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L
2 NORM EQUIVALENT A POSTERIORI ERROR ESTIMATE

FOR A CONSTRAINED OPTIMAL CONTROL PROBLEM

LIANG GE, WENBIN LIU, AND DANPING YANG

Abstract. Adaptive finite element approximation for a constrained optimal

control problem is studied. A posteriori error estimators equivalent to the L2

norm of the approximation error are derived both for the state and the control

approximation, which are particularly suitable for an adaptive multi-mesh finite

element scheme and applications where L2 error is more important. The error

estimators are then implemented and tested with promising numerical results.
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1. Introduction

There has been so extensive research on developing adaptive finite element algo-
rithms for PDEs in the scientific literature that it is simply impossible to give
even a very brief review here. Recently, there has been intensive research in
adaptive finite element methods for optimal control problems, see, for example,
[2, 3, 4, 6, 8, 9, 12, 15, 16, 18]. Particularly a posteriori error estimates equivalent
to the energy norm of the approximation error were derived for several types of op-
timal control problems. Furthermore it has been found that for constrained control
problems, different adaptive meshes are often needed for the control and the states,
see [10]. Using different adaptive meshes for the control and the state allows very
coarse meshes to be used in solving the state and co-state equations. Thus much
computational work can be saved since one of the major computational loads in
computing optimal control is to solve the state and co-state equations repeatedly.
This will be also seen from our numerical experiments in Section 4.

Although a posteriori error estimates equivalent to the H1 norm of the approx-
imation error (to be called H1 norm equivalent a posteriori error estimates) have
been derived for several elliptic optimal control problems, see [8, 9, 10], both for
the control constraints of obstacle types and integral types, there seems no existing
work on L2 norm equivalent a posteriori error estimates, which are equivalent to
the L2 norm of the approximation error, although some upper bounds were derived
using the L2 norm for the control constraint of an obstacle type, see [10, 16]. It does
not seem a trivial problem whether and how some lower bounds can be derived via
the L2 norm, although it seemed possible to adapt the existing duality techniques
to derive upper bounds. In many engineering applications, one cares more about
averaging values of the control and the states. In these cases, it seems to be more
natural to use the L2-norm of the approximation error as the stopping criteria in
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computations. Thus L2 equivalent error indicators seem to be quite useful. Error
indicators based on the L2 norm error bounds tend to produce less over-reinterment
in such cases.

The purpose of this article is to investigate indicators that are equivalent to the
L2 norm of the approximation error for a constrained optimal control problem,
where the control constraint is of an integral type. This control problem was stud-
ied in [8, 9], where H1 norm equivalent a posteriori error estimates were derived.
We derived L2 norm equivalent a posteriori error estimators, which allow different
meshes to be used for the stats and the control. Then we performed some numerical
tests to confirm the effectiveness of the error estimators.

The plan of the paper is as follows. In Section 2, we will construct the finite
element approximation for the distributed optimal control problem. In Section
3, the a posteriori error estimators equivalent in the L2 norm are derived for the
control problem. Finally numerical test results are presented in Section 4.

2. Optimal control problem and its finite element approximation

Let Ω be a bounded open set in Rd (1 ≤ d ≤ 3) with the Lipschitz boundary
∂Ω. We adopt the standard notation W 1,q(Ω) for Sobolev spaces on Ω with norm

‖ · ‖W 1,q(Ω) and seminorm | · |W 1,q(Ω) for 1 ≤ q ≤ ∞. We set W 1,q
0 (Ω) ≡ {w ∈

W 1,q(Ω) : w|∂Ω = 0} and denote W 1,2(Ω) (W 1,2
0 (Ω)) by H1(Ω) (H1

0 (Ω)). In the
rest of the paper, we will take the state space V = H1

0 (Ω) and the control space
U = L2(Ω). Other cases can be considered similarly. Let the observation space Y =
L2(Ω). We investigate the following distributed convex optimal control problem:

(2.1) min
u∈K

1

2

∫

Ω

(y − yd)
2 +

1

2

∫

Ω

u2,

−∆y = f + u in Ω , y|∂Ω = 0,

where K = {v | v ∈ L2(Ω),
∫
Ω

v ≥ 0} is a closed convex set. We first give a weak
formula for the state equation. Let

a(y, w) =

∫

Ω

∇y · ∇w, ∀ y, w ∈ V

and

(u, v) =

∫

Ω

uv, ∀ u, v ∈ L2(Ω).

It follows that

(2.2) α‖y‖2
V ≤ a(y, y), |a(y, w)| ≤ M‖y‖V ‖w‖V , ∀ y, w ∈ V,

where 0 < α ≤ M < ∞ are positive constants. With these notions the standard
weak formula for the state equation reads: find y ∈ V such that

(2.3) a(y, w) = (f + u, w), ∀ w ∈ H1
0 (Ω).

Then the mentioned-above control problem can be restated as follows:

(2.4) (OCP) :





min
u∈K

{1

2

∫

Ω

(y − yd)
2 +

1

2

∫

Ω

u2
}
,

a(y, w) = (f + u, w), ∀ w ∈ V.

It follows from [14] that the control problem (OCP) has a unique solution (y, u).
Furthermore a pair (y, u) is the solution of (OCP) iff there is a co-state p ∈ V such
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that the triplet (y, p, u) satisfies the following optimality conditions:

(2.5) (OCP-OPT) :






a(y, w) = (f + u, w), ∀ w ∈ V,

a(q, p) = (y − yd, q), ∀ q ∈ V,

(u + p, v − u) ≥ 0, ∀ v ∈ K.

