle points of (5), namely looking for
f u; p; � g 2 V0 � L 2(
) 2 � L 2(
) 2 such that

(6) L r (u; p; � ) � L r (u; p; � ) � L r (v; q; � );

for all f v; q; � g 2 V0 � L 2(
) 2 � L 2(
) 2. The augmented Lagrangian functional
has the same saddle-points as the classical Lagrangian functional ( i.e. when r = 0)
[17]. An Uzawa-Douglas-Rachford algorithm is chosen to solve (6), which consists
of the following iterative algorithm:
Let u� 1 2 V0 and � 0 2 L 2(
) 2 be given. Then, for n = 0 ; 1; 2; : : :
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� Solve L r (un � 1; pn ; � n ) � L r (un � 1; q; � n ) for all q 2 L 2(
) 2. This corre-
sponds to

(7) min
q2 L 2 (
) 2

"
Z



jqj dx +

r
2

Z



jqj2 dx �

Z



(r r un � 1 + � n ) � qdx

� SolveL r (un ; pn ; � n ) � L r (v; pn ; � n ) for all v 2 V0. This corresponds to

(8) min
v2 V0

r
2

Z



jr vj2 dx �

Z



(r pn � � n ) � r vdx +

Z



jv � f j dx

� Update the multiplier � n 2 L 2(
) 2 by

(9) � n +1 = � n + r (r un � pn )

Remark 3. Problem (8) is equivalent to (1) (except for the addition of a lin-
ear term), in which the augmented Lagrangian parameterr plays the role of the
smoothing coe�cient " . Solution methods for (1) described in the following section
can therefore be used inside the iterative method (7) (8) (9).

The solution of (7) (8) (9) is addressed for the discretized version in Section 3,
when approximations by �nite elements are introduced.

2.3. Optimization with L 2 Distance and L 1 Smoothing Term. For f 2
L 2(
), �nd u 2 W0 \ L 2(
) satisfying

(10) min
v2 W 0 \ L 2 (
)

Z



jv � f j2 dx + "

Z



jr vj dx:

The distance term
R


 jv � f j2 dx is convex, while the addition of the smoothing
term "

R

 jr vj dx is used to give more regularity to the derivatives of the smoothed

function. Because of the Sobolev injectionW 1;1(
) ,! L 2(
), W0 \ L 2(
) = W0.
Problem (10) is treated like (3) with an augmented Lagrangian approach, to-

gether with a Uzawa-Douglas-Rachford iterative scheme. Asin the previous sec-
tion, the solution to (10) is assumed to be inV0 in order to write an augmented
Lagrangian function. Let us de�ne q = r v 2 L 2(
) 2. Problem (10) becomes

(11) inf
(v; q )2K

Z



jv � f j2 dx + "

Z



jqj dx;

where K =
�

(v; q) 2 V0 � L 2(
) 2 : r v � q = 0
	

. Let � 2 L 2(
) 2 be the Lagrange
multiplier corresponding to the constraint r v � q = 0 and r � 0 a positive penalty
constant. The augmented Lagrangian functionis de�ned as

(12)

L r (v; q; � ) =
Z



jv � f j2 dx + "

Z



jqj dx +

r
2

Z



jr v � qj2 dx +

Z



� � (r v � q)dx:

Problem (11) consists in �nding the saddle points of (12), namely looking for
f u; p; � g 2 V0 � L 2(
) 2 � L 2(
) 2 such that

(13) L r (u; p; � ) � L r (u; p; � ) � L r (v; q; � );

for all f v; q; � g 2 V0 � L 2(
) 2 � L 2(
) 2. An Uzawa-Douglas-Rachford algorithm
to solve (13) consists in the following iterative algorithm:
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let u� 1 2 V0 and � 0 2 L 2(
) 2 be given. Then, for n = 0 ; 1; 2; : : :

� Solve L r (un � 1; pn ; � n ) � L r (un � 1; q; � n ) for all q 2 L 2(
) 2. This corre-
sponds to solving

