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A ROBUST AFFINE IMAGE REGISTRATION METHOD

NOPPADOL CHUMCHOB AND KE CHEN

Abstract. Image registration has many real life applications. Affine image

registration is one of the commonly-used parametric models. Iterative solu-

tion methods for the underlying least squares problem suffer from convergence

problems whenever good initial guesses are not available. Variational models

are non-parametric deformable models that have been proposed based on least

squares fitting and regularization. The fast iterative solution methods often

require a reliable parametric (affine) method in a pre-registration step. In this

paper we first survey and study a class of methods suitable for providing the

good initial guesses for the affine model and a diffusion based variational model.

It appears that these initialization methods, while useful for many cases, are

not always reliable. Then we propose a regularized affine least squares ap-

proach that can overcome the convergence problems associated with existing

methods. Combined with a cooling idea in a multiresolution setting, it can

ensure robustness and selection of the optimal coupling parameter efficiently.

Numerical examples are given to demonstrate the effectiveness of our proposed

approach.

Key Words. Image registration, affine transformation, regularization, Newton

method.

1. Introduction

Image registration is the process of spatially aligning two or more images of the
same object taken in different times or from different viewpoints or by different
imaging machineries as in multi-modality imaging. When two images are taken as
input, one of them is called the reference image and is kept unchanged and used as
the reference, whereas the other is called the template image and is employed to reg-
ister the reference image. The goal of image registration is to determine an optimal
transformation in such a way that the transformed template image becomes simi-
lar to the reference image as much as possible, mapping points from the template
image onto the reference image. This transformation is sought from optimizing
an appropriate object functional, which measures the similarity of the transformed
template image to the reference image and the transformation regularity; it is the
latter that we address here in a new model context.

The registration methodology can be classified into two main physical categories:
rigid and non-rigid registration, or mathematical categories: linear and nonlinear
registration, or complexity categories: parametric and non-parametric registration.
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On one hand, rigid registration involves a linear rigid-body transformation, consist-
ing of rotation and translation (with only 3 unknown parameters). On the other
hand, deformable registration (e.g. variational models [23]) may include nonlinear
transformations (non-parametric) whose number of unknowns for a discrete image
is proportional to the number of pixels!

In real-life applications, rigid registration alone cannot always provide a satis-
factory result, particularly in many medical applications (e.g. one cannot ensure
the patient sits in the identical position with respect to the equipment each time),
while deformable registration may not be quick enough for ready use. In this paper,
we are mainly concerned with affine transformation for 2 reasons: (i) it is applica-
ble to a large class of non-rigid registration problems. Moreover, as our experience
shows, an affine method is always many orders of magnitude faster than a nonlinear
variational method [23] due to much less unknowns involved. See also Thévenaz
et al.[32], Jenkinson and Smith [15], Jenkinson et al.[14], Modersitzki [23], Xia and
Liu [36], Zhilkin and Alexander [38], Lucchese [20] and the references therein. (ii) it
is widely used as a pre-registration step for sophistical non-rigid registration meth-
ods, such as elastic, fluid, and diffusion registration, by providing the good initial
positions for the image to be registered (see [23] and Schmitt et al.[29] and the
references therein).

To realize image registration, assuming the image intensities of the given images
are comparable, a common approach is to minimise the Sum of Squared Differ-
ences (SSD) i.e. the least-squared function for the squared pixel-wise differences
in the image intensity between the transformed template image and the reference
image. Then the obtained transformation defines a transformed template image as
required. For affine registration, although there are only 6 parameters, iterative
methods to solve the underling nonlinear minimization can suffer from convergence
problems if good initial guesses are not possible (i.e. even after we attempt to devise
good initial guesses). A theoretical reason may be that image registration problem
is ill-posed in the sense of Hadamard. The information provided by the reference
and the least-squared model are not sufficient to ensure the existence, uniqueness,
and stability of a solution [12]. This motivates us to introduce regularization into
affine registration, as one would do for other ill-posed problems [1, 23, 26, 34].
The result is a refined affine registration model that can be solved by converging
methods for a large class of image problems.

We remark that image registration is required whenever comparing a series of
images is of interest. For example, in remote sensing applications, registration of
satellite images taken over a region during different seasons or years can be used to
detect environment change over time [4, 5, 27] while, in medical image processing, a
vital component of applications is the registration of relevant images of a patient in
order to obtain accurate information for diagnosis, monitoring disease progression,
planing treatment and treatment guidance. See Maintz and Viergever [22], Hajnal
et al. [9], and Hill et al. [13].

The rest of the paper is organized as follows. We introduce the affine and the
diffusion image registration respectively in Sections 2 and 3, and then present four
methods to improve affine registration in Section 4. A regularized affine registration
(RAR) model is presented in Section 5 followed by a regularization parameter
selection algorithm in Section 6. Some numerical experiments on the performance of
the proposed method are presented in Section 7, followed by conclusions in Section
8.
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2. The preliminaries, affine image registration and solution methods

Assume that in continuous variables the given images can be represented by
compactly supported functions R, T : Ω ⊂ R

2 → V ⊂ R
+
0 . It is customary to

consider Ω = [0, 1]2 and V = [0, 1] for gray-scale images. In practice, two discrete
images of the same size n1 × n2 are given: the reference R and the template T .

For each pixel x = (x1, x2)
⊤

, denote by ϕ = ϕ(x) : Ω → Ω the unknown
coordinate transformation that produces the alignment between the reference R
and the transformed version of the template

(1) F = T ◦ ϕ = Tϕ (x) = T (ϕ (x)) .

We hope to achieve that F ≈ R or F − R ≈ 0. Here the transformation ϕ has 2
components

(2) ϕ(x) = (ϕ1 (x) , ϕ2 (x))
⊤

.

Once ϕ (x) for each x is calculated, an interpolation scheme is required to assign the
image intensity values for the transformed template image F at possibly non-grid
location ϕ (x) within image boundaries. For regions outside the image boundaries,
the image intensities can be set to be a constant value, usually zero.

All registration strategies require a suitable similarity measure D (also called a
distance measure or a data misfit function) in order to measure how well these two
images are similar under the transformation ϕ (x). Then the general registration
problem’s aim is to minimise this measure in determining ϕ:

(3) Find ϕ = (ϕ1, ϕ2)
⊤

such that D [Tϕ, R, ϕ] =D [ϕ] is minimal.

