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NONCONFORMING MIXED FINITE ELEMENT METHOD FOR
THE STATIONARY CONDUCTION-CONVECTION PROBLEM

DONGYANG SHI AND JINCHENG REN

(Communicated by Xuecheng Tai)

Abstract. In this paper, a new stable nonconforming mixed finite element
scheme is proposed for the stationary conduction-convection problem, in which
a new low order Crouzeix-Raviart type nonconforming rectangular element is
taken as approximation space for the velocity, the piecewise constant element
for the pressure and the bilinear element for the temperature, respectively. The
convergence analysis is presented and the optimal error estimates in a broken
H'-norm for the velocity, L?-norm for the pressure and H!-seminorm for the

temperature are derived.
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1. Introduction

We consider the following stationary conduction-convection problem (cf. [1-4]):
Problem (I) Find u = (u!,u?), p and T such that

—pAu~+ (u-V)u+ Vp = NT, in Q,

(1.1) divu = 0, in

’ —AT 4+ A u-VT =0, in Q,
u=0, T ="y, on 01,

where Q C R? is a bounded domain with boundary 92, u denotes the fluid velocity
vector field, p the pressure field, T' the temperature field, i > 0 the coefficient of
the kinematic viscosity, A > 0 the Groshoff number, j = (0, 1) the two-dimensional
vector and T the given initial scale function.

The stationary conduction-convection problem (I) is the coupled equations gov-
erning steady viscous incompressible flow and heat transfer process, where incom-
pressible fluid is the Boussinnesq’s approximation of the Navier-Stokes equations.
In atmospheric dynamics it is an important compelling dissipative nonlinear sys-
tem, which contains not only the velocity vector field and the pressure field but
also the temperature field. From the thermodynamics point of view, we know that
the movement of the fluid must have viscosity which will produce quantity of heat.
Thus, the movement of the fluid must be companied with mutual transformation
of temperature, speed and pressure. Therefore, it is very universal to investigate
this nonlinear system.

So far some numerical methods have been studied on the conduction-convection
problem (cf. [1-2,5-8]), but much less attention is paid to the theoretical error
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analysis of the mixed finite element methods. Shen [9] firstly analyzed the exis-
tence and uniqueness of approximation solution, and gave first order accuracy with
Bernadi-Raugel element [25] in terms of the small Groshoff number A that appears
in Problem (I) ( refer to [10] for the detailed proof ). However, the analysis in [9-10]
is about the conforming finite elements. Indeed, it seems that there are few studies
focusing on the approximation of Problem (I) with the nonconforming finite ele-
ments. Recently, these elements have attracted increasing attention from scientists
and engineers in various areas since they have some practical advantages. On the
one hand, they are usually much easier to be constructed to satisfy the discrete
inf-sup condition than the conforming ones, which is usually required in the mixed
finite element analysis. On the other hand, from the domain decomposition meth-
ods point of view, since the unknowns are associated with the element faces, each
degree of freedom belongs to at most two elements, the use of the nonconforming
finite elements facilitates the exchange of information across each subdomain and
provides spectral radius estimates for the iterative domain decomposition operator
[23].

The main aim of this paper is to construct a new low order Crouzeix-Raviart
type nonconforming rectangular element and apply it to Problem (I) with a mixed
finite element scheme. By virtue of the element’s special properties, the convergence
analysis is presented and the optimal error estimates are obtained. The remainder
of this paper is organized as follows. In section 2, we introduce the variational
formulation of Problem (I) and briefly recite the existence and uniqueness of its
solution proved in [9-10]. In section 3, we first give the construction of Crouzeix-
Raviart type nonconforming mixed finite element scheme and then prove that the
approximation spaces of the velocity and the pressure satisfy the discrete inf-sup
condition, which yields the existence and uniqueness of approximation solution. In
the last section, some important lemmas, the convergence analysis and the optimal
error estimates are obtained.

We will employ standard definitions for the Sobolev spaces W*?(Q) with norm
|- lk.p.0s and H*(Q) = W*2(Q) with norm || - ||, respectively (cf. [17]). Through-
out the paper, C' indicates a positive constant, possibly different at different occur-
rences, which is independent of the mesh parameter h, but may depend on 2 and
other parameters introduced in this paper. Notations not especially explained are
used with their usual meanings.

2. The existence and uniqueness of the solution to the variational for-
mulation

The variational formulation of Problem (7) is written as:
Problem (I*) Find (u,p,T) € X x M x W, such that T|sq = To

a(u,v) 4+ a1(u;u,v) — b(p,v) = A\(jT,v), YveX,
(2.1) b(g,u) =0, VgeM,
d(T, @) + Xay(u; T, ) = 0, Vo € W,

where

X =HNQ? M =L3(Q) = {q,qeLQ(Q),/ﬂqdm:O},W:Hl(Q),Wo = H}(Q),
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(-,-) means the inner product in L?(2)? or in L?() according to the context,
a(u,v) = p(Vu, Vv),b(p,v) = (p, divv),d(T, so) = (VT,Vy),
(2.2) ay (u;v,w) / Z (u uiaijJ')dx
=1 817,' ’
and
6T ; 0p
(2.3) (w; T, @) = / Z —u axiT)da:.