(14) min
q2 L 2 (
) 2

"
Z



jqj dx +

r
2

Z



jqj2 dx �

Z



(r r un � 1 + � n ) � qdx

Problem (14) is identical to (7).
� Solve L r (un ; pn ; � n ) � L r (v; pn ; � n ) for all v 2 V0. This corresponds to

solving

(15) min
v2 V0

r
2

Z



jr vj2 dx +

Z



jvj2 dx �

Z



(r pn � � n ) � r vdx � 2

Z



vfdx

The elliptic problem (15) is well-posed, even if �0 = ; .
� Update the multipliers � n 2 L 2(
) 2 as in (9):

(16) � n +1 = � n + r (r un � pn )

The discrete version of the iterative algorithm (14) (15) (16) is addressed in
Section 3.

3. Finite Element Approximation and Numerical Algorithms

Finite element methods are used for the space discretization of (1), (3), and
(10). Let h > 0 be the space discretization step. A familyf 
 hgh of polygonal
approximations of the domain 
 is introduced such that lim h! 0 
 h = 
. Let Th

be a regular triangulation of 
 h satisfying the compatibility conditions between
triangles. Let us denote by Ne the number of elements ofTh , Nn the number of
vertices of Th in 
 h n� 0, and N the total number of vertices of Th in 
 h n� 0. Let K
denote a generic element (triangle) ofTh and Pj , j = 1 ; : : : ; N the vertices of the
triangulation. Let P1 be the space of polynomials of degree 1 andP0 the space of
polynomials of degree 0. De�ne

Vh = f vh 2 C0(
) : vjK 2 P1; 8K 2 Th g;

V0h =
�

q 2 L 2(
 h ) : qjK 2 P0; 8K 2 Th
	

:

as the space of piecewise linear continuous functions and piecewise constant func-
tions respectively. Let f ' i gN

i =1 be the �nite element basis of Vh .

3.1. Numerical Approximation of the Optimization Problem w ith L 1

Distance and L 2 Smoothing Term. Problem (1) is approximated by

(17) min
vh 2 Vh

Z


 h

jvh � f h j dx +
"
2

Z


 h

jr vh j2 dx:

Let us decompose the original signal in the �nite element basis, such that f (x) =
P N

i =1 f i ' i (x), and f = [ f 1; : : : ; f N ]T 2 RN . Similarly vh (x) =
P N

i =1 vi ' i (x), v =
[v1; : : : ; vN ]T 2 RN , and the approximated problem reads

min
vh 2 Vh

Z


 h

�
�
�
�
�

NX

i =1

vi ' i �
NX

i =1

f i ' i

�
�
�
�
�
dx +

"
2

Z


 h

 
NX

i =1

vi r ' i

!

�

0

@
NX

j =1

vj r ' j

1

A dx:
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Using numerical integration (namely trapezoidal formula) for the non-smooth
term, the discretized problem reads:

(18) min
v 2 RN

NX

i =1

j
 i j
3

jvi � f i j +
"
2

vT Av ;

where j
 i j is the area of the domain de�ned as the union of the triangles having Pi

as a common vertex,A is the symmetric positive de�nite sti�ness matrix de�ned
as A = ( A ij )N

i;j =1 and A ij =
R


 r ' i � r ' j dx. Following [17], de�ne J (v) =
J0(v ) + J1(v ), with

J0(v ) =
"
2

vT Av ; J1(v ) =
NX

i =1

j
 i j
3

jvi � f i j :

Problem (18) consists in �nding u 2 RN , such that J (u) � J (v), for all v 2 RN .

Theorem 2. Problem (18) admits a unique solutionu 2 RN . This solution ap-
proximates the solution of (1) and is characterized by

(19) "uT A (v � u) + J1(v ) � J1(u) � 0; 8v 2 RN :

Proof. See [17, 20]. �

Following [17], an over-relaxation algorithm is proposed to construct an iterative
sequence

�
uk

	
k � 0 that converges to the solution of (18).

� Initialize u0 arbitrarily (typically u0 = f ). Let ! n
i 2 (0; 2) be relaxation

parameters, de�ned iteratively as explained later. Then, for n = 0 ; 1; 2; : : :,
compute the iterate un +1 = [ un +1

1 ; : : : ; un +1
N ]T 2 RN as follows.

