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ANOVA EXPANSIONS AND EFFICIENT SAMPLING METHODS

FOR PARAMETER DEPENDENT NONLINEAR PDES

YANZHAO CAO, ZHENG CHEN, AND MAX GUNZBURGER

Abstract. The impact of parameter dependent boundary conditions on solu-

tions of a class of nonlinear partial differential equations and on optimization

problems constrained by such equations is considered. The tools used to gain

insights about these issues are the Analysis of Variance (ANOVA) expansion

of functions and the related notion of the effective dimension of a function;

both concepts are reviewed. The effective dimension is then used to study

the accuracy of truncated ANOVA expansions. Then, based on the ANOVA

expansions of functionals of the solutions, the effects of different parameter

sampling methods on the accuracy of surrogate optimization approaches to

constrained optimization problems are considered. Demonstrations are given

to show that whenever truncated ANOVA expansions of functionals provide ac-

curate approximations, optimizers found through a simple surrogate optimiza-

tion strategy are also relatively accurate. Although the results are presented

and discussed in the context of surrogate optimization problems, most also ap-

ply to other settings such as stochastic ensemble methods and reduced-order

modeling for nonlinear partial differential equations.

Key Words. ANOVA expansions, nonlinear partial differential equations,

surrogate optimization, parameter sampling methods.

1. Introduction

The type of problems we consider requires the solutions of equations such as

(1) F (u; ~α) = 0,

where ~α ∈ A ⊆ R
p is a vector of parameters and A is some admissibility set. In

particular, we are interested in problems for which F (·; ~α) represents a nonlinear
partial differential equation or system. The specific situation that interests us is
one in which approximate solutions of problems involving (1) are determined by
using the solutions to the problems

(2) F (u(j); ~α(j)) = 0 j = 1, . . . , N,

where {~α(j)}N
j=1 are a chosen set of parameter values. Settings in which such

problems arise include ensemble approximations of solutions of (1) in case the com-
ponents of the parameter vector ~α are random variables with given probability
distributions; building reduced-order models from solutions of (1) at sample values
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of the parameter vector ~α; and the surrogate optimization of a functional. Here,
we focus on the third setting; however, most of the discussions in this paper can be
translated to the other settings.

For surrogate optimization problems, we are given a functional J (u) and are
asked to find ~α∗ ∈ A and a corresponding u∗ that solve the problem

(3) min
~α∈A

J (u) subject to F (u; ~α) = 0,

where A is a bounded subset of R
p. In this setting, u denotes the state variable,

~α the vector of design parameters, and the constraint equation F (u; ~α) = 0 the
state system. Note that through the constraint, the functional J (u) is implicitly
a function of the components of the parameter vector ~α. A simple, derivative-free
approach to finding approximate solutions of the problem (3) is to first choose

particular values {~α(j)}N
j=1 for the parameters, then solve the problems in (2), and

then use those solutions to evaluate the functional so that one obtains, for j =
1, . . . , N , the values J (u(j)) corresponding to the parameter vectors ~α(j). One
would then use this information to build, e.g., by a least-squares or interpolatory
method, a surrogate function Jsur(~α) defined over the parameter subset A that can
be used as an approximation to J (u(~α)) over A. Finally, one would approximate
the solution of the optimization problem (3) by the parameter values that minimize
the simpler functional Jsur(~α), i.e.

(4) ~α∗ ≈ ~α∗
sur, where ~α∗

sur solves the problem min
~α∈A

Jsur(~α).

Building the surrogate functional requires the evaluation of the functional J (·) at
the points {~α(j)}N

j=1 sampled within the set A. In turn, evaluating the functional at

the N parameter points requires N solves of the constraint equation as in (2). Since
the latter step involves solving a nonlinear partial differential equation system, it
dominates the overall computation; thus, the constraint equation should be solved
as few times as possible. Thus, we want to sample only a “few” points in A, i.e.,
we want to sample sparsely. In addition, in practice, p, the number of control
parameters, may be large so that, for the surrogate optimization problem, we are
interested in intelligent, sparse sampling in possibly high dimensions.

In this paper, we treat a simple model problem, but the need for intelligent
sampling would be even greater in more complicated settings. We even simplify
things some more by assuming that the parameter vector is constrained to belong
to a hypercube, that its components have no known bias or correlation so that
we will sample them uniformly and independently, and that they appear linearly
in the definition of the problem. Clearly, this work is only the beginning of what
should be a much larger study that encompasses more general and more realistic
situations.

The particular focus of this paper is to explore the connections that ANOVA
(Analysis of Variance) expansions of multivariate functions (and the related notion
of the effective dimension of those functions) have with the solution of parameter-
dependent nonlinear partial differential equations. Specifically, we will study the
general approximation properties of ANOVA expansions for functionals of solu-
tions of nonlinear partial differential equations and the implications that particular
features these expansions possess have on those solutions and on how one builds
surrogate functionals.