We adopt the SSD or the least-squared function D defined by

(4) D [Tϕ, R, ϕ] =
1

2

∫

Ω

(T (ϕ(x)) −R(x))
2
dx =

1

2
‖Tϕ −R‖

2
L2

= D [ϕ]

as the optimisation object functional, where ‖·‖L2
denotes the L2−norm.

2.1. Affine transformation. Affine transformation is one of the most commonly
used methods in registering two images (see [32], [15], [14], [23], [36], [38], [20],
[29]). Although only linear, it models a combination of effects stemming from
four simple transformations: translating, rotating, scaling and shearing. An affine
transformation corrects some global distortions in the images to be registered. In
this section, we first introduce the model and then discuss two numerical methods
for solving it.

An affine registration model assumes that the above transformation ϕ is linear
i.e.

(5) ϕ (x) = ϕa (x) =

[
ϕa1

(x)
ϕa

2
(x)

]
=

[
a1 a2

a4 a5

] [
x1

x2

]
+

[
a3

a6

]
= Ax + b,

where A =

[
a1 a2

a4 a5

]
and b =

[
a3

a6

]
are the affine transformation matrix and the

translation vector respectively, for all x ∈ Ω. Here for optimization purpose, the

vector a = (a1, a2, a3, a4, a5, a6)
⊤
∈ R

6 will be used shortly. Clearly the inverse
transform is simply x = A−1 (ϕa − b) if A is invertible. Note that A can be
decomposed into a product of a rotation, a scaling, a shear in x1− (and/or x2−)
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direction or a combination of these simple transformations

(6) A =

[
a1 a2

a4 a5

]
=

[
cos θ − sin θ
sin θ cos θ

]

︸ ︷︷ ︸
rotation

[
sx1

0
0 sx2

]

︸ ︷︷ ︸
scaling

[
1 Sx1

0 1

]

︸ ︷︷ ︸
shear

where θ is the rotation angle, sx1
, sx2

are the scaling parameters, and Sx1
is the

shear factor in x1−direction. Clearly this kind of decomposition is not unique. It is
clear that both a rigid-body transformation with sx1

= sx2
= 1 and Sx1

= 0 taking
the form

A =

[
a1 a2

a4 a5

]
=

[
cos θ − sin θ
sin θ cos θ

]

and a similarity transformation with 0 < sx1
= sx2

and Sx1
= 0 taking the form

A =

[
a1 a2

a4 a5

]
=

[
cos θ − sin θ
sin θ cos θ

] [
sx1

0
0 sx2

]

are affine in special cases. From (4), the problem with such a ϕ is the affine image
registration, formulated as follows

(7) min
a∈R6
D [a]

where D [a] = D [ϕa] = 1
2‖T (ϕa)−R‖2L2

= 1
2‖T (Ax + b)−R‖2L2

.
Now consider how the discretized form of the minimisation problem (7) is solved,

given discrete images T and R of T and R as n1×n2 arrays of image intensities. For
ease of presentation, let T and R, of dimension N = n1n2, be pixel-wise ordered
in a lexicographical order and denoted as follows
(8)

T = (t1,1, t2,1, ..., ti1,i2 , ..., tn1,n2
)
⊤

and R = (r1,1, r2,1, ..., ri1,i2 , ...rn1,n2
)
⊤

,

where 1 ≤ i1 ≤ n1 and 1 ≤ i2 ≤ n2. Each element in the grid vectors T and R
represents a pixel’s gray intensity between black (0) and white (1). Given an affine

transformation ϕa = (ϕa1
, ϕa2

)
⊤

, the discrete form of the transformed template
image F can be expressed as:

F (a) = (ta1+a2+a3, a4+a5+a6
, t2a1+a2+a3, 2a4+a5+a6

, ...,

ta1i1+a2i2+a3, a4i1+a5i2+a6
, ..., ta1n1+a2n2+a3, a4n1+a5n2+a6

)
⊤

,(9)

where F : R
6 → R

N . Then problem (7) is equivalent to the following

(10) min
a∈R6
D [a] =

1

2
‖F (a)−R‖

2
l2

=
1

2
‖d(a)‖

2
l2

=
1

2

N∑

i=1

di (a)
2
,

where we ignored the factor h1h2 = 1/(n1n2) = 1/N due to discretization with the
spatial mesh lengths h1, h2 but it will be used later in Section 5, d(a) = F (a) −
R ∈R

N is the so-called residual vector. The first order condition of (10) is

(11) g (a) = ∇aD [a] = J⊤ (a) (F (a)−R) = J⊤d(a) = 0,

where g (a) ∈ R
6 and the Jacobian matrix J given by

(12) Ji,j =
∂di

∂aj

for 1 ≤ i ≤ N, 1 ≤ j ≤ 6.
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Solving (11) for a is a non-linear problem and its solution requires an iterative
approach. Let a(k) be a at the kth iteration. Here, we must find a perturbation

δa(k) first and then update the solution vector by

(13) a(k+1) = a(k) + δa(k).

For a full Newton method, the perturbation δa(k) is determined by solving

(14) H
(
a(k)

)
δa(k)= −g

(
a(k)

)
,

where the Hessian of D is denoted by

(15) H (a) = J⊤ (a)J (a) +
N∑

i=1

di(a)∇2di(a).

As pointed out by [23, p.79], this Newton method may be not suitable in registering
two images for practical applications because computing higher order derivatives
is time consuming and numerically unstable. In order to improve on the Newton
method, we can take advantages of the particular structure of H to design a Newton

variant to compute δa(k).

2.2. The Gauss-Newton method. Note that the Hessian matrix is precisely

H (a) = J
⊤

(a)J (a) if di = 0 for all i (i.e. the residuals are zero at the solution a∗)
or if ∇2di(a) = 0 when di is a linear function of a. This suggests that in other cases
the Hessian matrix may also be approximated by this formula [30]. The resulting
approximation leads to the Gauss-Newton (GN) method, defined by

(16) H̃
(
a(k)

)
δa(k)= −g

(
a(k)

)
,

where one uses the matrix H̃
(
a(k)

)
= J⊤

(
a(k)

)
J

(
a(k)

)
to approximate H

(
a(k)

)
.