� For i = 1 ; : : : ; N , �nd ûn +1
i satisfying

(20) J (un +1
1 ; : : : ; un +1

i � 1 ; ûn +1
i ; un

i +1 ; : : : ; un
N ) � J (un +1

1 ; : : : ; un +1
i � 1 ; v; un

i +1 ; : : : ; un
N );

for all v 2 R. Problem (20) consist in a scalar optimization with respectto
each component of the vectorun +1 successively.

� Set

(21) un +1
i = un

i + ! n
i (ûn +1

i � un
i )

The problem (20) has a unique solutionûn +1
i 2 R characterized by:

(22)

8
>><

>>:

@J0
@ui

(un +1
1 ; : : : ; un +1

i � 1 ; ûn +1
i ; un

i +1 ; : : : ; un
N )(wi � ûn +1

i )

+
j
 i j
3

�
jwi � f i j �

�
� ûn +1

i � f i
�
� � � 0; 8wi 2 R:

This corresponds to the relation

(23)

8
>>>><

>>>>:

0

@"
i � 1X

j =1

A ij un +1
j + "A ii ûn +1

i + "
NX

j = i +1

A ij un
j

1

A (wi � ûn +1
i )

+
j
 i j
3

�
jwi � f i j �

�
�ûn +1

i � f i
�
� � � 0; 8wi 2 R:
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The diagonal term A ii is strictly positive since A is positive de�nite. The explicit
solution to (23) is

(24) ûn +1
i = min

0

B
@

bn +1
i +

j
 i j
3

"A ii
; max

0

B
@f i ;

bn +1
i �

j
 i j
3

"A ii

1

C
A

1

C
A :

where bn +1
i := � "

P i � 1
j =1 A ij un +1

j � "
P N

j = i +1 A ij un
j .

The parameters ! n
i in (21) are updated iteratively to improve the convergence

speed of the algorithm [17]. Let! 0
i = ! f , where! f 2 [1; 2) is an optimal relaxation

parameter for the solution of the linear systems associatedto the matrix A . The
adaptive strategy to update ! n

i is the following. If

ûn +1
i � f i

un
i � f i

� 0; set ! n
i = 1 :

This leads to un +1
i = ûn +1

i . Otherwise if

ûn +1
i � f i

un
i � f i

� 1; set ! i = ! f ;

Otherwise if

0 �
(ûn +1

i � f i )
(un

i � f i )
< 1; set ! n

i = min
�

un
i � f i

un
i � ûn +1

i

; ! f

�
:

Based on numerical experiments, we set! f = 1 :5. The over-relaxation algorithm
converges to the solution of the variational inequality (2):

Theorem 3. Consider the algorithm (20) (21) with adaptive choice of theparam-
eter ! n

i . Then, for all u0 2 RN ,

(25) lim
n ! + 1

un = u;

where u is the solution of (18).

Proof. See [17, 20]. �

3.2. Numerical Approximation of the Optimization Problem w ith L 1

Distance and L 1 Smoothing Term. The discrete version of the algorithm (7)-
(9) consists in looking for approximationsuh 2 Vh , qh 2 (V0h )2 and � h 2 (V0h )2 of
u; q and � respectively. The subscriptsh are omitted in the sequel.

Let u� 1 2 Vh and � 0 2 (V0h )2 be arbitrary given functions. Then, for n =
0; 1; 2; : : : The discretized Uzawa-Douglas-Rachford algorithm to solve (6) reads as
follows:

� Set X n := r r un � 1 + � n , with constant value X n
i on each triangle, and

solve

(26) min
q2 (V0h )2

"
Z


 h

jqj dx +
r
2

Z


 h

jqj2 dx �
Z


 h

X n � qdx

Locally on each elementK , it corresponds to solving

(27) min
q i 2 R2

h
" jqi j +

r
2

jqi j
2 � X n

i � qi

i
; i = 1 ; : : : ; Ne:
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The minimum occurs when qi = � i X n
i , � i 2 R, � i � 0, and solving the

�rst order optimality conditions leads to � i =
1
r

�
1 �

"
jX n

i j

� +

[14], where

�
1 �

"
jX n

i j

� +

=

8
<

:

�
1 �

"
jX n

i j

�
; when

�
1 �

"
jX n

i j

�
� 0;

0; otherwise.