It has been shown in [11-15] that there exist positive constants C; and C; (i = 1,2)
such that

(2.4) [vllo < Cy[|Vollo, ¥ v e Hy ()%, vl < CylIVollo, Vv e Hi(Q),
(25)  [vlloan < CallVollo, ¥ v e HY(R)? [vlose < Collolh, ¥veH (Q).
Besides, the trilinear forms aq (+;-,-) and a;(-;-,-) satisfy

(2.6) ar(u;v,v) =0, ar(u;v,w) = —ar(u;w,v), Yu,v,we X,

(27> C_Ll(u7TaT) = 07 C_Ll(U;T, SD) = 76_"1(“; SD’T)7 Vou € X7T7S0 ew.

Let V = {v € X,divo = 0} denote the divergence-free subspace of X. Using
Green’s formula, (2.2) and (2.3) can be rewritten as

2 . N
1 ovd . Owd .
a(u;v,w) = f/ Z uZ v_w]—uzaz;}_vj)dx
/Z , YueVoe H(Q)? we X,
7,5=1
and
_ i 0
a(w;T,p) = /Z oz, @, ax,T)dfC
- /Q¢1
respectively.

We obtain in view of H(Q) — L*(2)
(2.8) lay (u; v, w)| < N||Vullo||Vollo||[Vw|lo, ¥V ueV,veHY (Q)? we X,

(2.9) a1 (u; T, )| < N[ Vullo[[VT oI Vello, VueV,TeW,peW,
where
a1 (u; v, w)| G |a1(w; T )|
N = sup N = sup .
wevwer (@2wex [Vullol|Vollo/[Vwlo’ uev.rew.pews | Vullol[VT ol Vello

In order to prove the existence and uniqueness of the solution to Problem (I*),
the following assumption is required as [14].
(A1) Assume that Tp € C12(9Q)(0 < o < 1), and there exists a prolongation of
Ty € Cy®(R?) (still marked as Ty) such that

1 Toll <e,

where € is a sufficiently small positive constant.
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Then the following important conclusion can be found in [9-10].
Theorem 2.1. Under the assumption of (A7), let A = 2u~1A\C; (1 + 3C’1)HT0||1

and B = (5 + )||T0H1 Assume that there exist positive constants §; and d;
such that

(210) p 'NA<1—01 (0< 6y, <1); 67 "]NCLCNB<1—6, (0< 6y <1).
Then Problem (I*) has a unique solution (u,p,T) € X x M x W, satisfying
(2.11) (IVullo < A, [[VT|o < B.

3. Construction of nonconforming mixed finite element scheme

Let K = [~1,1] x[~1, 1] be the reference element on §—n plane, the four vertices
of K are dy = (=1,—-1),dy = (1,—1),ds = (1,1) and ds = (—=1,1), the four edges
are Zl = CildAg, l2 = d2d3,Al3 = d3CZ4 and Z4 = Ci4621. . R

For any 9',9? € H'(K), we define the finite elements (K, P*,%%),i = 1,2, on K
as follows:

(3.1) St = (o], 05,03,0}, P'=span{1,& 7%},
(3.2) = {07,083, 03,07}, P? =span{1,£,7,6%},
where 07/ = ! [ $9ds, i=1,2,3,4, j=1,2.
It can be e;sﬂ;; checked tl}at ‘the interpolations defined above are well-posed and
the interpolation functions IT*0* (i=1,2) can be expressed as:

(3.3)

10 = 2 (6}-+0}) — 3 (01 +08) + 5 (04— 01)&+ 3 (83 01+ (o o4 + 2} — o}
and

(3.4)

11252 = 3@ 58) 3 (05-403) 4 5 (03 — )6+ 3 (05— 03It (03 +03 — i3 +7)E
respectively.

For the sake of convenience, like [9-10] let Q C R? be a polygon with boundaries
parallel to the axes, &, be an axis parallel rectangular meshes of 2, where 3y,
satisfies the usual regularity assumption and quasi-uniform assumption (cf. [16]).

For any K € 3y, let

K = [r1x — hoy, D1k + hay | X [P2r — hay, Tare + Dy,

hi = max {hz,,hz,} and h = max hg.
Ke$ KeSy,

Define the affine mapping Fi : K — K as follows:
T = 21K + hey &,

3.5 !

(3:5) { Ty = Tak + ha,n.

Then the associated finite element spaces X, My, Wj, and Wy, can be defined as:
Xp = {U = (Ul,vz),f}i‘k = vi|K oFg € pi, vV K €Sy,
[vilds = 0, F C 9K, i = 1,2},

F
My ={pe M, plx € Qoo(K), VK eSS},
Wi={peWplk € Qi(K), VK e},
Won :WhﬂH&(Q),

(3.6)
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where [v?] (i = 1,2) stand for the jump of v across the edge F if F is an internal
edge, and they are equal to v’ itself if F' belongs to 9%, Q;;(K) is a space of
polynomials whose degrees for x; and x5 are equal to or less than j, respectively.
Obviously, X;, ¢ HY(Q)?, My, C M, W, C W, so this is a nonconforming mixed
finite element scheme.
Define the interpolation operator IIj, : v = (v!,v?) € HY(Q)? — v € X}, as:

Mo = (!, M20?), T |g= %, Mo =190 o Fityi = 1,2.
Let [T = (IT'6, 1126?) and Mxv = (Mko!, TT%0?), then
(3.7) /(v —TIgv)ds =0, i =1,2,3,4,Y v € H'(Q)?,
li

where I; = [; o Fgl(i =1,2,3,4) are the four edges of K, respectively.
For all vy, = (v}, v}) € Xp,, we define

o = (X [ Fou-Vonda)” = (3 Quhtc+ biR0) "

KeSh KeSy,

Then || - || is the norm over X,.
We introduce the bilinear forms a”(-,-) and b"(-, -) and the trilinear form a’(-;-,-)
as:

(3.8) a(up, o) = p Z / Vup - Vopdx, Y up, vy € Xy,
KeSy, K
(39) bh(ph,’l)h) = Z phdivvhdx, A Vp € Xh»ph S Mh,
KeSy, K
and
(3.10)

hyo 1 2 iavfl j i@wfl AV X
ay (up;vp, wp) = 3 > i > (uha—xiwh —uh g vh) z, ¥ up,vp,wy € Xp,

KeSy, ij=1

K2

respectively.
Then the approximation of Problem (I*) reads as follows:
Problem(I") Find (up,pn,Th) € Xp x My, x Wy, such that Ty|aq = Ty

ah(uh, ’Uh) + a}f(uh;uh,vh) — bh(ph,vh) = )\(jTh,Uh), Yo, € Xy,
(311) bh(Qh,’U,h) = 07 v an € Mh7
d(Th, en) + Aa1(un; Th, n) =0, v on € Wop.
Using the similar technique as in [18] we have the following discrete embedding
inequality over X,

(3.12) ||’Uh|())2k7Q SC(]{?)H’U}LH}Z, Vo, eXp, k=1,2,---, n=2,

especially, when k& = 1 we denote the constant C(1) by Cj, i.e.,
(313) ”'UhHO < CgH’Uh”h, Yo, € Xp.

It can be checked that the trilinear forms a’(-;-,-) and a;(-;-,-) satisfy the fol-
lowing properties (cf. [18]):

(3.14) a(vp,vn) = pllonll?, Voo, € Xp,

(3.15) af(un;vn,vn) =0,  al(up;vn, wp) = —ak (up; wn,vn), ¥ up,vp,wy € Xp,
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(3.16)
a1 (up; Th, Tn) = 0, a1 (un; Thy on) = —a1(un; on, Th), YV un € Xp, Th,pn € Wh,

(3.17)  |af (un; vn, wn)| < Nallunllnllvallnllwnlle, ¥ wn, v, w, € HY(Q2)? U X,

(3.18)
a1 (un; Thy 1) < Nillunlln|VTwllol| Veenllo, Yun € HY(Q)?UXp, T) € Wi, on € Won,
where
h . B _ T
Np=  sup la% (up; vp, wp)| N, = sup a1 (un; Th, on)] |
un o wneXn |[Wnllnlvnllnllwnlln une X, TneWnoneWor |UrllnIIVT 5ol Venllo

which are norms for the trilinear forms af(-;-,-) and a1 (-; -, -),respectively.
_ In view of (3.12), we know that there exist two positive constants Ny > 1 and
Ny > 1, such that

(3.19) Ny <Ny, N,<Ny, VO<h<L.
Therefore
(3.20)  |af (un; v, wn)| < Nollunllnllonllnllwalln, ¥ wn,vn,win € H'(2)? U Xy,

(3.21)
|1 (un: T, )| < Nollunlln[IVTnllol Veonllo, ¥ un € HH(Q)*UXy, Tiy € Wa, on € Wop.

Lemma 3.1. The spaces X}, and M}, satisfy the discrete inf-sup condition (cf. [14]),
i.e.,

h
(3.22) sup @ vn)

> Bllanllo, Y qn € Mp,
wnexn  lvnlln

where [ is a positive constant independent of h.
Proof. By (3.3) and (3.4), let

1,. . 1, . 3. . . N
on = S} 0], a0 = (@~ o)), oy = (o] — b+ 8} — o)),
B_lAz_Az Loy _ 30 0 o o
1= 2(“2 03), P2 = 2(“3 01), B3 = 4(712 07 + 03 — 03).
It can be checked that the following inequalities hold
(3.23) | <CloYy g, 1Bi] < CI0%), g, i =1,2,3.
In fact
Loy 1 1 1
ar = (0 —0y) = *[ o (Lm)dn— [ 0 (—Ln)dﬂ
2 41/, i

1 ot 1, oot .
= 1/ Fedein< 51 G log= Ctl g,

or = geh—oh) = 5[ [ o= [ o' -na]

5

1 [ oot 1, oot R
= 7 dédn < - || 8777 ||0,f<S C|U1|1,Kv
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3, .
az = 1( 1 — 05+ 05 —0y)
3 5 . .
= ﬂ 1€ m)dédn — / (L, m)dn — / H(=1,m)dn
K lo
+ [ e >d5+/ 6. ~1)ds — [ '€ n)aan]
3
3
= [ [ nSaein - [ €5-dean]
< C|@1|1,f('
Similarly
(3.24) Bi <Clo%|, g, i =1,2,3.
From (3.23) we can prove
(325) ||Hh’U||h < C’|’U|17 VoveX.
By the definition of interpolation (3.7) and Green’s formula, we get for all v € X
bh(Qha v—1Ipv) = Z / gndiv(v — Ilgv)dx
Kesy, K
= Z qh|K/ div(v — Hgv)dx
(3.26) Kea, K
= Z Qh|K/ (v —TIIgv) - nds
Kesy, oK
= 0.