Let us consider the finite element approximation of the control problem (OCP).
Here we consider only the conforming d-simplex elements. For simplicity, we assume
that Ω is a polygonal domain. Let T h be a triangulation Ω into disjoint regular
d-simplices τ , so that Ω̄ =

⋃
τ∈T h τ̄ . Each element has at most one face on ∂Ω,

and τ̄ and τ̄ ′ have either only one common vertex or a whole edge or face if τ and
τ ′ ∈ T h.

Associated with T h is a finite dimensional subspace Sh of C(Ω̄), such that χ|τ
are polynomials of m-degree (m ≥ 1) for each χ ∈ Sh and τ ∈ T h. Let V h =
Sh ∩ H1

0 (Ω). It is easy to see that V h ⊂ V .
Let T h

U be another triangulation of Ω into disjoint regular d-simplices τU , so that
Ω̄ =

⋃
τU∈T h

U
τ̄U . Assume that τ̄U and τ̄ ′

U have either only one common vertex or a

whole face or are disjoint if τU and τ ′
U ∈ T h

U .
Associated with T h

U is another finite dimensional subspace Uh of L2(Ω), such
that χ|τU

are polynomials of r-degree (r ≥ 0) for each χ ∈ Wh
U and τU ∈ T h

U . An
optimal control of a constrained problem normally has lower regularity so that we
shall use discontinuous base functions to approximate the control. Hence there is
no requirement for continuity of the functions in Uh.

Let hτ (hτU
) denote the maximum diameter of the element τ (τU ) in T h (T h

U ).
Define the discrete constraint set as

(2.6) Kh = {uh ∈ Uh :

∫

Ω

uh ≥ 0}.

Then a possible finite element approximation of (OCP), which will be labeled as
(OCP)h, reads:

(2.7) (OCP)h :






min
uh∈Kh

{1

2

∫

Ω

(yh − yd)
2 +

1

2

∫

Ω

u2
h

}
,

a(yh, wh) = (f + uh, wh), ∀ wh ∈ V h.

Define

J(u) =
1

2

∫

Ω

(y(u) − yd)
2 +

1

2

∫

Ω

u2, Jh(uh) =
1

2

∫

Ω

(yh(uh) − yd)
2 +

1

2

∫

Ω

u2
h.

where yh(uh) ∈ V h is given by

a(yh(uh), wh) = (uh, wh), ∀ wh ∈ V h.

Then the reduced problems of (2.4) and (2.7) read: u ∈ K such that

(2.8) J(u) = min
v∈K

{J(v)},

and uh ∈ Kh such that

(2.9) Jh(uh) = min
vh∈Kh

{Jh(vh)},
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respectively. Since this is a linear control problem, the reduced objective function
is convex. Furthermore J(·) is uniformly convex in the sense that there is a c > 0,
independent of h, such that

(2.10) (J ′(u) − J ′(v), u − v) ≥ c‖u − v‖2
L2(Ω),

where u, v ∈ U . It follows that the control problem (OCP)h has a unique solution
(yh, uh). Furthermore, a pair (yh, uh) ∈ V h × Uh is the solution of (OCP)h iff
there is a co-state ph ∈ V h such that the triplet (yh, ph, uh) satisfies the following
optimality conditions, which shall be labeled as (OCP-OPT)h:

(2.11) (OCP-OPT)h :






a(yh, wh) = (f + uh, wh), ∀ wh ∈ V h,

a(qh, ph) = (yh − yd, qh), ∀ qh ∈ V h,

(uh + ph, vh − uh) ≥ 0, ∀ vh ∈ Kh.

For the last variational inequality in (2.11) we have the following conclusion,
which was proved in [8, 9] but for the readers’ convenience we include it here:

Lemma 2.1. Assume ph is known in the variational inequality of (2.11). The
solution of the variational inequality in (2.11) is

(2.12) uh = Ph

(
− ph + max{0, ph}

)
, ph =

∫
Ω

ph∫
Ω

1
,

where Ph is the L2-projection from L2(Ω) to Uh.

Proof. The proof is divided into two steps. We will prove uh ∈ Kh at the first
step, and then prove uh is the solution of the variational inequality at the second
step.

Step 1. Let Ph be the L2-projection from L2(Ω) to Uh. For any v ∈ U , we have
∫

Ω

(Phv − v)φ = 0, ∀ φ ∈ Uh.

Since φ ≡ 1 ∈ Uh such that
∫

Ω

[
Ph(−ph + max{0, ph}) − (−ph + max{0, ph})

]
= 0,

hence ∫

Ω

uh =

∫

Ω

(−ph + max{0, ph}) = −

∫

Ω

ph +

∫

Ω

max{0, ph} ≥ 0.

Thus uh ∈ Kh.
Step 2. Noting that for each vh ∈ Kh,

∫

Ω

(uh + ph)(vh − uh) =

∫

Ω

[
Ph(−ph + max{0, ph}) − (−ph + max{0, ph})

+ max{0, ph}
]
(vh − uh) =

∫

Ω

max{0, ph}(vh − uh).

we see that if ph ≤ 0 then
∫

Ω

(uh + ph)(vh − uh) = 0,

and that if ph > 0 then ∫

Ω

(uh + ph)(vh − uh) ≥ 0,
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since

∫

Ω

uh =

∫

Ω

(−ph + max{0, ph}) = 0 and

∫

Ω

vh ≥ 0.

Therefore it has been shown that uh is the solution of the variational inequality
in (2.11). �

3. L2 norm equivalent a posteriori error estimators

Adaptive finite element approximation has been found very useful in computing
optimal control, as mentioned in the introduction. It uses an a posteriori error
indicator to guide the mesh refinement procedure. Adaptive finite element approx-
imation refines only the area where the error indicator is larger, so that a higher
density of nodes is distributed over the area where the solution is difficult to approx-
imate. In this section, we will derive an upper bound estimate of error in L2-norm,
and then show that it also is a lower bound. In addition, c or C denotes a general
positive constant independent of h and hU .