Of course, the problem of solving partial differential equations with parameter-
dependent input data is an active research area; see e.g., [1, 4, 12–15, 17, 19–22, 26,
28, 29]. However, these works are mostly focused at finding approximate solutions
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of partial differential equations problems while, in this paper, ANOVA expansions
are mainly used to gain insight into the nature of solutions of parameter-dependent
partial differential equations. In this sense, our study is similar to studies found in,
e.g., [11].

The paper is organized as follows. In §2, we briefly discuss ANOVA expansions
and some of their properties and the concept of effective dimensions. In §3, we de-
fine the model problem we use as a basis for our study of ANOVA expansions and
their relation to solutions of partial differential equations, including a study the ap-
proximation property of the ANOVA expansion for solutions of the model problem
in the case of small nonlinear perturbations. Then, in §4, we examine the ANOVA
expansions and the effective dimension of several functionals of the solutions of the
model problem. Finally, in §5, we consider several parameter sampling strategies
and how they affect the accuracy of a simple surrogate optimization method.

We emphasize that we are not necessarily advocating ANOVA expansions as an
approximation method, i.e., as a method for determining approximate solutions
of nonlinear partial differential equations depending on parameters. Instead, this
paper should be viewed as an effort towards acquainting the numerical analysis
for partial differential equations community to the possibilities offered by ANOVA
expansions and the notion of the effective dimension of functions so as to encourage
further work in this direction.

2. ANOVA expansions and effective dimensions of multivariate functions

2.1. ANOVA expansions of multivariate functions. We review the ANOVA
expansion of a function. ANOVA expansions are exact and contain a finite number
of terms, although truncations of ANOVA expansions may provide good approxima-
tions with fewer terms. Our presentation is brief; further details may be obtained
from [5,8, 24].

Let P = {1, . . . , p}; for any subset of (ordered) coordinate indices T ⊆ P , let |T |
denote the cardinality of T , let ~αT ∈ R

|T | denote the |T |-vector containing the com-

ponents of the vector ~α ∈ R
p indexed by T , and let A

|T |
T denote the |T |-dimensional

unit hypercube which is the projection of the p-dimensional unit hypercube Ap

onto the coordinates indexed by T . Any function g ∈ L2(Ap) may be written as
the ANOVA expansion

(5) g(~α) = g0 +
∑

T⊆P

gT (~αT ),

where the terms in the expansion are determined recursively by

(6) gT (~αT ) =

∫

Ap−|T |

g(~α) d~αP\T −
∑

V ⊂T

gV (~αV ) − g0

starting with

g0 =

∫

Ap

g(~α) d~α

and where, by convention, ∫

A0

g(~α) d~α∅ = g(~α).

Note that the integration in (6) is carried out over those coordinates having indices
not included in the set T and that the sum is over strict subsets of T . The total
number of terms in the expansion is 2p. Each term is, in general, a nonlinear
function of its arguments.
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We explicitly write out the first few terms in the expansion. We have that

gi(αi) =

∫

Ap−1

g(~α) d~α′ − g0 for i = 1, . . . , p,

gij(αi, αj) =

∫

Ap−2

g(~α) d~α′′ − gi(αi) − gj(αj) − g0 for i < j, i, j = 1, . . . , p,

gijk(αi, αj , αk) =

∫

Ap−3

g(~α) d~α′′′ − gij(αi, αj) − gik(αi, αk) − gjk(αj , αk)

−gi(αi) − gj(αj) − gk(αk) − g0 for i < j < k, i, j, k = 1, . . . , p

and so on, where dα′ indicates integration over all coordinates except αi, dα′′

indicates integration over all coordinates except αi and αj , and so on.1

The ANOVA expansion (5) has several remarkable and useful properties. A
partial list includes (see, e.g., [24] for details):

(1) the expansion is exact and finite;
(2) the term gT (~αT ) depends only on the coordinates with indices contained in

T ; g0 is the average of g(·) and is a constant;
(3) the terms are mutually orthogonal, i.e.,

∫

Ap

g0gT (~αT ) d~α = 0

so that, since g0 is constant, for all T ⊆ S, gT (~αT ) has zero average, and
∫

Ap

gT (~αT )gV (~αV ) d~α = 0 whenever one or more of the indices in T and V differ;

note that this includes the cases for which the cardinality of the two index
sets are the same;

(4) not only do the individual terms (other than g0) have zero averages, but
∫ 1

0

gT (~αT ) dαi = 0 for every i ∈ T ;

(5) each term in the expansion is a projection, with respect to the L2(Ap) inner
product, of g(~α) onto a subspace of L2(Ap).

Since the nonlinear function gT (~αT ) is the unique term in the ANOVA expansion
(5) that depends on exactly the |T | variables indexed by T , it provides the effect
within g(~α) of the interplay between those |T | variables taken together.

The order of a term gT (~αT ) appearing in (5) is the cardinality |T | of the corre-
sponding set T . A truncated ANOVA expansion of order r is defined by

(7) g(~α; r) = g0 +
∑

T⊆P, |T |≤r

gT (~αT ).