The fact that ¢, belongs to a piece-wise constant space is used. Here and later n
denotes the outward unit normal vector to K. Since the spaces X and M satisfy
the inf-sup condition, there exists a constant Gy > 0 such that

b(q,v
(3.27) 99) 5 Gollglo, ¥ € M.
vex vl
Therefore, by (3.25), (3.26) and (3.27), we have
" (qn, vn) " (qn, Mpv) " (qn,v)
sup ———2 > sup ——00—2 = sup ————~
(3.28) onexn  llvnlln vex  ||Hnvln vex |[pvl|n
b(q}mv) 70||q ||
= Cuex [oli =™

which, by setting 3 = % yields the desired result.

In order to prove the existence and uniqueness of the solution to Problem (I"),
we first consider the following equations:
Problem (I") Find (un,Th) € Vi, X Wi, such that Tj|aq = Tp

(3.29) { a(un,vn) + af (un;un, v) = A(§Th,vr), Y vp € Vi,

' d(Th, on) + A1 (un; Th, ¢n) =0, YV on € Won,
where
(3.30) Vi = {vn € Xp: V" (p,vn) =0, ¥ py € My, }.

It is easy to see that

(3.31) Vi, = {Uh S Xh;divvh = 0}.
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Theorem 3.1. Under the assumption of (A;), let A" = 2u~*ACs(1 + 3C))||Tol|x
and B = (5 + Cl'i) ITo]|1- Assume that there exist positive constants d3 and d4
such that

(3.32) p'NgA < 1—63 (0 <65 <1); 65 ' "AC,CsNgB <164 (0 < 54 < 1).
Then Problem (1) has a unique solution (up,pn, T) € Xp x My, x Wy, satisfying
(3.33) lunlln < A", [IVTo < B.

Proof. We use Banach’s fixed point theorem (cf. [27]) to prove our theorem.
The proof proceeds in the following three steps.
Step 1. To prove the existence of the solution to Problem (I h/).
For a given @, € V},, we consider the following equation:

(3.34) d(Th, ¥n) + Aa1 (tn; Thytbn) =0, ¥ by € Wop.

Let Ty, = wp, + Ty, wp, € Wop. Substituting it into (3.34), we have

(3.35) d(wn,¥n) + Aa1(@n; wn, ¥n) = —d(To, ¥n) — Aar (@n; To, ¥n), ¥ ¥ € Won.
Let

(3.36) D(wp, ) = d(wh, n) + Aa1 (Un; wn, ¥n), Y bn € Wop.

Choosing 9y, = wp, in (3.36), we deduce that

(3.37) D(wp,wp) = d(wp, wp) + Aay (tp; wp, wp) = d(wp, wp) = ||th\|(2).

So D(-,-) is continuous and coercive over Wy,. By the Lax-Milgram Theorem (cf.
[14]), we know that (3.35) has a unique solution T;, € Wy, satisfying Th|oq = To.
For this T}, we consider the following equations:

(3.38) ah(u;;,vh) + a}f(uz;uz,vh) — bh(ph, vp) = A(§Th,vr), Y up € Wy,
and
(3.39) v (on,ul) =0, Y on € My,

which approximate the stationary Navier-Stokes equations. By (3.14) and Lemma
3.1 we know that there exists a unique solution (u},pp) € Vi x My (cf. [18,26]).
Thus (3.34), (3.38) and (3.39) determine a mapping I, : 4, € Vi, — uj, € Vy, ie,
UZ = lhfbh.

Firstly, we estimate ||[VT3o-
Choosing Ty, = wp, + To,¥n = wy, in (3.34), we arrive at

(3.40) d(wp,wp) = —Aaqg (an; To, wp) — d(To, wp).

By (3.21), we have

(3.41) IVwnll§ < ANollan|[nlV Tollo[[Vwnllo + IV Tollol| Ve o-

By (A1), we get

(3.42) IVwnllo < ANoel|an|ln + [ VTollo-

Hence

(343)  |VTullo < [ Vwnllo + IV Tollo < ANoel|n | + 2[Tolls = B(llanlln)-

Secondly, we estimate ||u} |-
Choosing v, = u}, in (3.38), by (3.13) and (3.39), we obtain

(3.44) pllunlly = INGTh, un)l < M| Thllollugllo < ACs[| T ol |-
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Applying (2.4) and (3.43), we deduce that

ujlln < w7 ACs||Thllo < p= ' ACs(llwallo + | Toll0)
< pIACs(CLIVwnllo + (| Tollo)
(3.45) < wTIAGS[CHIVThllo + (1 + C)[| Toll4]
< pTIACs(143C)||Tollx + p~ " A\2CyCs Noelfiin |

A(llan|n)-

Thirdly, we prove [;, is continuous.
For arbitrarily given @}, 4} € Vj, and according to (3.34), (3.38) and (3.39), there
exist (uil,ph,T}), (up?,p2, T?) € Vi, x My, x Wy, satisfying T} |aq = TZ|oq = To.
By (3.34), we have
(3.46)
d(T} — TZ, ) + Nay (i), — 3 T bn) + Aay (@5 Ty — T2, 9n) =0,V by € Wop,.