The above GN method requires damping to ensure convergence, because we may
not be able to provide a good initial solution, close to a minimum of D. The damped
GN method can be generated by

(17) a(k+1) = a(k) + α(k)δa(k)

where the positive scalar α(k) is the so-called line-search parameter used to ensure
that a GN step adequately reduces D and to rule out an unacceptable short step.
More precisely, α(k) is determined by

α(k) = argmin
α
D

[
a(k) + αδa(k)

]
.

Solving this line-search problem is by a backtracking algorithm which begins with

α(k) = 1, and then, if a(k) +δa(k) is not acceptable, reduces α(k) until an acceptable

a(k) + α(k)δa(k) is found. The acceptability is decided by the so-called Wolfe or
Armijo-Goldstein conditions safeguarding upper and lower bounds; see Dennis and
Schnabel [3], Fletcher [6], Kelly [16], Nocedal and Wright [25], and Yuan and Sun
[37].

2.3. The Levenberg-Marquardt method. The GN method (16) assumes that

H̃
(
a(k)

)
is well-conditioned or at least non-singular. To remove this assumption,

an improved formulation by adding a positive multiple of the identity matrix I,

H̃
(
a(k)

)
=

[
J⊤

(
a(k)

)
J

(
a(k)

)
+ µ(k)I

]
, is the Levenberg-Marquardt (LM) method:

(18)
[
J⊤

(
a(k)

)
J

(
a(k)

)
+ µ(k)I

]
δa(k) = −g

(
a(k)

)
.



316 N. CHUMCHOB AND K. CHEN

At iteration k, the positive LM parameter µ(k) is adjusted to guarantee that the

search direction δa(k) in (18) is a descent direction. Then we get a steepest descent
direction for large µ(k), when the current iterate is far from the solution. On the
other hand, this descent direction is approximately a GN search direction for small
µ(k), when the iterates get close enough to the solution. Using a frame work of
trust region strategies, the LM parameter µ(k) is determined in such a way that

(19)
∥∥∥δa(k)

∥∥∥
2

l2
=

∥∥∥∥
[
J⊤

(
a(k)

)
J

(
a(k)

)
+ µ(k)I

]−1 [
−g

(
a(k)

)]∥∥∥∥
2

l2

≤ η(k)

where η(k) ≥ 0 is a prescribed trust region radius. A new LM step is then generated

by a(k+1) = a(k) + δa(k). As remarked by Hanke [10], Henn [11], Doicu et al. [4, 5],
this numerical scheme is related to Tikhonov regularization (see Section 5) and is
sometimes called the regularizing Levenberg-Marquardt method as shown in (43).

2.4. Some registration results using the GN and LM methods. In this
section, some registration results using the GN method (Section 2.2) and the LM
method (Section 2.3) are presented, to illustrate the non-robustness of both GN
and LM methods.

We shall give two examples, with the first one to show that both methods are
capable of correctly registering 2 images and the second one to show that both
methods can fail to converge to an acceptable solution i.e. fail to register 2 images
(in particular our examples will differ in outliers). In both examples, the images
are of size 128 × 128 and for both GN and LM, we use the termination criterion
‖δa‖l2 ≤ ǫ = 10−6 within the maximum of iterations IMAX= 300. The bilinear
interpolation technique was applied in all examples for computing the transformed
template image F (a) = Tϕa

. We shall measure the relative residual as the error

indicator: error = ‖g(a(k))‖l2 .

Example 1 (A successful case). We consider the registration problem for a pair of
MR images of a human head1, with the reference image R and the template image
T respectively in Figure 1 (a)−(b). Using the initial guess a(0) = (1, 0, 0, 0, 1, 0)⊤

(i.e. we start with ϕ0(x) = x), both the GN and LM methods can successfully
register this example as shown respectively in Figure 1 (c)−(d).

Example 2 (An unsuccessful case). Here we consider another pair of MR images
(similar to Example 1), as shown in Figure 2 (a)−(b), where T contains tumor like
circles. As in Example 1, the initial guess solution a(0) = (1, 0, 0, 0, 1, 0)⊤ is used.
It turns out that both GN and LM methods get stuck (at a local minimum of D)
and fail to obtain correctly converged solutions, as shown in Figure 2 (c)−(d). Here
we are certain about reaching a local minimum because the residual error is small,
and about the registration failure because we can observe the large visual difference
between F (a) and R (i.e. the matching error is not the smallest possible).

Based on Examples 1 and 2 and other tests, we confirm that (as is known) both
methods are not robust enough as their convergence strongly depends on initial
guess solutions. We shall shortly discuss various ways of finding good initial guess
solutions.

1Source: http://www.cis.rit.edu/class/schp730/lect/lect-1.htm
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(a) R (b) T

(c) FGN(a(98)) (d) FLM(a(107))

(error=2.77×10−7) (error=3.38× 10−7)

Figure 1. Example 1: Successful registration results of the MR
images of a human head. The first row shows the reference image
R (a), the template image T (b). The second row presents the
registered images FGN(a(98)) (c) and FLM(a(107)) (d) obtained
from using the GN and LM methods, respectively.

3. Deformable registration

Having discussed a parametric registration model, we now give a brief review of a
non-parametric model – the variational diffusion model for deformable registration
[23]. We shall show that, although the nonlinear multigrid method [33] is effective in
solving the model, an affine pre-registration step can further speed up the solution.
Hence it is of interest to look for reliable affine methods. We first review the general
Tikhonov regularization idea [1, 23, 26, 34].

3.1. Variational approach. As an inverse problem, the general registration prob-
lem (3) denoted by minϕD [ϕ] is ill-posed and can be converted to a well-posed
problem by Tikhonov regularization leading to

(20) min
ϕ
Jβ [ϕ] = D [ϕ] + βS[x − ϕ]

where the positive regularizer S may be chosen differently [23], and β > 0 is the
regularization parameter, which controls the fitting of the registered image, as mea-
sured by the term D [ϕ], and the regularity of the solution, as measured by the
term S[x − ϕ].
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(a) R (b) T

(c) FGN(a(65)) (d) FLM(a(103))

(error=1.88×10−7) (error=2.47×10−7)

Figure 2. Example 2: Unsuccessful registration results of the MR
images of a human head. The first row shows the reference image
R (a), the template image T (b). The second row presents the
registered images FGN(a(65)) (c) and FLM(a(103)) (d) obtained
from using the GN and LM methods, respectively.