ANOVA expansions are of great interest because, in many practical settings, g(~α; r)
with r ≪ p provides a good approximation to g(~α). A truly remarkable feature
of ANOVA expansions is that the degree of approximation of a truncated ANOVA
expansion is independent of the measure used to define that expansion, i.e., if
‖g(~α; r)− g(~α)‖ = O(ǫ), then the same is true for ANOVA expansions with respect
to all other measures, where ‖ · ‖ represents the norm associated with the measure.
Of course, the value of the constant in the O(·) relation may differ significantly for
different measures.

1Instead of the Lebesgue measure on L2(Ap), an ANOVA expansion may be defined with
respect to other measures. For example, if instead the Dirac measure with respect to a fixed point
~β ∈ Ap is used and if g(~α) ∈ C(Ap), one obtains the cut-HDMR expansion [24].
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Let us examine some implications of being able to approximate well a multivari-
ate function by a short truncated ANOVA expansion. Recall that the term gT (~αT )
is only a function of the coordinates having indices in T . Thus, if r ≪ p, the
function g(~α) that depends on p variables can be approximated well by a sum of
functions each of which depends on at most r variables. The effect of the interplay
between coordinate sets of more than r variables is thus negligible. Such a happen-
stance has serious implications on how one samples parameter space. For example,
consider the simple quadrature rule

(8)

∫

Ap

g(~α) d~α ≈ 1

N

N∑

j=1

g(~α(j)), ~α(j) ∈ Ap for j = 1, . . . , N,

that is in widespread use for high-dimensional integration. One wants to choose
the integration points ~α(j) ∈ Ap so that the approximation is as good as possible.
Now, suppose that g(~α) can be approximated very well by a first-order truncated
ANOVA expansion, i.e., by a sum of univariate functions, so that

g(~α) = g0 +

p∑

i=1

gi(αi) + O(ǫ)

with ǫ ≪ 1. Then, we have that (8) reduces to

(9)

∫

Ap

g(~α) d~α ≈ g0 +

p∑

i=1

( 1

N

N∑

j=1

gi(α
(j)
i )

)

so that the p-dimensional quadrature rule (8) effectively reduces to a sum of p

one-dimensional quadrature rules. Thus, the accuracy of the quadrature rule (8) is
determined by how accurate one can do the implied one-dimensional quadratures in
(9). As an example of how naive choices for the sampling points can have disastrous

effects, choose N = N̂p for some positive integer N̂ and choose the quadrature

points ~α(j) ∈ Ap to lie on a Cartesian grid in Ap. Then, if ~α(ĵ), ĵ = 1, . . . , N̂ denote
the points of the grid along a main diagonal on Ap, we have that

(10)

∫

Ap

g(~α) d~α ≈ g0 +

p∑

i=1

( 1

N̂

N̂∑

j=1

gi(α
(ĵ)
i )

)
.

Thus, although we are using the N -point quadrature rule (8), we are effectively

only getting the accuracy of a N̂ = N1/p quadrature rule!
How can one make sure that the N -point quadrature rule (8) gives us what we

think we are getting, i.e., the accuracy of an N -point rule, even if the integrand
g(~α) happens to be approximated well by a truncated ANOVA expansion of order
one? In general, we want the points to have low discrepancy (see, e.g., [16]) which
the Cartesian points do not. This need motivates the large body of work on the
development of intelligent sampling strategies. In fact, high-dimensional integra-
tion is the prime example driving that work so that the greatest interest and most
of the algorithms and analysis have been directed at sampling lots of points in
high-dimensional hypercubes. Our own interest is more along the lines of sparse
sampling in possibly high dimensions, a situation for which most of the results for
dense sampling are not applicable. Thus, we will examine, though some computa-
tional experiments based on a simple model problem, intelligent sparse parameter
sampling strategies.
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2.2. The effective dimension of a function. Related to ANOVA expansions is
the concept of the effective dimension of a multivariate function. Here, we introduce
the concept and discuss some properties relevant to our interests; details may be
found in [2, 18, 25, 27].

Let T be a subset of P and σ2(g) denote the variance of a function g. Then,

σ2(g) =
∑

|T |>0

σ2
T (g), where σ2

T (g) =

∫

Ap

(
gT (~αT )

)2
d~α.

In the following definitions, the proportion q > 0 is chosen to be slightly less than
1; q = 0.99 is a common choice.

Definition 1. The effective dimension of g in the superposition sense or, in
short, the superposition dimension, is the smallest integer ps such that

(11)
∑

0<|T |≤ps

σ2
T (g) ≥ qσ2(g).

Definition 2. The effective dimension of g in the truncation sense or, in short,
the truncation dimension, is the smallest integer pt such that

(12)
∑

T⊆{1,...,pt}

σ2
T (g) ≥ qσ2(g).

Given a functions g and its putative approximation h, the normalized approxi-

mation error is defined as

E(g, h) =
1

σ2(g)

∫

Ap

(
g(~α) − h(~α)

)2
d~α.