Choosing ¢, = T} — T? in (3.46) and using (3.16) and (3.21), we obtain
V(T = THIS = [Maa(ay, — ag; Ty, Ty — T7)]

(3'47) NARh! ~2 1 1 2

< ANollty, — @ l[n VT, oIV (T, = T3) llo-
Hence
(3.48) V(T — TP)|lo < ANo||@p, — @3 ||| VT3 [[o-

Owing to (3.38), we deduce that

*1

ah(uh *1 *2, %1

—up?,on) + af (upt = upt o) + af (up?upt — w2, o)
=b"(pt, — p3,vn) = A(G(TE — T?),vp), Yoy € V.

Choosing v, = u}' — u}? in (3.49) and using (2.4), (3.13), (3.20) and (3.39), we
derive

(3.49)

plluit = ui?ll;
(3.50) = \AG(T = T3), upt = up?) — aff (upt — w5 upt, upt — w2
< ACLC3|[V(Tyy — T ollug — uwi?lln + Nollug! — w17 1wy -

Therefore
(3.51)  lup' —up?lln < pACLCs||V(Ty — Ti)llo + " Nollup! — wi?|[nllui! |-
Substituting (3.48) into (3.51) yields

Jup! =i ln
(352) —1\2 N, ~1 ~ 1 —1 *1 *2 *1
< pT N2 CL O3 No |y, — A [[nl| VT, o + 7~ Nollup™ — wpllnllwy Ml n-

From (3.43) and (3.45) we know that |Ju}?||;, < A(||@||s) and [|VTE|lo < B(||anll3)
(i=1,2) are bounded if ||@} ||, (i=1,2) are bounded. By (3.52) and the assumption
that u=*NgA <1 —63 (0 < d3 < 1), we arrive at

(3.53) lupt — wi?|ln < 05 W IN2CLCs No B}, — @ |-

Therefore uj is continuously dependent on .
Finally, we consider the following equation:

up = slpup, 0 < s <1.
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Obviously, s = 0 is a trivial case. So we only need to consider 0 < s < 1.
Substituting s~ uy, = luy into (3.45), we obtain

(354) s unlla < TGS (1 + 3CIToll + ARG Cy Nocun .
Noting that 0 < s < 1, then s5(2 — s)~! < 1. Assume that
(3.55) e = (2u~ ' N2C CsNy) .
By (3.54), we have
(3.56) lunlln < 20~ ' AC5(1+3C)) | Tol1 = A
Substituting (3.56) into (3.43) yields
—_ ’ — 1
(3.57) [[VThllo < 2||Toll1 + ANo(2u*A2C,CsNo) ™ |lun||n = (5—|— F)HT(JHl = B.
1

Observe that 5 '~ A\2C1CsNoB < 1 — 4§, (0 < 84 < 1), we know, by (3.53), that
I, is a contractive operator. Using Banach’s fixed point theorem, Problem (I h/)
has a unique solution (up,Ty) € Vi, x Wy, satisfying Ty |oq = To.
Step 2. To prove the existence of the solution to Problem (1").

Clearly, the solution (us,Th) € Vi, X Wi to Problem (I"') satisfies the last two
equations of Problem (I"). For the given (uy,T}), we define

(3.58) f(on) = a(un,vp) + @l (upsun, vn) — A(GTh,vn), ¥ on € Xp.

Noting that f(vp) is a bounded linear functional over X, and f(vy) = 0 on Vj,
then there exists a pp, € M), such that

(3.59) flop) = (pn,divey), Vo, € Xy,

(cf. [15]). Therefore, Problem (I") has a solution (un,pn,Th) € Xn X M}, x W,
satisfying Th|ag = To.

Step 3. To prove the uniqueness of the solution to Problem (I").

Suppose that Problem (I") has another solution (u},ph, T}) € Xj, x My, x W,
satisfying T}t|ao = Tp. By Problem (I"), we deduce that

ah(uy, — u}l,vh) + al(up — u}l;uh,vh) + a’f(u}lL; up, — u,ll, vp)

(3.60) X X , X

=b"(pr, — pp,vn) = A([J(Th — 1)), vn), ¥ v € Xi,
(3.61) V" (on, un —up) =0, Y o € My,
and
(3.62)

d(Ty = Ty, on) + Aan (un, = ups Ty ton) + A (ups T = Ty on) =0,V yon € Won.
Taking vj, = up, — uj, in (3.60) and applying (2.4), (3.13), (3.20) and (3.56) yield
pllun —wplli; = IXG(Th = Tp),un —up) — af (un — wps un, un — )|

< ACLG|IV(Th = T lollun — ulln + NoA fun — upl3.
Noting that p 'NgA <1 —d5 (0 < 03 < 1), we have
(3.64) lun = willn < 05 = ACLGS(IV (T = T) .
Choosing ¢, = T), — T} in (3.62) and using (3.16) and (3.21), we can write