To have a consistent notation with the literature, define the new deformation
variable u(x) = x− ϕ (x) . Then the variational problem (20) becomes

(21) min
u
Jβ [u] = D [u] + βS[u],

where D [u] = 1
2

∫
Ω

(T (x− u(x)) −R(x))2 dx.

3.2. Diffusion registration. The diffusion registration by Fischer and Moder-
sitzki [7] chose the following diffusive regularizer

(22) S[u] =
1

2

∫

Ω

(
|∇u1|

2 + |∇u2|
2
)
dx,

subject to Neumann boundary conditions, i.e.,

(23)
∂uℓ

∂~n
= 0 for x ∈∂Ω and ℓ = 1, 2.

Here, ~n denotes the unit outer normal vector on ∂Ω. The Euler-Lagrange equation
for the variational problem (21) is the following

(24) β∆u (x) +
(
T (x− u(x)) −R(x)

)
· ∇T (x− u(x)) = 0, x ∈ Ω,



A ROBUST AFFINE IMAGE REGISTRATION METHOD 319

where the Gâteaux-derivatives of S are used and ∆ denotes the Laplace operator
with ∆u (x) = (∆u1, ∆u2). Note that (24) denotes a system of two non-linear
PDEs.

3.3. Numerical treatment and results. In [7], the cell-centered finite difference
scheme is recommended to discretize the parabolic version of (24) i.e.

∂u

∂t
= β∆u (x) +

(
T (x− u(x)) −R(x)

)
· ∇T (x− u(x))

and solve the discrete system by the so-called additive operator splitting (AOS)
method [19, 35] which is a semi-implicit time marching method.

Below we shall apply the finite difference method to (24) directly and report
on some results from adopting a full approximation scheme multigrid (with full
multigrid initialization) method, denoted by FMG-FAS, as in [33]. The basic steps
are briefly summarized as follows: (i) Convert the original fine grid problem to a
hierarchy of coarser levels with standard coarsening. The linearized Gauss-Seidel
smoother is employed for (24), while on the coarsest level the AOS-scheme of [7] is
used. We take the number of pre- and post-smoothing to be 3, and the number of
outer iterations to be 2. (ii) Use the standard bi-linear interpolation and restriction
operators.

Example 3. We consider the deformable registration problem of the X-Ray images
of a human hand2. Figures 3 (a)−(b) show the reference R and template T im-
ages. Clearly one can tell that the two images are not related by affine transforms.
However we use an affine transform to provide a good initial guess which we denote
by Tlin

GN
in Figure 3 (c), obtained from the affine method as in Section 2.2.

Then the registered images F (u) obtained from (24) by the FMG-FAS method
with and without the affine pre-registration step are shown, respectively, in Figures
3 (e)−(f). The latter method (without using the affine pre-registration step) is not
only much slower than the former with the affine step (only 2 FAS cycles), but also
it failed to register properly (Figure 3 (f)). Here we remark that without the affine
pre-registration step, essentially, it is the FMG that struggles on the coarsest grid.

Through the above example, we see that a deformable registration approach
can benefit from an affine pre-registration step whose convergence is of course of
importance.

4. Techniques to improve affine registration methods

The convergence of both GN and LM methods depends on suitable initial guesses,
as shown in Section 2.4. Below we shall first survey several methods that can provide
a better initial guess than the simple a(0) = (1, 0, 0, 0, 1, 0)⊤ for the GN affine model
(16), and then test these methods for their usefulness to both GN and LM methods.

4.1. Method 1 – Approximation based on image centers. Each of the two
input images has a center location, defined by the pixel gray levels (or features
dependent). If the two centers are quite different, re-positioning the center will give
the affine registration problem a good initial guess for translation i.e. the vector

given by a(0) = (1, 0, a
(0)
3 , 0, 1, a

(0)
6 )⊤, where a

(0)
3 and a

(0)
6 denote the re-positioning

information.

2Source: http://www.math.mu-luebeck.de/safir/
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(a) R (b) T

(c) affine initial: Tlin

GN(a(56)) (d) FMG initial: F (u(0))

(e) F (u(2)) via FMG-FAS (f) F (u(5)) via FAS

Figure 3. Example 3: Deformable registration results of the X-
Ray images of a human hand, showing the importance of a pre-
registration step. Left: (a) Reference R, (c) the linearly registered
template (initial template) using the GN method Tlin

GN(a(56)), and

(e) the registered image F (u(2)) by FMG-FAS with (c). Right: (b)
Template T, (d) the initial image F (u(0)) after FMG step, and (f)
the (failed) registered image F (u(5)) with (d).

This method can be summarized as follows.
(i) Estimate the centers cT , cR of the two input images T, R respectively:

(25)





cT =

[
cT
1

cT
2

]
=

∫
Ω

xT (x)dx∫
Ω

T (x)dx
=

(
∑ n1

i=1

∑ n2
j=1

ti,j i,
∑ n1

i=1

∑ n2
j=1

ti,jj)
∑ n1

i=1

∑ n2
j=1

ti,j
,

cR =

[
cR
1

cR
2

]
=

∫
Ω

xR(x)dx∫
Ω

R(x)dx
=

(
∑n1

i=1

∑ n2
j=1

ri,ji,
∑n1

i=1

∑ n2
j=1

ri,jj)
∑n1

i=1

∑ n2
j=1

ri,j
≡ ER [x] .

(ii) From the center differences, set a
(0)
3 = cR

1 − cT
1 , a

(0)
6 = cR

2 − cT
2 .
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4.2. Method 2 – Approximation based on the rigid-body model . The next
idea of providing a good initial guess for (5) is to reduce the number of parameters:
assume there exists a rigid transform between T and R. Then we have an parametric
model ϕ (x) = Ax + b with only 3 parameters (see (6)):

(26) A =

[
a1 a2

a4 a5

]
=

[
cos θ − sin θ
sin θ cos θ

]
, b =

[
a3

a6

]
.

Here we could use the above Method 1 to initialize b while setting θ(0) = 0. Once
this model is solved, we shall supply the coefficients to a(0) for the affine model.