The following theorem (see [27]) is concerned with the approximation property of
ANOVA expansions.

Theorem 2.1. Assume that g(~α) has superposition dimension ps in proportion

q and let g(~α; ps) =
∑

0<|T |≤ps
gT (~αT ) denote its truncated ANOVA expansion of

order ps. Then,

(13) E
(
g(~α), g(~α; ps)

)
≤ (1 − q).

Thus, if the superposition dimension of a function is small, it can be well approx-
imated by short truncated ANOVA expansions. In §4, we will calculate the effective
dimensions of some functionals of solutions of our model problem and demonstrate
that, in some cases at least, truncated ANOVA expansions of order two provide
excellent approximations.

3. The model problem and the approximation property

of ANOVA expansions of its solution

In this section, we describe a model nonlinear, partial differential equation prob-
lem and study the ANOVA expansion of its solution. In particular, we examine the
approximation property of the truncated ANOVA expansion of order one for the
solution of a small nonlinear perturbation of the Laplace equation.

Let Ω ⊂ R
2 be a bounded open set with boundary ∂Ω; we assume that ∂Ω ∈ C1

or is convex Lipschitz. Assume that Γ0, Γ1, and Γ2 are subsets of ∂Ω such that
Γ0 ∪ Γ1 ∪ Γ2 = ∂Ω and Γi ∩ Γj = ∅. We consider the following boundary value
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problem for the unknown function u:

(14)






−∆u + ǫf(u) = 0 in Ω

u = 0 on Γ0

u =

m∑

i=1

αiφi on Γ1

∂u

∂n
=

p∑

i=m+1

αiφi on Γ2,

where f(u) is a given function of u, φ1 and φ2 are given functions defined along the
boundary segments Γ1 and Γ2 as appropriate, and αi for i = 1, · · · p are paremeters.
Obviously, the solution u depends on the parameters αi.

We focus on optimization problems in which one seeks optimal states u and
optimal parameter values {αi}p

i=1 such that a cost functional such as

(15) J (~α) =

∫

Ω

w(u) dΩ

is minimized, where w(u) is a given function of u. In this setting, u is the state
variable, the αi’s are the controls or design variables, and (14) is the constraint.
We assume throughout that the αi’s are uncorrelated. Clearly, since for any set of
control parameters {αi}p

i=1, we may solve (14) for u, we may consider J (~α) to be
a function of those parameters.

We assume that the parameters ~α = {αi}p
i=1 are constrained to lie in a box

which, without loss of generality, we take to be the unit hypercube Ap in R
p.

We will build a surrogate for J (·) as described in §1: we sample points within
the parameter hypercube; we solve the model problem (14) using the sampled
parameters as inputs; we use the solutions of (14) to evaluate the functional J (·);
using that data, we build a response surface and then use the minimizer of that
surrogate as the approximation of the minimizer of J (·).

To complete the above surrogate optimization recipe, one must choose what
kind of response surface to use, e.g., linear or quadratic polynomials or some other
approximations and one must choose a method to build that surface, e.g., interpo-
lation or least-squares approximation or something else. Even before either of these
steps are effected, one must choose the points in parameter space that are used to
evaluate the functional; this is the focus of the remainder of the paper. We shall
see that the approximation property of the ANOVA expansion plays a key role in
evaluating different methods for sampling points in the parameter hypercube. Here,
however, we first examine the approximation property of the ANOVA expansion in
terms of the perturbation parameter ǫ appearing in (14).

For simplicity, we assume that Γ1 is empty so that (14) reduces to
(16)

−∆u + ǫf(u) = 0 in Ω, u = 0 on Γ0, and
∂u

∂n
=

p∑

i=1

αiφi on Γ2.

For small ǫ > 0, we view this problem as a perturbation of the linear problem

(17) −∆v = 0 in Ω, v = 0 on Γ0, and
∂v

∂n
=

p∑

i=1

αiφi on Γ2.

Note that (17) is linear with respect to both the unknown v and the parameters
{αi}p

i=1 so that we can use the principle of superposition to conclude that the
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solution is a linear combination of the αi’s. This implies that the truncated ANOVA
expansion of order one for v coincides with the solution v itself.

In the following theorem, we assume that the solution of these two problems are
“close” and then conclude that a truncated ANOVA expansion is a good approx-
imation of the solution of the nonlinear problem (16). Note that H1(Ω) denotes
the usual Sobolev space of square integrable functions having one square integrable
derivative.

Theorem 3.1. Assume that the solutions u and v of (16) and (17), respectively,

satisfy

(18) ‖u − v‖H1(Ω) ≤ Cǫ

for some positive constant C whose value is independent of αj, j = 1, . . . , p. Let

(19) u(~α; 1) = u0 +

p∑

j=1

uj(αj)

denote the truncated ANOVA expansion of u of order 1. Then, there exists a positive

constant M whose value is also independent of αj, j = 1, . . . , p, such that

(20) ‖u − u(~α; 1)‖H1(Ω) ≤ ǫM.

