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IMAGE ZOOMING ALGORITHM BASED ON PARTIAL

DIFFERENTIAL EQUATIONS TECHNIQUE

RAN GAO1,2, JIN-PING SONG1,2, AND XUE-CHENG TAI3,4

Abstract. Partial Differential Equations (PDEs) have become an important

tool in image processing and analysis. A PDE mode for image zooming is

introduced in this paper. This model exploits a higher order nonlinear partial

differential equation. The resulted nonlinear equation is solved by an explicit

finite difference schemes. Numerical results on real digital images are given to

show effectiveness and reliability of the proposed algorithm.
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1. Introduction

Due to the development of modern information technology, image processing is
becoming more and more important in our life. Digital zooming is encountered
in many real applications such as electronic publishing, image database, digital
camera, visible wireless telephone, medical imaging and so on. In order to have
better and fine images for users, images often need to be zoomed in and out or
reproduced to higher resolution from lower resolution.

One common way for image zooming is interpolating the discrete source image.
Interpolation is the first step of two basic re-sampling steps and turns a discrete im-
age into a continuous function, which is necessary for various geometric transform
of discrete images. There are two kinds of interpolation methods: linear and non-
linear ones. For linear methods, diverse interpolation kernels of finite size have been
introduced in the literature. Approximations of the ideal interpolation kernel which
is spatially unlimited are essential for these methods, see [5, 9, 17]. The simplest
and most popular approximations are related to pixel replication [4], bilinear inter-
polation [12] and bicubic interpolation methods [7, 6]. They have been routinely
implemented in commercial digital image processing softwares. Pixel replication
method is a technique of nearest neighbor interpolation [13], which is simple to
implement by replicating the original pixels. This method is usually susceptible to
the undesirable defect of blocking effects. Bilinear and bicubic interpolation employ
first-order spline and second-order spline models, respectively. By doing so, more
pleasing outcome is resulted for many real digital images.

A generic zooming algorithm takes as input an RGB picture and provides as
output a picture of greater size preserving the information content of the original
image as much as possible. Unfortunately, the methods mentioned in the passage
above, can preserve the low frequency content of the source image well, but are not
equally well to enhance high frequencies in order to produce an image whose visual
sharpness matches the quality of the original one. Especially, when the image is
zoomed by a large factor, the zoomed image looks very often blocky [14, 15]. In
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addition to the problem with sharpness, lower order methods degrade the zoomed
image quality, despite the fact that they require less computation effort compared to
higher order interpolation methods [2]. One of the basic concepts of the algorithms
mentioned above is to interpolate images using the feature of pixels. Determination
of pixel feature through these methods needs higher computational complexity, and
the result is often disappointing. The method proposed in this paper tries to take
into account information about discontinuities or sharp luminance variations.

In recent years, PDEs have achieved great success in the field of image processing
[16, 1, 8, 18, 10, 3, 11]. Its basic principle is to use piecewise smooth surfaces to
approximate images. Because of the effect of diffusion, the image which has been
processed will be quite similar to the original image in edge and other places.
Thus, it enables to obtain images not only have good smoothness but also preserve
sharpness of the edges. Based on this characteristic, we try to proposes a PDE-
based interpolation model in this paper. The basic idea of the algorithm is to
introduce a fourth-order PDE to smooth the image. Our experiments show that
the proposed method is better than bilinear interpolation.

The paper is organized as follows. Our PDE-based model and its numerical
realization are formally introduced in Section 2. Section 3 is devoted to numerical
experiments, followed by some conclusions in Section 4.

2. PDE-based Image Zooming Algorithm and Its Realization

The PDE model we shall introduce is based on a noise removal algorithm pro-
posed in [15]. In [15], the authors proposed a fourth-order PDE to image denoising,
which is to recover an image u from a noisy observation u0. This model is referred
as the LLT model. For noise removal, one needs to solve the following minimization
problem:

(1) min
u

E(u), where E(u) =

∫

Ω

(u2
xx+u2

xy+u2
yx+u2

yy)
1

2 dxdy+
λ

2

∫

Ω

|u−u0|
2dxdy.