4.3. Method 3 – Approximation based on principal axes transformation
. The principal axes transformation (PAT) method was introduced to image pro-
cessing by Hu since 1962 (see [23, 29] and references therein). It is an approxmiate
registration approach using statistical features, the image center and an eigende-
composition of the covariance matrix, derived from the input images. Define the
2× 2 covariance matrix of an image I by

(27) CovI = EI

[(
x−cI

) (
x−cI

)⊤]
,

where cI is the image center defined by (25). Since matrix CovI is real, symmetric,
and positive semi-definite, it permits an eigenvalue decomposition [23]
(28)

CovI = D (ρI) Σ2
ID (−ρI) , D (ρI) =

[
cos ρI − sin ρI

sin ρI cos ρI

]
, ΣI =

[
σI,1 0
0 σI,2

]

where D (ρI) denotes a rotation matrix, ΣI is a scaling matrix, and σI,1 and σI,2

are standard deviations.
Now for images R, T , let cR and cT be the centers from (25). Then the following

will be the approximate coefficients for an affine transform

(29) A = D (ρT )ΣT Σ−1
R D (ρR)

⊤
, b = cT −AcR.

Finally the coefficients from (29) will be used to initialize a(0) for the affine model.

4.4. Method 4 – Multi-resolution approach. Multi-resolution strategy is com-
monly used to provide reliable initial guesses for registration algorithms [15, 18, 21,
28, 31, 32]. The idea is to register the coarse resolution (low) images first and then
interpolate the coarse solutions level by level to the finest resolution (high). The
basic idea is essentially the same as a full multigrid method as in [33] and done in
Section 3.3.

Suppose that we operate with L levels in total (using standard coarsening [33]),
with ℓ = 1 the coarsest level and ℓ = L the finest level. Here the size of the coarsest
level 1 is chosen as 32 × 32 or 64 × 64, and the bi-linear interpolation is used.
Although the full weighting operator [33] may be used for restriction, the usual
practice is to use a Gaussian-like kernel typically consisted of a 5 × 5 template
of weights as follows. Take the reference image R = RL as example. Define a
coarsening operation from Rℓ to Rℓ−1, i.e. Rℓ−1 = coarsen (Rℓ), by

Rℓ−1 (i, j) =

2∑

k1=−2

2∑

k2=−2

w(k1)w(k2)Rℓ (2i + k1, 2j + k2) ,

where w (0) = 2/5, w (±1) = 1/4, and w (±2) = 1/4−w(0)/2. On level ℓ a standard
nonlinear least squares method (either GN or LM) is used to compute the affine
transformation up to some tolerance (e.g. tol = 10−2), which is denoted by aℓ ←
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Solver Step(Tℓ,Rℓ,aℓ). Then the whole procedure of Method 4 may be denoted
by aL ← multiresolution(TL,RL,aL, L) with a recursion step summarized below:

Algorithm 1 (Multi-resolution approach).
Implement aℓ ← multiresolution(Tℓ,Rℓ,aℓ, ℓ) as follows:

• If ℓ = 1
– Set aℓ = (1, 0, 0, 0, 1, 0)⊤ or use Methods 1-3 to work out an initial aℓ,
– aℓ ← Solver Step(Tℓ,Rℓ,aℓ).

• Else
– Tℓ−1 = coarsen (Tℓ) , Rℓ−1 = coarsen (Rℓ) .
– aℓ−1 ← multiresolution(Tℓ−1,Rℓ−1,aℓ−1, ℓ− 1)
– aℓ ← interpolate(aℓ−1) as follows:

aiℓ
= aiℓ−1

for i = 1, 2, 4, 5 (the elements of the affine transformation
matrix) and aiℓ

= 2aiℓ−1
for i = 3, 6 (the elements of the translation

matrix).
– aℓ ← Solver Step(Tℓ,Rℓ,aℓ).

4.5. Applications of Methods 1-4 to GN and LM methods. To illustrate
the performance of Methods 1-4, we give two successful examples: firstly re-solve
Example 2 and secondly consider a new Example 4.

Recall from Figure 2 that both GN and LM methods failed to converge to the
desirable solution for Example 2 with a simple initial guess. Now with Methods
1-4 to provide initial guesses, both GN and LM methods work successfully – we
show the registered results from GN in Figure 4 (while the LM results are virtually
identical).

Example 4. Here we consider the deformable registration problem for a pair of
MR images of a human head, with Figure 5 (a)−(b) showing the reference image
R and the template image T in size 128× 128.

As this is a deformable (not affine) problem, we can only use Methods 1-4 to
provide an initial guess solution for the affine model, whose solution is then used for
the diffusion registration method of Section 3.3. Figure 5 (c)−(d) shows the results
of affine GN and LM methods with Method 4 providing the initial guess, with the
GN taking only 5 iterations and the LM taking 11 iterations on the finest resolution.
Further, using Figure 5 (c)−(d) as initial guesses, the diffusion registration method
of Section 3.3 with β = 0.058 gives the respectively registered images as depicted in
Figure 5 (e)−(f).

Of the four methods, Method 4 is believed to be the best because Methods 1-2
are not as general as 3-4, and Method 3 is unable to resolve shear components [29].
However, even Method 4 cannot provide good initial guesses for some examples, as
shown later in Example 6. Although one can think about designing better ways
than Methods 1-4 to provide more reliable and robust initial guesses for the affine
model, our idea below is to propose a modified affine model that is less demanding
than the standard model for initial guesses.

5. A regularized affine registration model

We propose to regularise the minimizing functional. Although the regularization
idea is widely known for non-parametric models (as in Section 3.1), it is not usually
applied to parametric registration problems.