Proof: Let v(~α; 1) = v0 +
∑p

j=1 vj(~αj) be the ANOVA expansion of v of order 1.

Note that (17) is linear with respect to both the unknown v and the parameters
{αi}p

i=1 so that we can use the principle of superposition to conclude that the
solution is a linear combination of the αi’s. This implies that the truncated ANOVA
expansion of order one for v coincides with the solution v itself, i.e., v = v(~α; 1).
Then,

‖u − u(~α; 1)‖H1(Ω) ≤ ‖u − v‖H1(Ω) + ‖u(~α; 1) − v(~α; 1)‖H1(Ω).

By (18) and the definitions of u0 and v0, we have that

‖u0 − v0‖H1(Ω) =
∥∥∥

∫

Ap

(u − v) d~α
∥∥∥

H1(Ω)
≤

∫

Ap

‖u − v‖H1(Ω) d~α ≤ ǫC.

Similary, we can prove that there exist constants C1, . . . , Cp having values indepen-
dent of {αj}p

j=1 such that

‖uj − vj‖H1(Ω) ≤ ǫCj , j = 1, . . . , p.

Therefore,

‖u − u(~α; 1)‖H1(Ω) ≤ ǫC +

p∑

j=1

ǫCj = ǫM,

where M = C +
∑p

j=1 Cj . �

Define H1
Γ0

(Ω) = {w ∈ H1(Ω) |w = 0 on Γ0}; we use the semi-norm ‖∇(·)‖L2(Ω)

as the norm on H1
Γ0

(Ω). We also define H−1
Γ0

(Ω) as the dual space of H1
Γ0

(Ω).

The following proposition provides a simple example of a problem for which (18)
holds.

Proposition 3.2. In (16) and (17), let φj ∈ H−1/2(Γ2), j = 1, . . . , p, and ‖f(u)‖H−1

Γ0
(Ω) ≤

C1‖u‖H1(Ω) for u ∈ H1
Γ0

(Ω). Then, there exists positive constant C whose values

are independent of u, v, and αj, j = 1, . . . , p, such that, for ǫ < ǫ1, (18) holds.
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Proof: By Green’s formula, we have that

‖u‖2
H1(Ω) = (∇u,∇u) = −ǫ

(
f(u), u

)
+

∫

Γ2

∂u

∂n
u dΓ

≤ ǫC1‖u‖2
H1(Ω) +

∥∥∥
∂u

∂n

∥∥∥
H−1/2(Γ2)

‖u‖H1(Ω)

≤ ǫC1‖u‖2
H1(Ω) +

p

4ǫ0

p∑

j=1

‖φj‖2
H−1/2(Γ2) + ǫ0‖u‖2

H1(Ω).

Choose ǫ0 and ǫ1 such that ǫ1C1 + ǫ0 < 1. Then, for ǫ < ǫ1, we have that

(21) ‖u‖H1(Ω) ≤

√√√√ p

4(1 − ǫ1C − ǫ0)ǫ0

p∑

j=1

‖φj‖2
H−1/2(Γ2)

:= C2.

Now, let z = u − v. We then have that

−∆z + ǫf(u) = 0 in Ω, z|Γ0
= 0, and

∂z

∂n

∣∣∣
Γ2

= 0.

Thus,

‖z‖2
H1(Ω) = −ǫ

(
f(u), z

)
≤ ǫC1‖u‖H1(Ω)‖z‖H1(Ω).

Then, (21) implies that

‖u − v‖H1(Ω) = ‖z‖H1(Ω) ≤ ǫC1‖u‖H1(Ω) ≤ ǫC1C2 := ǫC. �

Consider now the problem of minimizing the functional J (~α) given in (15) sub-
ject to (14) being satisfied. The following result about the approximation properties
of optimization using the first-order ANOVA expansion.

Theorem 3.3. Assume that φj , j = 1, . . . , p, and f in (16) satisfy the conditions

of Proposition 3.2. Let

(22) J1(~α) =

∫

Ω

w(u(~α, 1)) dΩ,

where w is the same as in (15) and u(~α, 1) is the first-order ANOVA expansion of

u (see (19)). If

(23) |w(x) − w(y)| ≤ Ck(|x| + |y|)|x − y|,

where k is a monotone, non-negative function, then, there exists a constant C and

ǫ0 > 0 such that for ǫ < ǫ0,

(24)
∣∣∣ min

α∈[0,1]s
J (~α) − min

α∈[0,1]s
J1(~α)

∣∣∣ ≤ Cǫ.

Proof. From (15), (22), and (23), we have that

|J (~α) − J1(~α)| ≤ C

∫

Ω

k (|u(~α)| + |u(~α, 1)|) |u(~α)| − |u(~α, 1)| dΩ

≤ C‖k(u(~α) + u(~α, 1))‖L2(Ω)‖u(~α) − u(~α, 1)‖L2(Ω).