Assume the noise level σ2 =
∫

Ω
|u−u0|

2dxdy is approximately known, then one can
use a Lagrangian multiplier to solved the above constrained minimization problem.
The resulted equation is a fourth order nonlinear partial differential equation. High-
order PDEs are known to recover smoother surfaces better. The nonlinear PDE
resulted from LLT can also preserve jump rather well. In this work, we try to use
this idea for image zooming.

2.1. The PDE-based model. To formulate the problem in the continuous set-
ting, we assume that the low resolution image u0(x, y), (x, y) ∈ Ω1 is given in
Ω1 ⊂ Ω and Ω = Ω1 ∪ Ω2. In the discrete setting, Ω1 contains the grid points of
the low resolution image pixels. From the values of u0 in Ω1, we want to extend
them to the whole region Ω.

For this purpose, we shall try to find a function u defined in the whole region to
minimize the energy functional:

(2) E(u) =

∫

Ω

(u2
xx + u2

xy + u2
yx + u2

yy)
1

2 dxdy +
λ

2

∫

Ω

|u − u0|
2 · χΩ1

(u − u0)dxdy.

Above, χΩ1
is the ’characteristic function’ of Ω1. The first term in E(u) is a smooth-

ing term and it is used to guarantee that recovered image has smooth level curves.
The parameter λ is a positive weighting constant that controls contribution of fi-
delity term. Minimizing the continuous energy functional E(u) yields a nonlinear
fourth-order PDE. Thereby, we obtain a PDE-based interpolation model.
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u0
ij Initial

D±
x (uij) ± 1

△x
[ui±1,j − uij ]

D±
y (uij) ± 1

△y
[ui,j±1 − uij ]

Dxx(uij)
1

△x
[D+

x (uij) − D+
x ui−1,j ]

D±
xy(uij) ± 1

△y
[D±

x (ui,j±1) − D±
x (uij)]

D±
yx(uij) ± 1

△y
[D±

y (ui±1,j) − D±
y (uij)]

Dyy(uij)
1

△y
[D±

y (ui,j) − D±
y (ui,j−1)]

|D2uij |
√

((Dxxuij)2 + (D+
xy(uij)2 + (D+

yx(uij)2 + (Dyy(uij))2 + ǫ)

Table 1. Discretizations used in the article

For simplicity, we introduce the notation |D2u| =
∫

Ω
(u2

xx + u2
xy + u2

yx + u2
yy)

1

2

and write

(3) E(u) =

∫

Ω

|D2u|dxdy +
λ

2

∫

Ω

|u − u0|
2 · χΩ1

(u − u0)dxdy.

To find a minimizer for E(u), we see that

(4)
∂E

∂u
· v =

∫

Ω

(
∇ux · ∇vx + ∇uy · ∇vy

|D2u|
)dxdy + λ

∫

Ω

(u−u0)v ·χΩ1
(u−u0)dxdy.

Using Green’s lemma on the first part of (4) we get
∫

Ω

(
∇ux · ∇vx + ∇uy · ∇vy

|D2u|
)dxdy =

∫

∂Ω

[(
1

|D2u|

∂ux

∂~n
)vx + (

1

|D2u|

∂uy

∂~n
)vy ]dS

−

∫

∂Ω

[∇ · (
∇ux

|D2u|
) ~n1v + ∇ · (

∇uy

|D2u|
) ~n2v]dS

+

∫

Ω

[(∇ · (
∇ux

|D2u|
))xv + (∇ · (

∇uy

|D2u|
))yv]dxdy.(5)

Where dS denotes the surface measure on ∂Ω. Here and later, the unit normal
vector on ∂Ω is denoted by ~n = (n1, n2). From this, we see that a minimum for (4)
satisfies

(6) (
uxx

|D2u|
)xx +(

uxy

|D2u|
)yx +(

uyx

|D2u|
)xy +(

uyy

|D2u|
)yy +λ(u−u0) ·χΩ1

(u−u0) = 0.