Motivated by (20), we solve, instead of (3), the following minimisation problem:

(30) min
ϕa

Jβ [ϕa] = D [ϕa] + β̄S [x− ϕa] ,
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(a) Method 1 FGN(a(82)) (b) Method 2 FGN(a(78))

(error = 2.34× 10−6) (error = 1.79× 10−6)

(c) Method 3 FGN(a(45)) (d) Method 4 FGN(a(38))

(error = 6.93× 10−7) (error = 7.01× 10−7)

Figure 4. Example 2 re-solved: Correct registration results using
the GN method with Methods 1-4 providing initial guess solutions
respectively for (a), (b), (c) and (d).

where the regularizer S for affine image registration is proposed to take the form
(31)

S [x− ϕa] =






S1 =
1

2

2∑

i=1

‖xi − ϕai
(x)‖

2
H1

semi
=

1

2

2∑

i=1

∫

Ω

(
|∇xi

(xi − ϕai
(x))|2L2

)
dΩ,

S2 =
1

2

2∑

i=1

‖xi − ϕai
(x)‖

2
L2

=
1

2

2∑

i=1

∫

Ω

(
(xi − ϕai

(x))2
)
dΩ,

S3 = S1 [x− ϕa] + S2 [x− ϕa] ,

S4 =
1

2
‖a‖

2
l2

.

Here the regularizers S1, S2, and S3 are motivated by regularization of non-affine
models, differing only in norms for functions, which are respectively the Sobolev
semi-norm H1

semi, the L2−norm, and the H1 norm. S4 is a simple option, using
the l2−norm. Clearly the new regularized affine registration (RAR) model (30)
reduces to be the classical one (3) when β̄ = 0. As in Section 3.1, the regularization
parameter β̄ balances the influence of D and S. We shall discuss how to choose
it shortly in the next section. For affine problems where the true solutions require
large translations, one may argue that such regularization might restrict solutions
from reaching true solutions. Fortunately our tests will show that this is not the
case.
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(a) Reference R (b) Template T

(c) GN with Method 4 (d) LM with Method 4

(e) FAS F (u(6)) + GN (f) FAS F (u(3)) + LM

Figure 5. Example 4: Correct registration results of the MR im-
ages of a human head (deformable model of Section 3.2 with initial
solutions provided by Method 4) as in row 1. The second row dis-
plays the helpful pre-registration images obtained from (c) the GN
TGN and (d) the LM method TLM. The last row (e)-(f) shows
the deformable model (via FAS) registered images starting with
(c)-(d) respectively.

We now express the proposed regularizers in an analytical form in the terms of

the six-parameter vector a = (a1, a2, a3, a4, a5, a6)
⊤

as follows:

S1 [a] =
1

2

(
(1− a1)

2
+ a2

2 + a2
4 + (1− a5)

2
)

,(32)

S2 [a] =
1

2

(
a2
1

3
+

a2
2

3
+ a2

3 +
a2
4

3
+

a2
5

3
+ a2

6

+
1

2
(a1a2 + a4a5) + a1a3 + a2a3 + a4a6 + a5a6

−
2

3
(a1 + a5)−

1

2
(a2 + a4)− (a3 + a6) +

2

3

)
,(33)
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S3 [a] =
1

2

(
4

3
a2
1 +

4

3
a2
2 + a2

3 +
4

3
a2
4 +

4

3
a2
5 + a2

6

+
1

2
(a1a2 + a4a5) + a1a3 + a2a3 + a4a6 + a5a6

−
8

3
(a1 + a5)−

1

2
(a2 + a4)− (a3 + a6) +

8

3

)
,(34)

S4 [a] =
1

2

(
a2
1 + a2

2 + a2
3 + a2

4 + a2
5 + a2

6

)
.(35)

Further apply the GN approach to solve the discrete minimisation problem:

(36) min
a∈R6
Jβ [a] = D [a] + β̄NS [a] = D [a] + βS [a] ,

where the factor N = n2 for a square image n×n is now needed for multi-resolution
setting with β = β̄N , since the discrete fitting term D as in (10) does not contain

step-lengths information. The GN perturbation δa(k) for (36) is then given by

(37) H̃Jβ

(
a(k)

)
δa(k) = −gJβ

(
a(k)

)

where

(38) H̃Jβ

(
a(k)

)
= J⊤

(
a(k)

)
J

(
a(k)

)
+ βHS

(
a(k)

)

and

(39) gJβ

(
a(k)

)
= g

(
a(k)

)
+ β∇aS[a(k)]

are the approximated Hessian and the gradient of Jβ at a(k), and ∇aS[a(k)] and

HS

(
a(k)

)
are respectively the gradient and the Hessian of S at a(k). Note that for

S = S1 we may approximate HS1

(
a(k)

)
by I because it helps H̃Jβ

(
a(k)

)
to be a

symmetric positive definite matrix. As before, once we have the GN update δa(k),

we can also apply the line-search idea: a(k+1) = a(k) + α(k)δa(k).
A connection between our RAR method and the LM method from Section 2.3

can be explained as follows. Consider the regularizer S4 with a fixed β. Our RAR
method defines the perturbation given by

(40)
[
J⊤

(
a(k)

)
J

(
a(k)

)
+ βI

]
δa(k) = −

[
g

(
a(k)

)
+ βIa(k)

]
,

which is a solution of the following minimisation problem:

(41) min
δa∈R6

1

2

∥∥∥F (a(k)) + J
(
a(k)

)
δa(k) −R

∥∥∥
2

l2
+

β

2

∥∥∥a(k) + δa(k)
∥∥∥

2

l2
.

If the second term in (41) is replaced by β
2

∥∥∥δa(k)
∥∥∥

2

l2
i.e. we set a(k) = 0, we recover

the old LM perturbation (18):

(42)
[
J⊤

(
a(k)

)
J

(
a(k)

)
+ βI

]
δa(k) = −g

(
a(k)

)
,

which is a solution of the minimisation problem:

(43) min
δa∈R6

1

2

∥∥∥F (a(k)) + J
(
a(k)

)
δa(k) −R

∥∥∥
2

l2
+

β

2

∥∥∥δa(k)
∥∥∥

2

l2
.

Although the second term in (43) can be viewed as a regularizer, a Tikhonov-
like term, for the perturbation δa, the main problem with using this latter type of
regularizers is that we cannot directly control the characteristics of the solution. In
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other words, this approach does not take account into a prior information about the
characteristics of solutions, which is the main task of regularization. In contrast,
our RAR approach regularizes the current step

(
a(k) + δa

)
and so does control the

characteristics of the solution.

6. A cooling method for the RAR parameter

As will be shown in Section 7, our RAR model is more robust than the standard
affine model due to less demanding on good initial guesses. However the standard
model does not need a regularization parameter β. Here we shall first present an
algorithm to select the optimal β on the finest level L and then adapt the idea to
a multiresolution setting to minimize the extra work.