IV (T = Ti)II | = Aa (un = up; T, T = Ty)|

< ANoflun = up I IV ThllolV (Th — Ty) llo-

(3.63)

(3.65)
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Then it stems from (3.57) that

(3.66) IV (T3 = Ty)llo < ANoB|lun — uj,||a-
Substituting (3.64) into (3.66) yields
(3.67) IV (T = Ti)llo < 85 ™ N BCLCsNol|V (T = T3) -

On the one hand, noting that 6??1;;_1)\20103](703 <1-64 (0<dq <1), we
have ||[V(T, — TH)|lo = 0, hence T), = T}}. Together with (3.64) we know that
lup, —up|ln =0, ie., up = uj.

On the other hand, by (3.60), we have

(3.68) V' (pr — provn) =0, Yo, € Xp.

Thanks to Lemma 3.1, we get

b — 1,7)
(3.69) Blon —phllo < sup Ph P 0n)

=0.
v EXp thllh

That is py, = pj,. We complete the proof.

4. Error estimates

This section is devoted to establishing convergence results for the discrete ve-
locity, pressure and temperature spaces. First of all, we state the following lemma
which can be found in [14].

Lemma 4.1. There exists an operator rp : W — W), such that for all p € W

(V(e =71h9),Veor) =0, V@ € W,

/Q (0 —rnp)dz =0, [Vragllo < [Volos
and
o —rheplls < Chlpla, ¥ ¢ € H*(Q).

Next we prove the following two important lemmas.
Lemma 4.2. Assume that u € H?(Q)? and p € H!(Q), then we have

(4.1) ‘ > / . Uhd5‘<0h|u|2||vh”ha Vo € X,
KeSy, 8K
and
(4.2) ‘ 3 / pon - nds| < Chlplillonlln, ¥ o € Xp.
oK

KeSy,
Proof. Note that

43) = z; {_/l (g;; 1+g vh)da:1+/2 (gzl vl + g;vh)dxz
+/13 (ZZ:U}L + ngi)dm — /14 (givi + gzjvi)cl@]

For any K € Sy, and v € HY(K)(H'(K)?), we define the following operators:

1 1
Py,v = thl /,L-deh 1=1,3, Py,v= thz/ivdm’ 1= 2,4,
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1
Pyv = —/ vdzx.
K| Jx

It is easy to see that the above operators are affine equivalent. Let the corresponding
ones onto the reference element K be denoted by Py (i =1,2,3,4) and Py. By
(4.3) we get

(4.4)
ou
— - upds
on
3, JOK
s ou! ouly 1 ou? ou?y 5
= Z { —_ -[ [(673;2 — POTM)(U]L — Poll'l)h) + <87J;2 — POTM)(U]L — P011vh):| dxl
KeSy, 1
out outy L ou? oy, 5
+/l2 [(% B PO%)<”h ~ Poizvp) + (% B POax%)@h ~ Paef) | ds
ou ou 1 1 ou ou 9 9
+/l3 K(’)x% - Poax%)(vh — Poiyvp) + (83:% - Poax%>(vh - Polsvh)]difl
B du” Ou 1 1 ou®  Ou 5> 9
/l4 (G~ Py ) v = v + (5 = P ) vk = Poveod) s}

= [F} + F> + F3 + Fy),
KeSy,

where

out outy 1 ou? oy, 9
F]_ = —/ll |:(87x2 — PO%) (Uh — Poll’Uh) + (87:];2 — PO%) (Uh — P(]llvh)i|d$17

ou! ouly, 1 ou? oy, 9
e = /l (G~ Pogay ) 0 = Powaeh) + (- = o) 0 = Poe)

aul aul 1 1 8U2 3u2 2 2
e /l [(5a5 = Pogag ) v = Puso) + (5 = Pogi, o = P o,

out outy 1 ou? oy, 9
Fy=- /14 {(67501 - POTM)(Uh — Po,vp) + (87501 - POTM)(Uh - Polwh)}da?%

Using Holder inequality, trace theorem and interpolation theorem, we have

Fy < Chi(lu!

1 2 2
2.k vy |1, K + [u®|2, x|V} ]1,Kx)
(4.5) h 4

N

> ChK‘u|2,K|vh|1,K7 1= 1727334'
By using (4.5), we get
ou
‘Xj/zﬁqugmmwwM
KeSy, oK

Similarly, we can get (4.2). Then Lemma 4.2 is proved.
Lemma 4.3. Assume that u € H2(Q)2 N H}(Q)?, then there holds

| Y [ weneods| < Chllalflulllonll Y o € X
OK

Kesy,
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Proof.
(4.6)

Z / (u-n)(u-vp)ds

Kesy, oK

(/ —w?u - vpday +/ whu - vpdag —l—/ wlu - vpdy —|—/ —ulu - ’Uhdl'g)
l l I

1 2 3 4

Z (uu — Py(u*u)) - (v, — Poy,vp)dxy + / (uru — Py(utw)) - (vy, — Poryvn)das
% l1 l2

( ( w)) - (v, — Poigvr)day —l—/ —(ulu — Po(ulu)) (vp — Pouvh)dxg}
I3 Iy
Z [I1 + I + Is + 1],
KeSy,
where