3.1. Upper bound estimate in L2 norm. The following theorem is one of our
main results, which gives an upper bound for the approximation error in L2 norm.

Theorem 3.1. Assume that Ω is a convex domain. Let (y, u) and (yh, uh) be
the solutions of (OCP) and (OCP)h, and p and ph be the solutions of the co-state
equations (2.5) and (2.11) respectively. Then,

(3.1) ‖u − uh‖
2
L2(Ω) + ‖y − yh‖

2
L2(Ω) + ‖p − ph‖

2
L2(Ω) ≤ C

3∑

i=1

η2
i ,

where the error indicators η1, η2 and η3 are given by

η2
1 =

∑

τU

∫

τU

(−Phph + ph)2,

η2
2 =

∑

τ∈T h

h4
τ

∫

τ

(yh − yd + div(∇ph))2 +
∑

l∩∂Ω=∅

∫

l

h3
l [(∇ph · n)]2,

η2
3 =

∑

τ∈T h

h4
τ

∫

τ

(f + uh + div(∇yh))2 +
∑

l∩∂Ω=∅

∫

l

h3
l [(∇yh · n)]2,

(3.2)

where Ph is the L2-projection from L2(Ω) to Uh, l is a face of an element τ , [∇ph·n)]
and [(∇yh · n)] are the normal derivative jumps over the interior face l, defined by

[(∇ph · n)]l = (∇ph|τ1

l
−∇ph|τ2

l
) · n,

[(∇yh · n)]l = (∇yh|τ1

l
−∇yh|τ2

l
) · n,

(3.3)

where n is the unit normal vector on l = τ̄1
l ∩ τ̄2

l outwards τ1
l , hl is the maximum

diameter of the face l.

In order to prove Theorem 3.1, we need the following important lemmas.

Lemma 3.1. [5] Let πh be the standard Lagrange interpolation operator. For
m = 0 or 1, q > d

2 and each v ∈ W 2,q(Ω),

(3.4) |v − πhv|W m,q(Ω) ≤ Ch2−m|v|W 2,q(Ω).

Lemma 3.2. Let π̂h be the average interpolation operator defined in [17]. For
m = 0 or 1, 1 ≤ q ≤ ∞ and each v ∈ W 1,q(Ω),

(3.5) |v − π̂hv|W m,q(τ) ≤
∑

τ̄ ′∩τ̄ 6=∅

Ch1−m
τ |v|W 1,q(τ ′).
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Lemma 3.3. [11] For each v ∈ W 1,q(Ω), 1 ≤ q < ∞,

(3.6) ‖v‖W 0,q(∂τ) ≤ C
(
h
− 1

q
τ ‖v‖W 0,q(τ) + h

1− 1

q
τ |v|W 1,q(τ)

)
.

Let J(·) and Jh(·) be as before, and p(uh) be the solution of the following aux-
iliary equation:

(3.7)

{
a(y(uh), w) = (f + uh, w), ∀ w ∈ V,

a(q, p(uh)) = (y(uh) − yd, q), ∀ q ∈ V.

It can be shown that

(J ′(u), v) = (u + p, v), ∀ v ∈ U,

(J ′(uh), v) = (uh + p(uh), v), ∀ v ∈ U

and

(J ′
h(uh), vh) = (uh + ph, vh), ∀ vh ∈ Uh.

Then we need to prove two lemmas. In Lemma 3.4, we derive the error bound
for u − uh.

Lemma 3.4. Let u and uh be the solutions of (2.8) and (2.9) respectively. Then,

(3.8) ‖u − uh‖
2
L2(Ω) ≤ C

{
η2
1 + ‖ph − p(uh)‖2

L2(Ω)

}
,

where ph and p(uh) are the solutions of equations (2.11) and (3.7) respectively.

Proof. It follows from (2.10) that

c‖u − uh‖L2(Ω) ≤ (J ′(u), u − uh) − (J ′(uh), u − uh)

≤ −(J ′(uh), u − uh) = (J ′
h(uh), uh − u) + (J ′

h(uh) − J ′(uh), u − uh)

= inf
vh∈Kh

(J ′
h(uh), vh − u) + (J ′

h(uh) − J ′(uh), u − uh).

(3.9)

It is clear that

(3.10) (J ′
h(uh), vh − u) = (uh + ph, vh − u).

Noting that

∫

Ω

v ≥ 0 and

∫

Ω

Phv − v = 0 for all v ∈ K, we have

∫

Ω

Phv ≥ 0,

which means Phv ∈ Kh. So we can take vh = Phu in equality (3.10). Then from
Lemma 2.1, we have

(uh + ph, Phu − u) =
∑

τU

∫

τU

(−Phph + max(0, ph) + ph)(Phu − u).