From the proof of Proposition 3.2 we know that there exists a constant C such
that ‖u‖L2(Ω) + ‖u(~α, 1)‖L2(Ω) ≤ C. Using Proposition 3.2, we obtain the desired
result. �



ANOVA EXPANSIONS FOR PARAMETER DEPENDENT PDES 265

From (20) and (24), we see that the the error in the minimizer (i.e., the dif-
ference between the minimum of the exact cost functional and the minimum of
the cost functional with u replaced by its first-order ANOVA expansion) and the
error in the solution (i.e., the difference between u itself and its first-order ANOVA
approximation) are of similar magnitude in terms of ǫ. From this observation and
(13), it is reasonable to assume that when ANOVA effects of order higher than
s are negligible, one can use polynomials of degree s to serve as surrogate cost
functionals.

In §1, the building of surrogate functionals through interpolation was alluded to;
see §5 for more details. Interpolatory error estimates may be combined with (24)
to obtain estimates for the difference between surrogates and truncated ANOVA
expansions of functionals. Examining these two contributions to the errors may
shed some light on the choice of interpolation points, i.e., on different sampling
strategies (see, e.g., §5) for selecting these points. However, as was noted in §1, for
surrogate optimization problems, one is likely to sample very sparsely, i.e., use very
few interpolation points, so that interpolatory error estimates may be of limited
value when the parameter dimension is large.

4. ANOVA expansions and the effective dimension of cost functionals

The specific constraint system we consider for our computational examples is
given by (14) with ǫ = 1, Ω being the unit square, m = 2, p = 4, and

(25)

φ1(x, y) =

{
−16x(x − 0.5) if 0 ≤ x ≤ 0.5 and y = 1,

0 otherwise,

φ2(x, y) =

{
−16(x − 0.5)(x − 1.0) if 0.5 ≤ x ≤ 1.0 and y = 1,
0 otherwise,

φ3(x, y) =

{
−16x(x − 0.5) if 0 ≤ x ≤ 0.5 and y = 0,

0 otherwise,

φ4(x, y) =

{
−16(x − 0.5)(x − 1.0) if 0.5 ≤ x ≤ 1.0 and y = 0,
0 otherwise.

so that the boundary segments Γi, i = 0, 1, 2, and the data in the boundary condi-
tions in (14) have support as indicated in the sketch of Figure 1.

For the nonlinear term f(u) in the partial differential equation we consider the
three choices

(26) f(u) = u2 or eu or
√
|u|.

For the integrand w(u) of the functional J (u) we consider the three choices

w(u) = (u − û)2 or e(u−û) or
√
|u − û|,

where we choose û(x, y) = u({αi = 0.5}4
i=1), i.e., û(x, y) is the solution of the

problem (14) corresponding to the parameter values αi = 0.5, i = 1, . . . , 4. Note
that since ǫ = 1 there is no a priori reason to believe that solutions of (14) or
functionals that depend on those solutions can be accurately approximated by short
truncated ANOVA expansions.

For a given set of parameters {αi}4
i=1, the system (14) is discretized using stan-

dard, continuous, piecewise quadratic finite element functions defined with respect
to a uniform triangulation of the spatial domain into 648 triangles. Approximate
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Figure 1. The data configuration for the model problem used in

the computational examples.

solutions of (14) obtained in this manner are accurate enough so that the discretiza-
tion error is not a factor in our consideration of ANOVA expansions. The resulting
nonlinear discrete system is solved by Newton’s method.

Two types of integrals enter into our determination of the ANOVA expansion of
the cost functional J (u). We have to evaluate integrals such as

∫

A4−j

J
(
u(α1, α2, α3, α4)

)
d~α4−j for j = 0, . . . , 3,

where d~α4−j is the appropriate (4 − j)-dimensional measure and here we view u

as a function of the parameters. We approximate this type of integral by tensor
products (in parameter space) of the classimathcal four-point Gauss rule. To apply
that rule, we have to evaluate J (·) at each of the Gauss quadrature points; this
itself requires the evaluation of the spatial integral

∫

Ω

w(u(x, y)) dΩ,

where we now view u as the approximate solution of (14) with the input parameter
vector ~α chosen to correspond to a quadrature point in parameter space. This
spatial integral is approximated using a simple nodal quadrature rule over the
finite element grid.

In Table 1, the L2(Ap) = L2(AT ) norms σ2
T

(
J (~α)

)
of the individual terms

JT (~αT ), T ⊆ P = {1, 2, 3, 4}, in the ANOVA expansion of J (~α) are given for the
various cases introduced above. The L2(Ap) norm of the constant term J0 is also
provided. From that table, one sees the general trend that the terms in the ANOVA
expansion become smaller as their order increases. In some cases, this trend is very
dramatic. For example, for w(u) = (|u − û|)2 and w(u) = e(u−û), the norms of the
third and fourth-order terms are less than 1% of that of the zeroth-order term. For
w(u) =

√
|u − û|, the decay of the ANOVA terms is much less pronounced.