There are many ways to select β — one option is to use the ‘cooling’ process
(i.e. continuation) in an adaptive manner (see Haber and Oldenberg [8], Newman
and Hoversten [24], Chen et al. [2], and Lelièvre and Oldenberg [17]). The basic
idea is to start with a high initial value of β and then slowly reduce β in such a
way that the solution obtained using it is an excellent starting point for the next,
in order to decrease Jβ .

The initial β1 is first estimated so that β1HS

(
a

(0)
1

)
dominates the J⊤

(
a

(0)
1

)
J

(
a

(0)
1

)

component in (38), where a
(0)
1 is the initial guess solution. At the (l + 1)th step we

set

(44) βl+1 = γβl ∈ [β0, β1],

where γ is a constant, usually chosen to be about 0.5, and β0 is a small positive
number, e.g. 5 × 10−5. Subsequently, we apply βl+1 and the initial guess solution

obtained by the previous iteration a
(0)
l+1 = al with the associated inner loop to

obtain the minimum al+1 within some tolerance. As mentioned in [8], since the
functional Jβ changes at each outer loop iteration, the demand of decreasing the
value of the same functional is not reasonable so we impose the so-called consistent
condition to ensure that the solution al+1 and the parameter βl+1 are acceptable:

(45) Jβl+1
[al+1] = D [al+1] + βl+1S [al+1] < Jβl+1

[al] = D [al] + βl+1S [al] .

If this condition is not satisfied, we increase γ (usually to 0.9) and re-start the step.
Our experience suggests that the criterion given by

(46)
‖al+1 − al‖

max{‖al+1‖ , ‖al‖}
< δ

is suitable, where δ > 0 is small (normally set to 5× 10−4). The process of solving
the problem (36) for a with a given β (by the new RAR solver) will be denoted by

aℓ ← Solver RAR(Tℓ,Rℓ,aℓ, β, tol, IMAX)
for tolerance tol within the maximum number of iterations IMAX.

Finally, we summarize the unilevel cooling process as follows:

Algorithm 2 (Registration through cooling).

[a∗, β∗]← cooling(T,R,a(0), β(0))

• Set l = 1, γ = 0.5, al = a(0), β0 = 5 × 10−5 and β1 = β(0). Set IMAX= 25
and tol = 10−3.
• Outer iteration: For l = 1, 2, 3, ...
−1. Set βl+1 = γβl in [β0, βl]
−2. Inner iteration: anew ← Solver RAR(T,R,al, βl+1, tol).
−3. If J

βl+1
[anew ] < J

βl+1
[al]



A ROBUST AFFINE IMAGE REGISTRATION METHOD 327

−3.1. Set al+1 = anew , γ = 0.5, l = l + 1, and go to 4
Else
−3.2. Set γ = 0.9, and go to 4

−4. Check for convergence using the criterion (46).
If not satisfied, then return to 1, else, exit to the next step to stop.

• Set a∗ = anew and β∗ = βl.

In the above algorithm, one notes that each minimization may not be solved
exactly within IMAX iterations. Even so, the algorithm can be expensive for large
images due to accumulated cost. Then our first robust algorithm will be the fol-
lowing.

Algorithm 3 (The basic RAR method).

(1) Input tol, given images T, R. Set β = 1 (optional). Set toln,MAXN.
(2) Obtain the optimal regularization parameter β (through cooling) via Algo-

rithm 2:

[
a(0), β

]
← cooling(T,R,a, β).

(3) Solve the RAR problem (36) on the finest level using the found β:

a← Solver RAR(T,R,a(0), β, toln,MAXN).

In order to save computational work, we propose to use a hierarchy of L grids
(with level L the finest and level 1 the coarsest one) as in Section 4.4. Firstly
we shall seek the optimal β on the coarsest level 1 only and secondly we use the
idea of Section 4.4 to provide finer level initial guesses. The whole procedure is
summarized in Algorithm 4.

Algorithm 4 (Multilevel continuation for optimal β and reliable initial solution).

[aℓ, βℓ]← RAR multiresolution(Tℓ,Rℓ,aℓ, βℓ, ℓ, tol)

• If ℓ = 1
– Set aℓ = (1, 0, 0, 0, 1, 0)⊤ or use Methods 1-3 in Section 4 to work out

an initial aℓ

– βℓ = C [ Here C > 0 should be large enough e.g. C = 1000]
– [aℓ, βℓ]← cooling(Tℓ,Rℓ,aℓ, βℓ)

• Else
– Tℓ−1 = coarsen (Tℓ) , Rℓ−1 = coarsen (Rℓ)
– [aℓ−1, βℓ−1]← RAR multiresolution(Tℓ−1,Rℓ−1,aℓ−1, βℓ−1, ℓ− 1, tol)
– aℓ ← interpolate(aℓ−1) as follows:

aiℓ
= aiℓ−1

for i = 1, 2, 4, 5 (the elements of the affine transformation
matrix) and aiℓ

= 2aiℓ−1
for i = 3, 6 (the elements of the translation

matrix).
– βℓ = 4βℓ−1 [ Recall that βℓ = β̄n2

ℓ and nℓ = 2nℓ−1].
– aℓ ← Solver RAR(Tℓ,Rℓ,aℓ, βℓ, tol, IMAX)

Algorithm 5 (The refined RAR method).

(1) Input tol and set TL = T, RL = R on the finest level. Set toln,MAXN.
(2) Obtain the optimal regularization parameter β (on the coarsest level 1 through

cooling) and a good initial solution (through multi-resolution) via Algorithm
4:

[
a(0), β

]
← RAR multiresolution(TL,RL,aL, βL, L).
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(3) Solve the RAR problem (36) on the finest level ℓ = L using the found β:

aℓ ← Solver RAR(Tℓ,Rℓ,a
(0), β, toln,MAXN).

7. Numerical experiments

In this section, we shall give some results to illustrate the algorithms presented.
Our first example (Example 5) is used to defend the integrity of our RAR method
i.e. problems that possess genuinely large components in a are not penalized by our
method (the regularization). Our second example (Example 6) will show that, for
a nontrivial affine problem, the standard affine model even when Method 4 (Sec-
tion 4.4) can fail to register properly while our RAR models (especially Algorithm
5) can register successfully. Our final example (Example 7) shows that, for the
deformable problem (Example 4), our RAR method can provide a better initial
solution than Method 4 (Section 4.4) which leads to even fewer number of FAS
cycles by a deformable method (Section 3).