Therefore:

pn
i = � i X n

i =

8
<

:

1
r

�
1 �

"
jX n

i j

�
X n

i ; if jX n
i j > ";

0; if jX n
i j � ":

� Set Y n := rpn � � n , with constant value Y n
i on each triangle, and solve

(28) min
v2 Vh

r
2

Z


 h

jr vj2 dx �
Z


 h

r v � Y n dx +
Z


 h

jv � f j dx

Following the steps of Section 3.1, let us de�nef (x) =
P N

i =1 f i ' i (x),
f = [ f 1; : : : ; f N ]T 2 RN , and v(x) =

P N
i =1 vi ' i (x), v = [ v1; : : : ; vN ]T 2 RN .

The approximated problem reads

min
v2 Vh

r
2

Z


 h

 
NX

i =1

vi r ' i

!

�

0

@
NX

j =1

vj r ' j

1

A dx �
NX

i =1

vi

Z


 h

r ' i � Y n dx:

+
Z


 h

�
�
�
�
�

NX

i =1

vi ' i �
NX

i =1

f i ' i

�
�
�
�
�
dx

Using numerical integration (namely trapezoidal formula) for the non-
smooth term, the discretized problem reads:

(29) min
v 2 RN

NX

i =1

j
 i j
3

jvi � f i j +
"
2

vT Av � vT b;

where b = [ bi ]Ni =1 2 RN is de�ned by bi =
Z


 h

r ' i � Y n dx. Starting from

(29), we de�ne

J (v) := ~J0(v ) + J1(v );

with ~J0(v ) = "
2 vT Av � vT b and J1(v ) =

P N
i =1

j 
 i j
3 jvi � f i j. An over-

relaxation algorithm similar to the one detailed in Section 3.1 is advocated
to determine the sequencef un g1

n =0 � RN such that un ! u and J (un ) �
J (v), for all v 2 RN .

� Update the multipliers � n 2 (V0h )2 as

(30) � n +1
�
�
K = � n jK + r ( r un jK � pn jK ) ; 8K 2 Th :

The solution to the original problem (3) is not unique in W0. However the use
of augmented Lagrangian techniques allows to construct a converging sequence in
V0 by solving only well-posed problems (32). The use of relaxation terms as in [21]
for instance, is therefore not necessary.
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3.3. Numerical Approximation of the Optimization Problem w ith L 2

Distance and L 1 Smoothing Term. The discrete version of the algorithm (14)-
(16) consists in looking for approximationsuh 2 Vh , qh 2 (V0h )2 and � h 2 (V0h )2

of u; q and � respectively. The subscriptsh are omitted in the sequel. Letu� 1 2 Vh

and � 0 2 (V0h )2 be arbitrary given functions. The Uzawa-Douglas-Rachfordalgo-
rithm to solve (6) reads as follows: forn = 0 ; 1; 2; : : :

� Set X n := r r un � 1 + � n , with constant value X n
i on each triangle, and

solve

(31) min
q2 (V0h )2

"
Z


 h

jqj dx +
r
2

Z


 h

jqj2 dx �
Z


 h

X n � qdx

This problem is equivalent to (26).
� Set Y n := rpn � � n , with constant value Y n

i on each triangle, and solve

(32) min
v2 Vh

r
2

Z


 h

jr vj2 dx +
Z


 h

jvj2 dx �
Z


 h

Y n � r vdx � 2
Z


 h

vfdx

This classical elliptic problem is solved with piecewise linear �nite ele-
ments. The corresponding linear system reads:

(33) (rA + M ) v = b;

where the rigidity matrix A is computed exactly, the mass matrix M is
computed with the trapezoidal formula (mass lumping), and b = [ bi ]Ni =1
is de�ned by bi =

R

 h

r ' i � Y n dx � 2
R


 h
' i fdx . The right-hand side is

numerically approximated by bi '
P

K 2T h
r ' i jK � Y n jK jK j � 2

3 j
 i j f (x i ).
The linear systems (33) are solved with a sparse conjugate gradient method.