According to the Euler-Lagrange variational principle, the minimizer of E(u) can
be interpreted as the steady state solution of the nonlinear diffusion process

(7) ut = −[(
uxx

|D2u|
)xx+(

uxy

|D2u|
)yx+(

uyx

|D2u|
)xy+(

uyy

|D2u|
)yy+λ(u−u0)·χΩ1

(u−u0)].

Moreover, the variational equality (4) implies the following boundary conditions

(8)
uxx + uyx = 0

( uxx

|D2u| )x + (
uxy

|D2u| )y = 0

}

on ∂Ω where n is orthogonal to the y − axe,

(9)
uxy + uyy = 0

(
uyx

|D2u| )x + (
uyy

|D2u| )y = 0

}

on ∂Ω where n is orthogonal to the x − axe.

Combining (7) and (8)-(9), we get the PDE-based interpolation model.
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2.2. Implementation details. To discretize equation (7), finite differences ap-
proximations will be introduced. Let △x,△y be the mesh sizes for the x, y variables,
while △t be the time step. We denote by un the approximations for u(x, y, n△t).
The approximations we have used in our scheme is outlined in Table 1.

Given the low resolution image u0 of size M×N , we want to get a zoomed image
of size (M · k)× (M · k). Here, M, N, k are positive integers. First, we use bilinear
interpolation to extend u0 to all the (M · k)× (N · k) mesh grid points and use this
as the initial value u0. Then update the solution by

un+1 = un

−△t

[

Dxx(
Dxxun

|D2un|
) + D−

yx(
D+

xyu
n

|D2un|
) + D+

xy(
D−

yxun

|D2un|
) + Dyy(

Dyyun

|D2un|
)

]

−△tλ(un − u0) · χΩ1
(un − u0).(10)

When un has reached a steady state, it is taken as the zoomed image. When
evaluating the finite differences for (7), the boundary conditions (8) and (9) are
needed. Implementation of these conditions shall be done in the standard way.

3. Numerical Experiments

Several experiments with the proposed algorithm have been performed. We
present a few of them in this section. First, we use a image named ’Circel’ to
compare our algorithm with the bilinear interpolation, see Figure 1. In addition,
we shall also present our experimental results for images such as ’Elaine”, ’Lena’,
’Portion of Elaine’, ’Portion of Peppers’ and two color images ’Lily’ and ”Seaside”,
see Figures 1-4.

It’s known that with large △t , the iterations will converge faster. But if they
are too large, the scheme will be unstable and will not converge to a steady state.
It is then necessary to choose a reasonable smaller time step. It is usual to choose
△t by trial and error based on our experience. For most experiments, we always
use fixed time step △t ≈ 10−3. We chose △x = △y = 0.15, and the parameter λ is
set equal to 500. The value of ε is set equal to 10−11 in all the tests.

We usually observe the quality of a zoomed image by visual examinations. How-
ever, to show numerical evidence of the our algorithm, peak signal-to-noise ratio
(PSNR ) is also used here to measure the image quality. The PSNR is defined as

PSNR = 10 lg
2552

MSE
dB

Where

MSE =

M,N
∑

i,j

(I(i, j) − J(i, j))2

M,N
∑

i,j

(I(i, j))2
.

Here, (M, N) is the size of original high-resolution image, I, J are the original and
zoomed images respectively. In order to measure the PSNR value and the MSE
value, the original image is reduced to small one by sampling. Then it can be zoom
back to its original size using our zooming method. We compare the zoomed image
with the original image.

Many image zooming techniques suffers from the so called ”checkerboard effect”.
In Figure 1, the binary image ’Circle’ is zoomed by the bilinear interpolation, see
Fig.1. In Fig.1.(a), a down-sampled image of size 32 × 31 from the original image
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Fig.1.(b) of size 128 × 124 is displayed. Fig.1.(c) and Fig.1.(d) show the zoomed
images obtained by bilinear interpolation and our algorithm. They have the same
size as to the original image in Fig.1.(b). It is clear to see the ”checkerboard effect”
in the interpolated image in Fig.1.(c). However, our new model does not have
this problem. The boundary of the ’Circle’ in Fig.1.(d) is smooth and does not
have the zigzag effect as that in Fig.1.(c), showing that our algorithm preserves the
smoothness of the brim of ’Circle’.