Example 5. We consider a pair of synthetic images as in Figure 6 (a)−(b) with
the images of size 512× 512. Clearly one expects a will require large values.

Using Algorithm 5 with S1, we find that aS1
=(0.2561, 0.4800,−134.4109,−0.2399,

0.8000, 275.9836)⊤ which is evidently not penalized by regularization. Similar so-
lutions are obtained by S2,S3,S4. The successfully registered images using these 4
regularizers are respectively shown in Figure 6 (c), (d), (e) and (f). Here aS1

is
the solution obtained from the regularizer S1.

Example 6. We consider an affine registration problem for a pair of MR images of
a human head as in Figure 7 (a)−(b), where n1 = n2 = 256. We compare the GN
and LM methods with Method 4 (Algorithm 1) with our RAR method (Algorithm
5).

Since max
{
‖a∗ − aSi

‖l2
/
‖a∗‖l2

∣∣ i = 1, 2, 3, 4
}

= 0.0069, this means that our
method converges to the true solution. Moreover, the registered images obtained
from 4 different regularizers shown in 8 (a)− (d) are almost identical. Comparing
those results obtained from the GN and LM methods (see Figure 7 (c) − (d)) and
our RAR method (see Figure 8 (a)− (d)), one notes that the proposed latter method
is more robust than the former methods.

Example 7. Finally, we re-solve Example 4 to show that Algorithm 5 is better than
Algorithm 1 in affine pre-registration for the purpose of using a deformable model
(via FAS algorithm).

Here we show in Figure 9 (a)−(d) the four respective pre-registration images
from our 4 regularizers, and they appear identical. Indeed, using any of them to
start FAS (Section 3) gives the same result as shown in Figure 9 (e)−(f) using
(a)−(b) respectively. Moreover the details from Figure 9 (a)−(d) are visually more
pleasing than Figure 5 (e)−(f) (especially at the upper region).

To show the quantitative gain from using our Algorithm 5, we now present the
comparable results in Table 1 for clarity, where ‘Out.Iters’ (same as l in step 3.1 of
Algorithm 2) is the number of the outer iterations by Algorithm 3 and ‘Avg.Iters’
means the average of the number of inner iterations, given by

Avg.Iters =
The number of accumulated iterations by Solver RAR on the finest level

The number of updates for parameter β (via steps 3.1 and 3.2 in Algorithm 2)
.

Clearly apart form the quality improvement over standard models (as illustrated
before), much speed gain can be observed in Table 1 with our recommended Algo-
rithm 5.
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(a) R (b) T

(c) FRAR(a
(10)
S1

) (d) FRAR(a
(18)
S2

)

(e) FRAR(a
(20)
S3

) (f) FRAR(a
(18)
S4

)

Figure 6. Example 5: Correct registration results (requiring large
affine parameters) of a pair of synthetic images by our RAR model.
The first row shows the reference (a) R and (b) the template T.
The second and third rows show the registered images (c)−(f) from
our 4 regularizers S1 − S4, respectively.

To summarize, in these and other tests, we have compared the performance of
Algorithm 3 with 5. While both give comparable results, Algorithm 5 is much
cheaper due to using a coarse level to work out β.

8. Conclusions

Parametric registration via a nonlinear least-square model offers a fast registra-
tion method. However the commonly used iterative methods of the GN (Gauss-
Newton) and the LM (Levenberg-Marquardt) often have convergence difficulties,
due to lack of good initial solutions, so the resulting nonlinear model is often not
robust.
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(a) R (b) T

(c) FGN(a(12)) (d) FLM(a(6))

Figure 7. Example 6: Failed registration results of GN and LM
with Method 4 (Algorithm 1). The first row shows the reference
image: (a) R and the template image: (b) T. The second row
presents the registered images: (c) FGN(a(12)) and (d) FLM(a(6)).

Example Image Algorithm 1 (GN) Algorithm 3 (S1) Algorithm 5 (S1)
Number size N Iters/Ini.Cpu/Cpu Out.Iters/Avg.Iters/Cpu Iters/Ini.Cpu/Cpu

5 1282 8/0.5/1.9 3/9/7.1 9/0.9/2.1
2562 7/1.0/6.9 3/9/22.8 7/1.5/7.0
5122 9/3.7/38.2 3/10/121.4 10/4.5/37.3
10242 10/14.6/179.8 3/10/501.5 10/14.6/165.0

6 1282 7/0.5/1.7 9/12/21.0 11/1.2/2.8
2562 12/1.1/14.3 9/12/207.6 11/1.4/10.7
5122 8/4.4/42.3 9/11/1006.0 10/8.3/46.9
10242 24/19.3/558.2 9/11/3240.4 12/33.1/232.0

Table 1. Comparison of Algorithms 1, 3, 5 using Examples 5− 6
with varying N .

In this paper, we first address the robustness issue of GN and LM methods
for affine models by reviewing four methods for getting good initial guesses. It
turns out that there are always difficult cases for which these initial guesses are
not sufficient. Such cases include getting pre-registration images for deformable
registration problems; we reviewed the diffusion based model and developed a FAS
multigrid algorithm for testing purpose. Then, we propose a regularized affine
registration (RAR) model that appears to be reliable and robust in solving i) the
affine image registration problems ii) providing a good initial guess for deformable
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(11)
S1
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(20)
S2

)
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(22)
S3

) (d) FRAR(a
(7)
S4

)

Figure 8. Example 6 re-solved: Correct registration results us-
ing our RAR method (Algorithm 5) with 4 regularizers S1 − S4,
respectively shown in (a)-(d).

models. To find the optimal regularization parameter in an efficient way, we use
a coarse level and a cooling idea, and combine with multi-resolution to initialize
our RAR model. The resulting Algorithm 5 has been demonstrated in numerical
experiments to be generally robust, for both affine problems and for pre-registration
for deformable problems, without much increase in work.

Recently there was new work attempting to combine parametric and non-parametric
models and we believe our idea of regularizing the parametric coefficients should
be applicable there as well.
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