Table 2 provides information about the effective superposition and truncation
dimensions of J (~α). For the superposition dimension, the values of qps , ps = 1, 2, 3,
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w(u) = (u − û)2 w(u) = eu−û w(u) =
√
|u − û|

f(u) u2 eu
√
|u| u2 eu

√
|u| u2 eu

√
|u|

J0 3.8E-3 6.2E-3 6.4E-3 1.1E-1 1.1E-0 1.1E-0 1.7E-1 1.8E-1 1.9E-1

J1 1.5E-3 2.6E-3 2.7E-3 2.4E-2 2.4E-2 2.9E-2 1.5E-2 1.6E-2 1.7E-2

J2 1.5E-3 2.6E-3 2.7E-3 2.4E-2 2.4E-2 2.9E-2 1.5E-2 1.6E-2 1.7E-2

J3 1.7E-4 1.5E-4 1.4E-4 8.4E-3 3.2E-3 7.4E-3 5.7E-3 5.5E-3 5.5E-3

J4 1.7E-4 1.6E-4 1.4E-4 8.4E-3 3.3E-3 7.5E-3 5.8E-3 5.7E-3 5.6E-3

J12 1.1E-3 8.6E-4 9.9E-4 5.0E-4 3.9E-3 6.9E-4 2.2E-2 1.9E-2 2.0E-2

J13 2.3E-4 1.4E-4 1.7E-4 9.8E-5 2.1E-3 1.7E-4 7.7E-3 6.2E-3 6.8E-3

J14 2.2E-4 1.3E-4 1.6E-4 9.2E-5 1.9E-3 1.5E-4 6.6E-3 5.3E-3 5.7E-3

J23 2.2E-4 1.3E-4 1.6E-4 9.2E-5 1.9E-3 1.5E-4 6.6E-3 5.2E-3 5.6E-3

J24 2.3E-4 1.4E-4 1.7E-4 9.8E-5 2.1E-3 1.7E-4 7.7E-3 6.2E-3 6.8E-3

J34 2.4E-4 1.4E-4 1.9E-4 1.0E-4 2.5E-3 1.9E-4 9.3E-3 7.3E-3 8.6E-3

J123 2.4E-6 2.7E-5 8.9E-6 1.0E-6 4.2E-4 1.6E-5 2.8E-3 2.1E-3 2.4E-3

J124 2.4E-6 2.7E-5 8.9E-6 1.0E-6 4.2E-4 1.6E-5 2.8E-3 2.1E-3 2.4E-3

J134 1.6E-6 1.4E-5 6.6E-6 6.9E-7 4.1E-4 1.4E-5 2.3E-3 1.5E-3 1.9E-3

J234 1.6E-6 1.4E-5 6.6E-6 6.9E-7 4.1E-4 1.4E-5 2.3E-3 1.5E-3 1.9E-3

J1234 2.4E-8 6.7E-6 2.1E-6 1.9E-9 4.9E-4 6.4E-6 4.2E-3 3.2E-3 3.6E-3

Table 1. The L2(Ap) norms of the terms in the ANOVA expan-

sion of the functional J (~α).

given in the table satistfy
∑

0<|T |≤ps

σ2
T (J ) = qpsσ

2(J ) for ps = 1, 2, 3.

Let the superposition dimension ps be defined by (11) with q = 0.99. Then, we see
from Table 2, that for J (~α), ps is given by

(27) ps =






1 if w(u) = e(u−û) and f(u) = u2 or
√
|u|

3 if w(u) =
√

u − û and f(u) = eu or
√
|u|

4 if w(u) =
√

u − û and f(u) = u2

2 otherwise.

We then conclude from (13) that if J (~α; ps) denotes the truncated ANOVA expan-
sion of J (~α) of order ps, with ps given by (27), then

E
(
J (~α),J (~α; ps)

)
≤ 0.01.

Thus, in some cases, short truncations of the ANOVA expansion provide very good
approximations of the functional J (~α). Remathcall that a truncated ANOVA ex-
pansion of order ps is a sum of functions of at most ps variables. Thus, for the cases
for which ps = 1 or ps = 2, we conclude that the functional J (~α) can be approxi-
mated well by a sum of at most univariate and bivariate functionals, respectively.
Note, however, that in one case, even the highest-order term contributes signifi-
cantly to the ANOVA expansion.
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w(u) = (u − û)2 w(u) = eu−û w(u) =
√
|u − û|