(a) 32 × 31 down sample. (b) Original 128 × 124 ”Circle”.

(c) The image zoomed by (d) The image zoomed by
factor 4 using bilinear interpolation. factor 4 using our algorithm.

Figure 1. Binary image zoomed by bilinear and our algorithm.

In Fig.2, we test the performances of our algorithm for a gray-scale image.
Fig.2.(d) is the zoomed gray-scale ’Elaine’ image from the down sampled image
by the factor 4 as shown in Fig.2.(a). We can see the quality of our algorithm,
although zoomed by large factor, the discontinuities of the image are well preserved
and it does not suffer from the checkerboard effect as that in Fig.2.(c).

Furthermore, in order to show the efficiency of our algorithm, we give some
other examples in the following. In Fig.3, the results of two gray-scale images are
given. Here we use a small portion of the ’Lena’ and ’Peppers’ images as the test
images respectively in Fig.3.(a) and (b). Fig.3.(c) and (d) show the zoomed images
by a factor of 6. Compared with the original image, see Fig.3.(c) and (d), the
zoomed images faithfully reflected the primitive appearance of the original images,
and maintained the edge sharpness and the texture characteristic, showing that our
algorithm obtains better visual impression.
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(a) 64 × 64 down sample. (b)Original 256 × 256 ”Elaine”

(c)The image zoomed by (d)The image zoomed by
factor 4 using bilinear interpolation. factor 4 using our algorithm.

Figure 2. Gray-Scale images zoomed by our algorithm and bi-
linear interpolation.

In order to use the subjective standards to show the efficiency of our algorithm,
we give some values of PSNR and MSE in Table 2. In the table, the data is obtained
when the original images are zoomed by a factor of 4. As shown in Table 2, our
algorithm improves the PSNR and MSE for all cases and all the data are obtained
when the energy functional has been stablized. The improvement of PSNR is great
for both the binary and gray-scale images.

Digital color images are more common than gray-scale images. To demonstrate
the validity of our algorithm , we have also conducted a experiment on color image
zooming. We take the ”Lily” image and ”Seaside” images of size 100 × 100 as
test the examples. The results are shown in Fig.4. By visual inspections of the
zoomed images Fig.4.(c) and (d)), we see that the color of the zoomed images are
brightly, and the discontinuities are sharp. The image quality of the zoomed image
is desirable.

4. Conclusions

In this paper, we proposed an image zooming method based on a nonlinear PDEs.
Anisotropic diffusion has been incorporated through the numerical discretization
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(a)Portion of ’Lena’. (b)Portion of ’Peppers’

(c)The image zoomed by (d)The image zoomed by
factor 6 using bilinear interpolation. factor 6 using our algorithm.

Figure 3. The gray-level image zoomed by our algorithm.

image method PSNR MSE

blinear 11.9297 2.5689e− 004
Circle

our 12.1939 2.4173e− 004
blinear 6.1244 1.8897e− 004

Elaine

our 6.3941 1.7760e− 004
blinear 13.3496 2.0249e− 004

Lena

our 13.4932 1.9590e− 004
blinear 9.4164 5.0980e− 004

Peppers

our 10.5203 3.9538e− 004

Table 2. PSNR and MSE comparison of the zoomed images
using our method and bilinear.

of the model. All the examples indicate that our algorithm is efficient for image
zooming and has good subjective quality, both for gray-level and color images.
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(a)Portion of ’lily’. (b)Portion of ’Seaside’.

(c)Zoomed image by our algorithm. (d)Zoomed image by our algorithm.

Figure 4. Color images, zoomed by our algorithm.
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