Since

∫

τU

(Phu − u) = 0, hence

(uh + ph, Phu − u) =
∑

τU

∫

τU

(−Phph + ph)(Phu − u).
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Noting that Phuh = uh , we have
∑

τ

∫

τU

(−Phph + ph)(Phu − u)

=
∑

τU

∫

τU

(−Phph + ph)(Ph(u − uh) − (u − uh))

≤ C
∑

τU

∫

τU

(−Phph + ph)2 +
c

3
‖u − uh‖

2
L2(Ω),

(3.11)

which leads to

‖u − uh‖
2
L2(Ω) ≤ C

∑

τU

∫

τU

(−Phph + ph)2 + (J ′
h(uh) − J ′(uh), u − uh).(3.12)

It follows from the formulas of J ′ and J ′
h that

(J ′
h(uh) − J ′(uh), u − uh) = (ph − p(uh), u − uh)

≤ C‖ph − p(uh)‖2
L2(Ω) +

c

3
‖uh − u‖2

L2(Ω).
(3.13)

Substituting (3.13) into (3.12) results in (3.8). �

Lemma 3.5. Assume that Ω is a convex domain. Let (yh, ph) and (y(uh), p(uh))
be the solutions of (2.11) and (3.7) respectively. Then,

(3.14) ‖yh − y(uh)‖2
L2(Ω) + ‖ph − p(uh)‖2

L2(Ω) ≤ C(η2
2 + η2

3).

Proof. We need an a priori regular estimate for the following auxiliary problem:

(3.15) −div(∇ξ) = g in Ω, ξ|∂Ω = 0.

It is well-known that ξ ∈ H2(Ω)
⋂

H1
0 (Ω) such that

‖ξ‖H2(Ω) ≤ C‖g‖L2(Ω).

Firstly, we estimate ‖yh − y(uh)‖L2(Ω). Let ξ be the solution of (3.15) with
g = y(uh) − yh and ξI be the average interpolation of ξ defined in Lemma 2.1.
Applying the well known residual technique ( see, e.g., [5] and [17] ), from equations
(2.11), (3.7) and Lemmas 3.1 and 3.2, we derive that

‖y(uh) − yh‖
2
L2(Ω) = (y(uh) − yh,−div(∇ξ))

= (∇(y(uh) − yh),∇(ξ − ξI)) + (∇(y(uh) − yh),∇ξI)

=
∑

τ∈T h

∫

τ

(f + uh + div(∇yh))(ξ − ξI)

−
∑

τ∈T h

∫

∂τ

(∇yh · n)(ξ − ξI)ds

≤ C
( ∑

τ∈T h

h4
τ

∫

τ

(f + uh + div(∇yh))2

+
∑

l∩∂Ω=∅

h3
l

∫

l

[∇yh · n]2
)1/2

‖ξ‖H2(Ω)

≤ C
( ∑

τ∈T h

h4
τ

∫

τ

(f + uh + div(∇yh))2

+
∑

l∩∂Ω=∅

h3
l

∫

l

[∇yh · n]2
)

+
1

2
‖y(uh) − yh‖

2
L2(Ω).
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Hence,

(3.16) ‖y(uh) − yh‖
2
L2(Ω) ≤ Cη2

3 .

Next we estimate ‖p(uh) − ph‖L2(Ω). Let ξ be the solution of (3.15) with g =

p(uh) − ph, and ξI = πhξ ∈ V h be the standard Lagrange interpolation of ξ. Then

‖p(uh) − ph‖
2
L2(Ω) = (p(uh) − ph,−div(∇ξ))

= (∇(p(uh) − ph),∇(ξ − ξI)) + (∇(p(uh) − ph),∇ξI)

=
∑

τ∈T h

∫

τ

(y(uh) − yd + div(∇ph))(ξ − ξI)

−
∑

l∩∂Ω=∅

∫

l

[∇ph · n](ξ − ξI)ds + (y(uh) − yh, ξI)

=
∑

τ∈T h

∫

τ

(yh − yd + div(∇ph))(ξ − ξI)

−
∑

l∩∂Ω=∅

∫

l

[∇ph · n](ξ − ξI)ds + (y(uh) − yh, ξ)

≤ C
( ∑

τ∈T h

h4
τ

∫

τ

(yh − yd + div(∇ph))2 +
∑

l∩∂Ω=∅

h3
l

∫

l

[∇ph · n]2
)1/2

·
( ∑

τ∈T h

h−4
τ

∫

τ

|ξ − ξI |
2 +

∑

l∩∂Ω=∅

h−3
τ

∫

l

|ξ − ξI |
2
)1/2

+ C‖yh − y(uh)‖L2(Ω)‖ξ‖L2(Ω)

≤ C
{ ∑

τ∈T h

h4
τ

∫

τ

(yh − yd + div(∇ph))2 +
∑

l∩∂Ω=∅

h3
l

∫

l

[∇ph · n]2

+ ‖yh − y(uh)‖2
L2(Ω)

}
+

1

2
‖p(uh) − ph‖

2
L2(Ω).

Thus

‖p(uh) − ph‖
2
L2(Ω) ≤ C

{ ∑

τ∈T h

h4
τ

∫

τ

(yh − yd + div(∇ph))2

+
∑

l∩∂Ω=∅

h3
l

∫

l

[∇ph · n]2 + ‖yh − y(uh)‖2
L2(Ω)

}
.

(3.17)

As a result, it follows from (3.17) and (3.16) that

(3.18) ‖ph − p(uh)‖2
L2(Ω) ≤ C

{
η2
2 + η2

3

}
.

The proof of Lemma 3.5 is completed. �

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. It follows from Lemmas 3.4 and 3.5 that

(3.19) ‖u − uh‖
2
L2(Ω) + ‖ph − p(uh)‖2

L2(Ω) + ‖yh − y(uh)‖2
L2(Ω) ≤ C

3∑

i=1

η2
i .