I, = _/ (uu — Py(u*u)) - (vy, — Poy,vn)dey,
5t

I = / (uru — Py(utw)) - (vy, — Por,vn)das,

l2

I3 = / (v*u — Py(u*u)) - (v, — Pojyvn)da,

I3

I, = 7/ (uru — Py(utw)) - (vy — Poy,vp)dxs.
Iy
Using Holder inequality, trace theorem and interpolation theorem, we have

no= - [ P Ry) (o - Puon)den

1 1

= (/l1 (u?u — Po(u2u))2dx1);(/ll (v, — POllvh)le‘l)i

- ( /[1(@—150@)%@5)&( /l (5 — Py, T) hzldg)%

1

4.7 = hayllw?u = Bo(u2u)ll 1, 5 — Bog, il
< Chm1|\u2u—P0(u2 )”1 &llon — POllvhHLf(
< Chm1|u2u\17f(ﬁh\17]g
< Ch

Similarly

(4.8) Iy < Chg,|uuly i [on)1 k

(4.9) I3 < Chy, [uul1 k |vn|1 5k

(4.10) Iy < Chy, |utuly, i |[vn]1, i

Combining (4.7), (4.8), (4.9) and (4.10), yields the desired result.

The following theorem is the main result of this section.

Theorem 4.1. Under the assumption of (A1), let (u,p,T) € (H?(Q)? N H(2)?) x
HY(Q) x H*(Q) and (up,pn, Thn) € Xn x My, x Wy, be the solutions to Problems (1)
and (I"), respectively, then we have

lu = unlln +1lp = pallo + V(T = Th)llo < Ch(lul2 + [pl + T2 + [lull]Jull2)-
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Proof. By Problems (I) and (I"), we get the following equations:

a(u — up, o) + al (v — uniu, va) + af (un; u — un, v) — 0" (p — pr,vn)

ou
—MZ/aKa—n-vhds—i— Z/d PUp - nds

(4.11) KeSy, Kes, VoK
1
—= > [ (uen)(u-vi)ds = AG(T = Th),vn), ¥ vn € Xn,
2 oK
Key,
(412) bh(qh,’UJ7uh) :0, th E]\Ih7

and
(4.13) d(T —Th, on) + Aar(u—up; T, on) + A1 (up; T —Thyon) =0, ¥ on € Wop.

Choosing ¢y, = r,T — T, € Wy, in (4.13) and using Lemma 4.1, we have
(4.14)
d(T — Ty, T — Th) = d(T — Ty, T — ’I”hT) + d(T —Tp,rpT — Th)

= d(T —rpT,T — ’I”hT) - )\dl(u —up; T, rpT — Th) — )\dl(uh; T —Ty,rpT — Th)
By Hoélder inequality and Cauchy inequality, it follows easily from (3.21) and The-
orem 3.1 that

(4.15)
V(T = T0)|I§

< |IV(T = ri DI + ANo[|w — un [w VT [lo(IV (T = raT) o + V(T = Ti)llo)
+AXNo[[un[n IV (T = Ti) o (IV (T — 1 T) [lo + IV(T = Th)llo) ,

_ 1 0
< CIV(T = raT)|I5 + (ANoB)?|Ju — unl7 + §HV(T —Tw)§ + §1||V(U —up)|3,

where 0, is an undetermined positive constant. Thus
(4.16) IV(T = Th)llo < ClIV(T = raT)lo + (01 + 2ANo B)|[u — up | n-

Choosing v, = ITpu — uyp, in (4.11), and by (4.12), (3.20), Holder inequality, Theo-
rems 2.1 and 3.1, Lemmas 4.2 and 4.3, we have
(4.17)

pllu =l

= |a"(u — up,u — Tpu) + a”(u — up, Wpu — up)|
= ‘ah(u —up,u — pu) + AG(T — Tn), Hpu — up) — al (v — up;u, pu — up)

ou
—a! (up;u — wp, My — up) + 0"(p = pu, Ty — up) + o Z/ 5, (nu—up)ds
KeSy, oK

_ Z /(‘JKp(Hhu_uh).ndS—’—% Z /(aK(u'n)(u'(HhU_uh))dS‘

KeSy, Key,
< pllu = unllnllu = Mpullp + AT = Thllo([[Haw — ullo + [lu — usllo)
+Nollu — un||n[Vullo(ITThu — ulln + [[u — uslln)
+No|[unl[nllu — unlln([Tpw — ulln + |lu = unlln) + [[p = pallo[[Hru — ulln
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+Chlulz||Tpw — up|n + Chipl1[TThu — unl[n + Chllullyull2]| T — uplln

< pllw — wp[nllu = Tyulln + ACTCs ||V (T = Ti) o[ T — ulln

+ACI 5| V(T = Ty lollw = unlln + 2No A [lu = wn |n | TThu — wll

+NoA'[[u = unll} + [lp — pallo| T — ulln + Chlula|[ Ty — ully + Chlulz|u — up |,
+Chlpl1|[Mhu — ulln + Chlpllu = unlln + Chllull1]|ull2][TThu — ulln
+Chull1[[ull2llu — unllh-