� Update the multipliers � n 2 (V0h )2 as

(34) � n +1
�
�
K = � n jK + r ( r un jK � pn jK ) ; 8K 2 Th :

4. Applications and Numerical Results

Let us consider 
 = (0 ; 1) � (0; 1). Figure 1 illustrates the structured triangula-
tion Th of 
 h = 
 used for the two applications considered here, namely the smooth-
ing of volume fractions in free surfaces 
ows, and the denoising of images/signals
composed of pixels.
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Figure 1. Domain 
 = (0 ; 1)� (0; 1) and the corresponding struc-
tured triangulation Th (for Nn = 16 = 4 2, N = 36 = 6 2 and
Ne = 50).
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4.1. Interfaces Reconstruction in Free Surface Flows. In volume-of-
uid
methods for multiphase 
ow, the volume fractions of each material are typically
approximated by piecewise constant functions on each cell of a �nite volume or
�nite di�erences discretization. Consider a two-dimensional �nite volume mesh
composed by square cells. The triangulation of Figure 1 is embedded into such a
�nite volume discretization, by splitting each cell into tw o triangles along its �rst
diagonal. The original piecewise constant approximation of the volume fraction
can be projected onto the �nite element space of piecewise linear functions by an
L 2 projection [5], in order to address smoothing techniques ina �nite elements
framework.

The smoothing of volume fractions typically introduces a bias near @
 when
using kernel-based methods [2, 3, 16, 24]. The following results show that this
drawback is removed with the proposed techniques (via the absence of deformations
at the boundary).

Results are illustrated only for the �rst method ( L 1 distance together with L 2

regularization terms); results are similar for the three approaches.
First, a planar interface between two 
uids is considered. The original volume

fraction is the step function given by zero on one side of the interface line x = 1 =2,
and by one on the other side (characteristic function). In this case, the curvature of
the interface is zero and no interfacial force appear on the interface. Figure 2 shows
the level lines of the original function f and the smoothed function u for various
values of the smoothing parameter" (dependent on the grid sizeh) and show that
the level lines remain perfectly parallel near the boundaries of 
. The larger " , the
larger the smoothing of the characteristic function, but no spurious curvature is
created.
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Figure 2. Smoothing of volume fractions in the case of planar
interface. Left: Original volume fraction (step function) ; middle:
smoothed volume fraction with " = 3 h; right: smoothed volume
fraction with " = 5 h.

Consider the case of a sinusoidal interface, de�ned asx = 1
4 sin(2�y ) + 1

2 . The
volume fraction is given by one on one side of the interface and by zero on the
other side (characteristic function). Figure 3 shows the contour plot of the original
volume fraction, as well as the smoothed functionu for various values of " . One
can note still a small distorsion in the neighborhood of the boundary of 
.

The regular function u can be used to approximate the normal vector to the
interface n := r u

jr u j , the curvature of the interface � := r � r u
jr u j , and the surface

tension e�ects, as in [2, 3]. Numerical results show good convergence properties of
the approximation of � based on a variational formulation as in [3].
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Figure 3. Smoothing of volume fractions in the case of sinusoidal
interface. Left: Original volume fraction (characteristi c function);
middle: smoothed volume fraction with " = 3 h; right: smoothed
volume fraction with " = 5 h.

4.2. Image Denoising. Images composed of pixels consist of an array of square
cells that is similar to a piecewise constant approximationof a given signal (by
shades of gray). A L 2-projection of such a signal onto the �nite element space
Vh related to the triangulation Th , is achieved as described in Section 4.1. Start-
ing with a noisy signal, composed of an original signal arti�cially blurred with a
given random noise, the goal is to reconstruct the original signal, with emphasis on
recovering its sharp edges.

Let f̂ 2 L 2(
) be the original signal (black/white image). Typically, f̂ takes
values between 0 and 245 (shades of gray), sôf is normalized in the sequel to take
values between 0 and 1 to be apparented to a volume fraction.