Noting that

(3.20) ‖yh − y‖L2(Ω) ≤ ‖yh − y(uh)‖L2(Ω) + ‖y(uh) − y‖L2(Ω),
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(3.21) ‖ph − p‖L2(Ω) ≤ ‖ph − p(uh)‖L2(Ω) + ‖p(uh) − p‖L2(Ω),

and

(3.22) ‖p − p(uh)‖2
L2(Ω) + ‖y − y(uh)‖2

L2(Ω) ≤ C‖u − uh‖
2
L2(Ω),

we then derive (3.1) from (3.19)-(3.22). �

3.2. Lower bound estimate in L2 norm. Now we are in the position of deriving
a posteriori lower bounds. That is to show the derived estimators in the above
theorem are in fact equivalent in the sense that there are two constants C ≥ c > 0
such that

c

3∑

i=1

η2
i − cǫ2 ≤ ‖u − uh‖

2
L2(Ω) + ‖y − yh‖

2
L2(Ω) + ‖p − ph‖

2
L2(Ω) ≤ C

3∑

i=1

η2
i ,

where ǫ is of higher order. The following theorem confirms this result.

Theorem 3.2. Let (y, u) and (yh, uh) be the solutions of (OCP) and (OCP)h,
and p and ph be the solutions of the co-state equations (2.5) and (2.11) respectively.
Then,

(3.23)

3∑

i=1

η2
i ≤ C

{
‖u − uh‖

2
L2(Ω) + ‖y − yh‖

2
L2(Ω) + ‖p − ph‖

2
L2(Ω) + ǫ2

}
,

where ηi, i = 1, 2, 3, are defined in Theorem 3.1 and

ǫ2 = ǫ22 + ǫ23

associated with

(3.24) ǫ22 =
∑

τ∈T h

∫

τ

h4
τ (yh − yd − (yh|τ − yd|τ ))2

and

(3.25) ǫ23 =
∑

τ∈T h

∫

τ

h4
τ (f − f̄ |τ )2,

where v̄|τ is the integral average value of v on the element τ such that v̄|τ =

∫
τ v∫
τ

1
.

It is clear that ǫ is of higher order. The proof of Theorem 3.2 is completed by
the following lemmas.

Lemma 3.6. Let (y, u) and (yh, uh) be the solutions of (OCP) and (OCP)h, and p
and ph be the solutions of the co-state equations (2.5) and (2.11) respectively. Then,

(3.26) η2
1 ≤ C

{
‖u − uh‖

2
L2(Ω) + ‖p− ph‖

2
L2(Ω)

}
,

where η1 is defined in Theorem 3.1.

Proof. It is easily seen that
∑

τU

∫

τU

(−Phph + ph)2 =
∑

τU

∫

τU

(ph − Phph)(ph − p + p − Php + Php − Phph)

≤
∑

τU

∫

τU

(ph − Phph)(p − Php) +
1

3

∑

τU

∫

τU

(ph − Phph)2 + C‖ph − p‖2
L2(Ω).

Since u + p = max(0, p) = const, hence

Ph(u + p) = u + p,
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such that
∑

τU

∫

τU

(ph − Phph)(p − Php)

=
∑

τU

∫

τU

(ph − Phph)(p + u − Ph(p + u) + Phu − u)

=
∑

τU

∫

τU

(ph − Phph)(Ph(u − uh) − (u − uh))

≤
1

3

∑

τU

∫

τU

(ph − Phph)2 + C‖u − uh‖
2
L2(Ω).

Therefore,

η2
1 ≤ C

{
‖u − uh‖

2
L2(Ω) + ‖p− ph‖

2
L2(Ω)

}
.

This is (3.26). �

Then we prove the following lemmas by modifying the standard bubble function
technique as in [1, 19].

Lemma 3.7. Let (y, u) and (yh, uh) be the solutions of (OCP) and (OCP)h, and p
and ph be the solutions of the co-state equations (2.5) and (2.11) respectively. Then,

(3.27)
∑

τ∈T h

h4
τ

∫

τ

(yh − yd + div(∇ph))2 ≤ C
{
‖p− ph‖

2
L2(Ω) + ‖y− yh‖

2
L2(Ω) + ǫ22

}
.

Proof. Following the idea in the standard bubble function technique ( see [1, 19]
), we indicate with bτ the standard third order polynomial bubble on τ scaled such
that bτ = λ1λ2λ3, where {λ1, λ2, λ3} denote the barycentric coordinates on τ . Let

(3.28) wτ = c1(div(∇ph) + (yh − yd)|τ )b2
τ ,

where c1 = |τ |/

∫

τ

b2
τ is a constant. From the standard scaling arguments it is not

difficult to show that

‖wτ‖
2
L2(τ) =

∫

τ

c2
1(div(∇ph) + (yh − yd)|τ )2b4

τ

≤ c1

∫

τ

(div(∇ph) + (yh − yd)|τ )2.

(3.29)

On the other hand, since λ1λ2λ3 = 0 on ∂τ , then

wτ |∂τ = c1(div(∇ph) + yh − yd)(λ1λ2λ3)
2|∂τ = 0.

Furthermore, we also have

∇wτ

∣∣
∂τ

= 2c1(div(∇ph) + yh − yd)(λ1λ2λ3)∇(λ1λ2λ3)
∣∣
∂τ

= 0.(3.30)

So we know wτ ∈ H2
0 (τ). By using the inverse property of the bubble functions, (

see [1, 19] ), we derive

(3.31) |wτ |
2
H2(τ) ≤ Ch−4

τ

∫

τ

|wτ (τ)|2.

Let τ̂ be a reference element and x̂ = Fτ (x) = Bτx + bτ be an affine map from τ
onto τ̂ and set ŵ = w ◦ F−1

τ (x̂). Then we have

|wτ |
2
L2(τ) =

∫

τ̂

|ŵτ (x̂)|2|detB−1|.
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Since ŵτ ∈ H2
0 (τ̂ ) due to wτ ∈ H2

0 (τ), by using Poincare inequality, we have
∫

τ̂

|ŵτ (x̂)|2|detB−1| ≤ C
∑

|α|=2

∫

τ̂

|Dαŵτ (x̂)|2|detB−1|

such that

(3.32) |wτ |
2
L2(τ) ≤ Ch4

τ |wτ |
2
H2(τ).