By use of the assumption that = *NgA" < 1 —d3 (0 < &3 < 1) and Cauchy
inequality, we have
(4.18)

l[w — unn

< 85w — wnllnllu = Tyl + 1285 "AC; Cal[ V(T = Th)llol| My — ull,
185 TAC Cs | V(T = Tn) lollu — wnln + 20785 " NoA'[lu — wn [ | TThu — wll
+u7105 [P = prllo I Mhu — ulln + Chlula|Thw — ulln + Chlulz|lu — g,
+Chlpl1[[Maw — ulln + Chlplillu — unl|n + Chllully|lull2[[Mhw — wll
FCh[ully [[ull2]lw = wnlln
< Cllu = Tpullf, + CR*(ul3 + [pI + ullf[u]3)
255 A C VT~ T3+ 3wl + 2~ a3,
where 65 is an undetermined positive constant. As a consequence, we have
[l = wnlln
(4.19) < Cllu — Mpulln + Ch([ulz + [ply + [[ull1[lull2)
+2p7165 ACLC ||V (T = T )llo + O2lp — pallo-

By(4.11), (3.20), Holder inequality, Theorems 2.1 and 3.1, Lemmas 4.2 and 4.3, we
have
(4.20)

6" (Pop — phyvp)|

= [b"(Pop — p, vn) + 0" (p — pn, vn)|
= ‘ah(u —up,vp) + al(u — up;u,vp) + af (up;u — up,vn) — ANG(T — Th), vn)

0 1
—u Z /aKa—Z-vhds—i— Z /avah-nds—§ Z /BK(u~n)(u-vh)ds

KeSy, KeSy, KeSy

< [pllu = unlln + 2NoAllu = up |l + ACLC3 || V(T = Tn) o
+Ch([ulz + |ph + [[ull1llull2)][[onln,

1
where Pop|x = m/ pdx.
K

According to the discrete inf-sup condition Lemma 3.1, we have

1 V" (Pop — pn,vn)
= gup 2MOP T DPhiVh)

(4.21) lp = pullo < |lp — Popllo +
B vnex, llonlln



308 D. SHI AND J. REN

In view of (4.20) and (4.21), it follows
(4.22)

lp—pllo < |lp— Popllo+ B~ g+ 2No A)|lu — up||n + B~ ACLCs|| V(T — T1)]lo
+Ch(ulz + [pl1 + [Jull1[|ul2)-

Substituting (4.22) into (4.19), we obtain
(4.23)
[ = unlln

< C(llu = Mpulln + llp = Popllo) + Ch(ful2 + |pl1 + [lull1llull2)
+ (27165 IANC O + 0587 ACLC3) ||V (T — Ti)llo + 026~ (1 + 2No A)||u — up ||

Substituting (4.16) into (4.23) and employing interpolation theorem and Lemma
42, yield
(4.24)

[l — wnlln

< Ch(lula + |pl1 + |T|2 + llulllull2) + [20147 165 AC1Cs + 610537 AC1 Cs
+4p~ 165 A2 NG BC Cs 4 20,3 A2No BC, Cs + 023~ (11 4 2No A)]||lu — wp |

Noting that 63_1/1*1)\26';6'3]%3 < 1—904 (0 < 04 < 1). Let 64 = g, then

- 1
453_1,u_1/\2C103NOB < 3 Consequently
(4.25)
lu—unlln < Ch(lulz + |ph + T2 + [Jufl1]lull2) + 261 (21~ 165 ACL Cs

+0267INC,C3) + 02871 (2A2 Ny BC, Cs + 114 2No A))||u — wn |5

Let

0y = — B < ,ﬂ

> 7 8(2A2NyBC|Cs + i+ 2NoA) ~ 16A2NyBC;C5’

’ 1 . _ — ’
then 6,37 1\C;C3 < T6AN.B’ together with 2105 ' AC| Cs < DN.B and (4.28),
we have
(026) flu— unll < ChJula + [pls + 1712+ k) + (g + 1 ) —

. hilh = 2T Pl 2 1u]l2 SAN,B ' 4 hlh-
2ANyB 0 1

Let 6, = 50 , then 8)\5]\_sz =7 By (4.29), we have
(4.27) lw = unlln < Ch(lulz + [ph + [Tl2 + lulli[[u]l2).
Substituting (4.27) into (4.16) yields
(4.28) IV(T = Th)llo < Ch(lulz + |ply + |Tl2 + [[ull1[[ull2)-
Then substituting (4.27) and (4.28) into (4.22), we obtain
(4.29) I = pullo < Ch(lulz + [pl + T2 + llull1]lull2)-

Combining (4.27), (4.28) and (4.29), yields the desired result.

Remark 1: 1t can be checked that the results obtained in the present work are valid
to the rectangular nonconforming element proposed in [19-20] and the rotated @1
element discussed in [21,23-24] for the approximation of the velocity in the station-
ary conduction-convection problem. At the same time, the former element can be
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applied to the anisotropic meshes.

Remark 2: Tt should be pointed out that the total degrees of freedom of the non-
conforming element of this paper are the same as the conforming one used in [10].
Remark 3: From (2.10) and (3.32) we know that A and p must satisfy some relations,
especially, the Groshoff number A is not too big.
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