Let f 2 L 2(
) be the modi�cation of the original signal by the addition of noise.
Two types of noise are considered in this article: (i) salt-and-pepper noise (seee.g.
[1, 7, 11, 26, 29, 30]), and (ii) additive Gaussian noise (seee.g. [20, 22, 23]). The
amplitude of the noise varies in the numerical experiments. The goal ofthe proposed
algorithms is to reconstruct an approximation of the original signal f̂ from f .

Salt-and-Pepper Noise. Salt-and-pepper noise represents the addition tof of
randomly occuring white and black pixels, (i.e. of value 0 or 1). Una�ected pixels
always remain unchanged. The noise is quanti�ed by the percentage of pixels which
are corrupted. The addition of salt-and-pepper noise can beformulated as follows.
Let U(x) be a uniform random function, piecewise constant on each pixel x i and
taking values between 0 and 1. Letx i be one pixel of the image (namely one vertex
of the underlying mesh). A signal modi�ed by � % of noise is given by

f (x i ) =

8
>>><

>>>:

0; if U(x i ) �
�
2

;

1; if U(x i ) � 1 �
�
2

;

f̂ (x i ); otherwise:

The quantity � is the percentage of noise, implying that � % of the pixels are
modi�ed, half of them taking value one ("salt"), the other ha lf taking value zero
("pepper").

Gaussian noise. Additive Gaussian noise is a modi�cation of the signalf̂ based on
the probability density function of the normal distributio n, with mean � and vari-
ance� 2, meaning that the values of the additional noise are normally distributed.
The addition of Gaussian noise can be formulated as follows.Let N �;� (x) be a
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Gaussian distribution function with mean � and standard deviation � , piecewise
constant on each pixelx i . A signal modi�ed by � % of noise is given by

f (x i ) = f̂ (x i ) + � N0;1(x i ):
This means that, unlike the salt-and-pepper noise,every pixel of the original

signal is modi�ed by normally distributed values.

Results for the optimization problem with L 1 distance - L 2 smoothing
term. Figures 4{6 illustrate the results of the algorithm presented in Section 3.1
for various settings. Figure 4 shows the original signalf̂ 2 L 2(
), together with
the modi�ed signal f 2 L 2(
) (modi�ed with the salt-and-pepper noise of intensity
2%), and the reconstructed signalu obtained by the algorithm. For such small
intensity of noise, one can see that the original signal̂f is completely reconstructed.
Although the solution u is in H 1(
), and therefore smoother than f̂ , the edges are
accurately conserved.
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Figure 4. Image Denoising for salt-and-pepper noise.L 1 � L 2

smoothing algorithm for a noise level of 2% and" = 0 :0003. Left:
original signal f̂ ; middle: modi�ed signal f ; right: signal u after
denoising.

Figure 5 illustrates the capacity of the algorithm in handli ng larger levels of noise,
by showing the modi�ed signals f together with the reconstructed functions u. As
expected, the more noise the more di�cult the denoising; however, a signi�cant
improvement is obtained, even if the algorithm is applied only once (one-time �lter ).

The smoothing parameter " drives the amount of smoothing/denoising of the
algorithm. When the smoothing parameter " is too large, the resulting signalv is
blurred and the edges are not preserved (smoothed-out), while the salt-and-pepper
noise is completely removed. On the other hand, when the smoothing parameter "
is too small, the small peaks introduced by the noise are still visible, but the edges
are preserved.

Figure 6 illustrates the denoising results when considering an additive Gaussian
noise for the modi�cation of the signal f̂ . Since such modi�cation alters each pixel of
the image, it is more di�cult to recover the original signal. Results show signi�cant
denoising of the signal, while conserving edges, and exhibit the robustness of the
algorithm.
Results for the optimization problem with L 1 distance - L 1 smoothing
term. In a second step, results for the algorithm presented in Section 3.2 are pre-
sented. Figures 7{9 illustrate the results in various settings. Figure 7 illustrates
the results of the algorithm under various levels of noise, by showing the modi�ed
signals f together with the reconstructed functions u. Results compare well with
those in Figure 5.
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Figure 5. Image Denoising for salt-and-pepper noise.L 1 � L 2

smoothing algorithm for various levels of noise and" = 0 :0003.
Left: 10%, middle: 20%, right: 50%. First line: modi�ed signal f ;
second line: signalu after denoising.
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Figure 6. Image Denoising for Gaussian noise.L 1 � L 2 smoothing
algorithm. Top row: modi�ed signals f with 10% noise (left) and
25% noise (right). Bottom row: reconstructed signals with " =
0:002.