So we obtain

(3.33) ch−2
τ ‖wτ‖L2(τ) ≤ |wτ |H2(τ) ≤ Ch−2

τ ‖wτ‖L2(τ), ∀ τ ∈ T h.

By use of the bubble function wτ , (3.29) and (3.33), we have
∫

τ

h4
τ (div(∇ph) + (yh − yd)|τ )2

=

∫

τ

h4
τ (div(∇ph) + (yh − yd)|τ )wτ

=

∫

τ

h4
τ (div(∇ph) + yh − yd)wτ

+

∫

τ

h4
τ (−(yh − yd) + (yh − yd)|τ )wτ

=

∫

τ

h4
τ (div(∇ph) + yh − yd − div(∇p) − (y − yd))wτ

+

∫

τ

h4
τ (−(yh − yd) + (yh − yd)|τ )wτ

=

∫

τ

h4
τ∇(p − ph) · ∇wτ +

∫

τ

h4
τ (yh − y)wτ

+

∫

τ

h4
τ (−(yh − yd) + (yh − yd)|τ )wτ

=

∫

τ

h4
τ (ph − p)∆wτ +

∫

τ

h4
τ (yh − y)wτ

+

∫

τ

h4
τ (−(yh − yd) + (yh − yd)|τ )wτ

≤ C
(
‖p − ph‖

2
L2(τ) + ‖yh − y‖2

L2(τ)

+

∫

τ

h4
τ (−(yh − yd) + (yh − yd)|τ )2

)1/2

·
(
h4

τ‖wτ‖
2
L2(τ) + h8

τ |wτ |
2
H2(τ)

)1/2

≤ Ch2
τ‖wτ‖L2(τ)

(
‖p− ph‖

2
L2(τ) + ‖yh − y‖2

L2(τ)

+

∫

τ

h4
τ (−(yh − yd) + (yh − yd)|τ )2

)1/2

≤ C
(
‖p − ph‖

2
L2(τ) + ‖yh − y‖2

L2(τ)

+

∫

τ

h4
τ (−(yh − yd) + (yh − yd)|τ )2

)

+
h4

τ

2
‖div(∇ph) + (yh − yd)|τ‖

2
L2(τ),



346 L. GE, W. B. LIU, AND D. P. YANG

which lead to
∫

τ

h4
τ (div(∇ph) + (yh − yd)|τ )2

≤ C
(
‖p − ph‖

2
L2(τ) + ‖y − yh‖

2
L2(τ) +

∫

τ

h4
τ (yh − yd − (yh − yd)|τ )2

)

such that
∫

τ

h4
τ (div(∇ph) + yh − yd|τ )2

≤ 2
(∫

τ

h4
τ (div(∇ph) + (yh − yd)|τ )2 +

∫

τ

h4
τ (yh − yd − (yh − yd)|τ )2

)

≤ C
(
‖p − ph‖

2
L2(τ) + ‖y − yh‖

2
L2(τ) +

∫

τ

h4
τ (yh − yd − (yh − yd))

2
)
.

This ends the proof of lemma 3.7. �

Lemma 3.8. Let (y, u) and (yh, uh) be the solutions of (OCP) and (OCP)h, and p
and ph be the solutions of the co-state equations (2.5) and (2.11) respectively. Then,

(3.34)
∑

l∩∂Ω=∅

∫

l

h3
l [(∇ph · n)]2 ≤ C

{
‖p− ph‖

2
L2(Ω) + ‖y − yh‖

2
L2(Ω) + ǫ22

}
.

Proof. We need to introduce new bubble functions. Let bl be the four order
polynomial for l, where l = ∂τ1 ∩ ∂τ2, see Figure 1, as follows:

0 

1 

2 

3 

Figure 1. triangle τ1 ∪ τ2

Define

λ̂0 =

∣∣∣∣∣∣

x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣
∣∣∣∣∣∣

x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

x0 y0 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
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λ̂2 =

∣∣∣∣∣∣

x0 y0 1
x1 y1 1
x y 1

∣∣∣∣∣∣
∣∣∣∣∣∣

x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

x0 y0 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣

λ̂′
0 =

∣∣∣∣∣∣

x y 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
∣∣∣∣∣∣

x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

x0 y0 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣

λ̂′
2 =

∣∣∣∣∣∣

x0 y0 1
x y 1
x3 y3 1

∣∣∣∣∣∣
∣∣∣∣∣∣

x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣

x0 y0 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
and

bl =






λ̂0λ̂2λ̂
′
0λ̂

′
2, τ1 ∪ τ2,

0, Ω\τ1 ∪ τ2.

Introduce the new bubble function:

(3.35) wl = c′1[(∇ph · nl)]b
2
l , c′1 =

∫
l
1∫

l b
2
l

.

Following the standard scaling arguments, it is not difficult to show that

(3.36) ‖wl‖
2
L2(l) =

∫

l

c′1
2
[∇ph · nl]

2b4
l ≤ c′1

∫

l

[∇ph · nl]
2.

Let ̟l = τ1 ∪ τ2. Since λ̂0λ̂2λ̂
′
0λ̂

′
2 = 0 on ∂̟l, we have

wl =
∂wl

∂nl
=

∂wl

∂sl
= 0, on ∂̟l,(3.37)

where nl and sl are the unit vector normal to ∂̟l outwards ̟l and the tangent
vector along ∂̟l. So we have wl ∈ H2

0 (̟l). Similarly, from the standard scaling
arguments, it is easily shown that

(3.38) ‖wl‖L2(τ1∪τ2) ≤ Ch
1

2

l ‖wl‖L2(l)

and

(3.39) ch−2
l ‖wl‖L2(τ1∪τ2) ≤ ‖wl‖H2(τ1∪τ2) ≤ Ch−2

l ‖wl‖L2(τ1∪τ2).

By use of the bubble function wl, (3.36), (3.38) and (3.39), we have
∫

l

h3
l [∇ph · n]2 =

∫

l

h3
l [∇ph · n]wl

=

∫

l

h3
l [(∇ph · n) − (∇p · n)]wl

=

∫

∂τ1

l
∪∂τ2

l

h3
l ((∇ph · n) − (∇p · n))wl
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=

∫

τ1

l
∪τ2

l

h3
l ∇(ph − p) · ∇wl +

∫

τ1

l
∪τ2

l

h3
l div(∇(ph − p))wl

=

∫

τ1

l
∪τ2

l

h3
l (p − ph)∆wl +

∫

τ1

l
∪τ2

l

h3
l (div(∇ph) + yh − yd)wl

+

∫

τ1

l
∪τ2

l

h3
l (y − yh)wl

≤ C
(
‖ph − p‖L2(τ1∪τ2) + ‖yh − y‖L2(τ1∪τ2)

+ ‖h2
l (div(∇ph) + yh − yd)‖L2(τ1∪τ2)

)

·
(
hl‖wl‖L2(τl∪τ2) + h3

l |wl|H2(τ1∪τ2)

)

≤ Ch
3

2

l ‖wl‖L2(l)

(
‖ph − p‖L2(τ1∪τ2) + ‖yh − y‖L2(τ1∪τ2)

+ ‖h2
l (div(∇ph) + yh − yd)‖L2(τ1∪τ2)

)

≤ C
(
‖ph − p‖2

L2(τ1∪τ2)
+ ‖yh − y‖2

L2(τ1∪τ2)

+

∫

τ1∪τ2

h4
l (div(∇ph) + yh − yd)

2
)

+
1

2

∫

l

h3
l (∇ph · nl)

2.

Hence,

∑

l∩∂Ω=∅

∫

l

h3
l [(∇ph · n)]2

≤ C
{
‖ph − p‖2

L2(Ω) + ‖y − yh‖
2
L2(Ω) +

∑

τ∈T h

∫

τ

h4
τ (div(∇ph) + yh − yd)

2
}
.

(3.40)

Applying (3.27) into (3.40) leads to (3.34). �

As a corollary of Lemmas 3.7 and 3.8 , we have

Lemma 3.9. Let (y, u) and (yh, uh) be the solutions of (OCP) and (OCP)h, and p
and ph be the solutions of the co-state equations (2.5) and (2.11) respectively. Then,

(3.41) η2
2 ≤ C

{
‖p − ph‖

2
L2(Ω) + ‖y − yh‖

2
L2(Ω) + ǫ22

}
.

Similarly, we can prove the following lower bound estimate for η3.

Lemma 3.10. Let (y, u) and (yh, uh) be the solutions of (OCP) and (OCP)h, and
p and ph be the solutions of the co-state equations (2.5) and (2.11) respectively.
Then,

(3.42) η2
3 ≤ C

{
‖y − yh‖

2
L2(Ω) + ‖u − uh‖

2
L2(Ω) + ǫ23

}
,

where η3 and ǫ3 are defined in Theorem 3.1.

Then Theorem 3.2 follows from Lemmas 3.6, 3.9 and 3.10.
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4. Numerical Experiments

In this section, we carry out some numerical experiments to demonstrate the a
posteriori error estimators developed in Section 3. We wish to emphasize that the
main purpose of this paper is to compute the optimal control effectively, not the
states. In these cases, L2 error of the control and states is more important than
their H1 error. We consider the following control problem on Ω = (0, 1)2:

(4.1)






min
1

2

∫

Ω

(y − yd)
2dx +

1

2

∫

Ω

(u − u0)
2dx

s.t. − ∆y = u + f,

∫

Ω

u ≥ 0.

To solve the optimal control numerically, we used the following iterations:

Algorithm. Give an initial control u0
h ∈ Kh. Then for k = 0, 1, 2, · · · · · · ,

seek (uk
h, yk

h, pk
h) ∈ V h × V h × Uh, in iteration, such that

(4.2)






a(yk
h, wh) = (f + uk−1

h , wh), ∀ wh ∈ V h,

a(qh, pk
h) = (yk

h − yd, qh), ∀ qh ∈ V h,

(uk
h + pk

h, vh − uk
h) ≥ 0, ∀ vh ∈ Kh.

The last inequality was solved by the explicit formula:

uk
h = −Phpk

h + max
{
0, pk

h

}
,

where Ph is the L2-projection from L2(Ω) to Uh.

The proof of convergence of the iteration can be found in [10].
We performed two different examples. In Example 1, the optimal control is

smooth, so the adaptivity will not contribute greatly to the computation savings.
But it is clear that the multi-meshes still save much computational work. In Exam-
ple 2 we compare effectiveness of different error estimators. We use the indicators
given in [9], which is equivalent in energy norm, and the indicators derived in
Section 3.

In computing these examples, we used the software package: AFEpack, see [12]
for the details.