Figure 8 shows the in
uence of the number of iterations of theaugmented La-
grangian algorithm on the regularity of the solution. Let " = 1 and r = 10 � 6. The
edges of the signal are blurred when the number of iterationsincreases, con�rming
than the augmented Lagrangian method acts as a smoother. When the parameter
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Figure 7. Image Denoising for salt-and-pepper noise.L 1 � L 1

smoothing algorithm with " = 1, r = 10 � 4, one iteration of the
augmented Lagrangian algorithm, for various levels of noise: left:
10%, middle: 20%, and right: 50%.

r is very small, the regularization e�ect induced by r is negligible, but is compen-
sated by the number of iterations of the algorithm. If r is larger, a large number
of iterations leads to a complete blurring of the signal.
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Figure 8. Image Denoising for salt-and-pepper noise 10%.L 1 �
L 1 smoothing algorithm with " = 1 and r = 10 � 6. Regularized
signal after 1 (left), 50 (middle) and 200 (right) iteration s of the
augmented Lagrangian algorithm.

Figure 9 shows the results of the denoising for additive Gaussian noise with the
L 1 � L 1 numerical optimization algorithm after one iteration of th e augmented
Lagrangian. Results compare well with Figure 6. The signal is smoothed, and the
noise is removed.

We can conclude that theL 1 � L 1 optimization algorithm introduces more denois-
ing than the L 1 � L 2 optimization algorithm presented earlier; however this results
in a loss of clarity of the signal and a tendency to blur the edges. On the other
hand, this algorithm introduces more 
exibility since it in volves two smoothing pa-
rameters: r and " . Results have shown that increasing the number of iterations of
the augmented Lagrangian algorithm over a certain threshold blurs the signal. The



NON-SMOOTH L 1 OPTIMIZATION 369

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Figure 9. Image Denoising for Gaussian noise.L 1 � L 1 smooth-
ing algorithm with " = 1 and r = 0 :0009. Top row: modi�ed
signalsf̂ with 10% noise (left) and 25% noise (right). Bottom row:
reconstructed signalsv.

parameter r (and the augmented Lagrangian iteration algorithm) plays the role of
the smoother.
Results for the optimization problem with L 2 distance - L 1 smoothing
term. In a last step, results for the L 2 � L 1 optimization algorithm presented in
Section 3.3 are presented. Figure 10 illustrates the results of the algorithm when
considering a salt-and-pepper noise of intensity 10%. Likethe L 1 � L 1 method, the
augmented Lagrangian iteration algorithm acts as a smoother. The behavior of the
augmented Lagrangian algorithm is very close to the one for the problem with L 1

distance and L 1 smoothing term, but the L 2 distance produces more smoothing,
with less iterations.
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Figure 10. Image Denoising for Gaussian noise.L 2 � L 1 smooth-
ing algorithm with " = 0 :028 and r = 0 :0002. Regularized signal
after 2 (left), 4 (middle) and 10 (right) iterations of the au gmented
Lagrangian.
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Table 1. PSNR for the reconstruction of the 512� 512 image
"Lena" in Figures 4{10, for various levels of salt-and-pepper noise.