Example 1. In the first example, the data and solutions are:

(4.3)

y|∂Ω = 0
p = sin πx1 sin πx2

u0 = 0
u = max(p̄, 0) − p

yd = 0

f = 4π4p + p −
4

π2

y = 2π2p + yd

In Example 1, the state and co-state are approximated by the piecewise linear
elements, while piecewise constant elements are used to approximate the control.
We compute Example 1 on a uniform mesh and an adaptive mesh respectively. Two
numerical experiments with different numbers of nodes are performed. Numerical
results are presented in Tables 1-2 respectively. In Tables 1-2, the mesh information
is displayed with L2 approximation errors for the control and the states.
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Table 1. Piecewise constant element approximation for control

u, y, p on uniform mesh u, y, p on adaptive mesh
u y p u y p

# nodes 24993 24993 24993 24991 3737 3737
L2 error 3.112e-03 5.862e-04 5.822e-05 3.091e-03 6.274e-03 6.050e-04

Table 2. Piecewise constant element approximation for control

u, y, p on uniform mesh u, y, p on adaptive mesh
u y p u y p

# nodes 131713 131713 131713 122157 6362 6362
L2 error 1.404e-03 1.108e-04 1.087e-05 1.402e-03 3.757e-03 3.533e-04

In this example, the optimal control is quite smooth so that there was no much
difference in using either the uniform or adaptive meshes to approximate the control.
However the multiple meshes can still save much computational work in this case.
In fact it can be clearly seen that on the multiple adaptive meshes one may use
10 times fewer degree of freedoms(DOFs) in the state variables to produce a given
L2 control error reduction. Since the main computational loads in solving the
control problem come from repeatedly solving the state and the co-state equations,
substantial computing work is thus saved. It is important to note that if one used
just one set of adaptive meshes, then much more degree of freedoms has to be used
for solving the state and the costate.

As mentioned in Introduction, the indicators equivalent in H1 norm may pro-
duce over-refinement when the L2 norm of the approximation error is used as the
stopping criteria, although this is not always visible. In the following example, we
try to illustrate this by using the H1 equivalent indicator derived in [9] and the
L2 equivalent indicator derived here. The control problem in Example 2 is almost
identical to that of [9], except that here the costate p was multiplied by a factor
of 10. Without this factor, both indicators perform similarly and lead to similar
meshes both for the control and the states. With the multiplier, the difference of
the performance of the two indicators can be clearly seen from the results below:

Example 2. In the second example, the data and solutions are:

(4.4)

z =






0.5, x1 + x2 > 1.0 ,

0, x1 + x2 ≤ 1.0 ,

p = β sin πx1 sin πx2 ,

u0 = 1.0 − sin
πx1

2
− sin

πx2

2
+ z ,

u = max(p − u0, 0) + u0 − p ,
yd = 0 ,
f = 4π4p − u ,
y = 2π2p + yd .

where β is a positive constant given late. In this case, the control is discontinuous
so that it has much weaker global regularity than co-state.
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In Example 2, the state and co-state are approximated by the conforming piece-
wise linear elements, while the piecewise discontinuous linear elements are used to
approximate the control. We compute Example 2 on two different adaptive meshes,
one is produced by the indicators given in [9], and another is produced by the indi-
cators given in this article. We consider two cases of β = 0.5 and β = 5. In every
case, two numerical experiments with different numbers of nodes are performed.
Numerical results are presented in Tables 3-4 and 5-6 respectively, in which, the
mesh information is displayed with L2 approximation errors for the control and the
state.

Table 3. Piecewise linear element approximation for control with
β = 0.5

u, y, p on adaptive mesh
produced by the indicators

in [9]

u, y, p on adaptive mesh
produced by the indicators

in this article
u y p u y p

# nodes 4693 1542 1542 4847 517 517
L2 error 9.799e-03 8.562e-03 8.024e-04 9.797e-03 1.548e-02 1.523e-03

Table 4. Piecewise linear element approximation for control with
β = 0.5

u, y, p on adaptive mesh
produced by the indicators

in [9]

u, y, p on adaptive mesh
produced by the indicators

in this article
u y p u y p

# nodes 16156 5597 5597 16067 1939 1939
L2 error 4.826e-03 2.393e-03 2.252e-04 4.817e-03 3.979e-03 3.892e-04

From Tables 3-4, we see that the numbers of nodes of meshes produced by
indicators given in [9] for the states is more triple of ones by the adaptive indicators
given in this article. Further, we investigate the case of β = 5.

Table 5. Piecewise linear element approximation for control with
β = 5

u, y, p on adaptive mesh
produced by the indicators

in [9]

u, y, p on adaptive mesh
produced by the indicators

in this article
u y p u y p

# nodes 3720 17105 17105 4159 1939 1939
L2 error 1.420e-02 1.472e-02 1.336e-03 1.417e-02 3.973e-02 3.889e-03
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Table 6. Piecewise linear element approximation for control with
β = 5

u, y, p on adaptive mesh
produced by the indicators

in [9]

u, y, p on adaptive mesh
produced by the indicators

in this article
u y p u y p

# nodes 10562 18385 18385 11701 1939 1939
L2 error 7.567e-03 1.446e-02 1.306e-03 7.554e-03 3.973e-02 3.889e-03

From Tables 5-6, we see that the numbers of nodes of meshes produced by
indicators given in [9] for the states become almost ten-multiple of ones by the
adaptive indicators given in this article. These numerical results show that the
indicator derived here performs better than that in [9].

Figure 2. The adaptive meshes for the state and co-state with
different indicators

Figure 2 displays the adaptive meshes of the state and co-state in Table 5. The
left mesh is produced by using the indicators derived in [9], and the right mesh is
produced by using the adaptive indicators derived in this article. It was found that
the adaptive meshes guided by the indicators in Section 3 can further reduce the
DOFs to produce a given L2 control error reduction as shown in Table 5 and Table
6. So we can see that the new indicator is more suitable for the application where
the L2-error is more important.
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