� % PSNR? PSNR(L 1 � L 2) PSNR(L 1 � L 1) PSNR(L 2 � L 1)
(noise level) (" = 3 � 10� 4) (" = 1 ; r = 10 � 4) (" = 0 :0028; r = 2 � 10� 5)

(1 � 2 iterations) (2 � 4 iterations)
10 23.38 db 29.01 db 29.07 db 26.16 db
20 18.79 db 26.47 db 26.79 db 23.68 db
50 11.71 db 20.31 db 20.43 db 19.45 db

Peak Signal-to-Noise ratios. The performance of algorithms can be quanti�ed
by considering thepeak signal-to-noise ratio(PSNR), which represents the distance
between two signals. In the literature [7, 23, 26], the classical distance to consider is
the distance between the modi�ed signalf and the reconstructed signalu. However,
when the original signal f̂ is known, it is more accurate to consider the PSNR
comparing the original signal f̂ and the reconstructed signalu. Keeping in mind
that f̂ is normalized in this paper and takes value between 0 and 1, the PSNR for
a signal of N � M pixels is de�ned by

PSNR = 10 log10

�
1

MAE 2

�
; MAE =

NX

i =1

MX

j =1

�
�
�uij � f̂ ij

�
�
�

MN
:

To evaluate the performance of the denoising algorithm, thePSNR comparing the
original signal f̂ and the noisy signalf is computed as a reference, namely

PSNR? = 10 log10

�
1

(MAE ?)2

�
; MAE ? =

NX

i =1

MX

j =1

�
�
�f ij � f̂ ij

�
�
�

MN
:

Results for the three methods are presented in Table 1 for thesalt-and-pepper noise
at various intensities. The larger the PSNR, the better the approximation of the
original signal f̂ . These results con�rm the optimal choice of parameters and the
performance of the three methods to denoisef . The results of the �rst two methods
compare well, but the one relying on theL 2 distance is less e�cient.

4.3. Multiphase Flow with Noise. Consider now the situation of a multiphase

ows containing sharp edges and corners. Let 
 = (0 ; 1)2 and f̂ 2 L 2(
) be de�ned
as the characteristic function of a V-shape domain, as follows:

f̂ (x; y) =

8
>>>><

>>>>:

1; � 2x + 1 :2 � y � 0:8; 0:2 � x � 0:3
1; � 2x + 1 :2 � y � � 2x + 1 :4; 0:3 � x � 0:5
1; 2x � 0:8 � y � 2x � 0:6; 0:5 � x � 0:7
1; 2x � 0:8 � y � 0:8; 0:7 � x � 0:8
0; otherwise.

A salt-and-pepper noise with � % of noise, as de�ned in the previous section,
is added to the signal f̂ to de�ne the original signal f . The goals are now two-
fold: �rst to smoothen the edges representing the interfaces between the various
materials, in order for instance to compute curvatures and interfacial e�ects, and
then to denoise the signalf . Consider the triangulation Th illustrated in Figure 1
with 2N 2 triangles and N = 128.
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The signal f , after modi�cation by a salt-and-pepper noise of intensity 10% or
20% is illustrated in Figure 11.
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Figure 11. Smoothing of sharp interfaces. Signalf after alter-
ation with a salt-and-pepper noise of intensity � = 10% (left) or
� = 20% (right) ( N = 128).

Figures 12 and 13 show the results of the smoothing procedures (1), (3), and
(10) applied to the function f . In such as multi-objective optimization framework
(smoothing edges and denoising), the choice of the smoothing parameter allows to
emphasize one goal or the other. Figure 12 illustrates the results obtained with the
three algorithms, for a level of noise of� = 10%. Figure 13 illustrates the results
obtained with the three algorithms, for a level of noise of� = 20%. Comparisons
show that the method with L 2 distance andL 1 smoothing term adds more blurring
than the other two approaches.

5. Conclusions

Numerical methods for non-smooth optimization problems based onL 1 norms
have been proposed for the smoothing of signals with noise orfor the regularization
of signals with sharp gradients. Decomposition techniquesbased on over-relaxation
algorithms and augmented Lagrangian techniques allows to e�ciently compute min-
imizing sequences.

Numerical results are presented for applications in free surfaces 
ows and im-
age denoising. For the smoothing of volume fractions, the drawback encountered
through other methods of creating arti�cial curvature near the boundaries of the
physical domain is avoided. Although the �rst motivation of the work is from me-
chanical engineering and computational 
uid dynamics, themethods have provided
e�cient results for the treatment of signals with salt-and- pepper noise.
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