f(u) u2 eu
√
|u| u2 eu

√
|u| u2 eu

√
|u|

Superposition dimension

q1 0.757 0.943 0.928 1.000 0.968 1.000 0.388 0.523 0.489

q2 1.000 1.000 1.000 1.000 0.999 1.000 0.967 0.978 0.976

q3 1.000 1.000 1.000 1.000 1.000 1.000 0.986 0.991 0.990

Truncation dimension

q12 0.950 0.990 0.988 0.893 0.963 0.937 0.694 0.752 0.755

q13 0.387 0.473 0.466 0.499 0.488 0.500 0.238 0.295 0.279

q14 0.386 0.473 0.466 0.500 0.487 0.500 0.228 0.287 0.270

q23 0.386 0.473 0.466 0.499 0.487 0.500 0.226 0.286 0.268

q24 0.387 0.473 0.466 0.500 0.488 0.500 0.240 0.297 0.280

q34 0.018 0.005 0.005 0.107 0.023 0.063 0.117 0.107 0.103

q123 0.970 0.994 0.993 0.946 0.979 0.968 0.802 0.844 0.841

q124 0.970 0.994 0.993 0.947 0.979 0.969 0.804 0.846 0.843

q134 0.408 0.477 0.471 0.553 0.505 0.531 0.367 0.401 0.386

q234 0.408 0.477 0.471 0.553 0.505 0.531 0.367 0.401 0.386

Table 2. Proportionality constants for the effective dimensions of

the functional J (~α).

In Table 2, for the truncation dimension, the values q1,...,pt for pt > 1 are such
that ∑

T⊆{1,...,pt}

σ2
T (J ) ≥ q1,...,ptσ

2(J ).

In the table, we have also included entries for ordered index sets that begin with
integers greater than one. The reason for doing so is that the ordering of any
variables as α1, α2, . . . , αp is usually arbitrary; certainly this is the case for the
functional J (α1, α2, α3, α4) defined through (14) and (15). The entries included in
Table 2 account for all possible orderings of the variables. The results in Table 2
relative to the three choices of w(u) are consistent with the results in Table 1.

The proportions for the truncation dimension demonstrate that all variables have
significant effects, but some more so than others. In fact, an unexpected trend is
apparent from the truncation dimension proportions given in Table 2: the entries
whose index set includes the integers 1 and 2 are considerably larger than those that
do not contain those integers and the entries containing both the integers 1 and 2 are
considerably larger than those that contain only one of those integers. From this we
conclude that the variables α1 and α2 are of about equal importance to the ANOVA
expansion of the functional J (~α) and that both are of greater importance compared
to the variables α3 and α4. This type of information is useful in determining which
parameters are more influential to a functional and which may perhaps be ignored.
In the particular setting we are considering here, although none of the variables can
be ignored, we see that the parameters α1 and α2 corresponding to the Dirichlet
boundary conditions (see (14) and (25)) are more “important” than the parameters
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α3 and α4 corresponding to the Neumann boundary conditions. We do not have a
good explanation for this observation, but it seems that this issue deserves further
study.

5. Sampling parameter space in the building of surrogate functionals

Consider the problem of minimizing the functional J (~α) given in (15) subject
to (14) being satisfied. In the context of the concrete problem of §4, we find an
approximate solution of the optimization problem by building a surrogate functional
as described in §1.

The first step towards building a surrogate is to sample N points in Ap with
p = 4 for the problem of §4. From the calculations of the last section, we see
that the effective dimension is no more than 3 in most cases. Thus, we will choose
quadratic functions as our surrogate functions. We note again that in the context of
surrogate optimization problems, we are interested in the (very) sparse sampling of
the hypercube so that the large body of literature related to sampling many points
in hypercubes does not apply to our study.

The specific procedure we use to build the surrogate functional is as follows:

(1) choose 15 points in the parameter hypercube A4;
(2) solve, using a finite element method, the nonlinear partial differential equa-

tion problem (14) for each of the parameter points chosen in step 1;
(3) use the solutions obtained in step 2 to evaluate the functional (15) at each

of the parameter points obtained in step 1;
(4) determine the quadratic polynomial in parameter space that interpolates

the functional values obtained in step 3 at the points obtained in step 1;
(5) determine the minimum value, within A4, of the quadratic polynomial con-

structed in step 4.

For step 1, we will use several sampling methods: random or Monte Carlo sam-
pling (MC), Latin hypercube sampling (LHS), Halton sampling (HAL), Hammer-
sley sampling (HAM), and centroidal Voronoi tessellation sampling (CVT). Brief
descriptions of these methods are given in the Appendix.

For our computational results, steps 2 and 3 are carried out in the same way as
described in §4. We also use the concrete problem considered in that section, where
we use the three choices given in (26) for the nonlinear term f(u) in the partial

differential equation and the two choices w(u) = (u − û)2 and w(u) =
√
|u − û|

for the integrand in the functional (15). For the target function û, we choose the
solution of (14) for a specific choice ~α∗ of the parmeters; then, for the choices we
make for w(u), we know the functional J attains a minimum value 0 at ~α = ~α∗.
In order to at least partially remove any statistical bias a single example might
have, we use ten randomly chosen values of ~α∗ to determine the average and worst
performance of each of the parameter sampling strategies.

For each sampling method, we respectively provide, in Tables 3 and 4, the abso-
lute errors (averaged over ten realizations) in the location of the minimizer of the
functional and in the value of the functional at its minimizing point. Specifically,
in Table 3, we provide the average (over ten random choices for ~α∗) of |~α∗

sur − ~α∗|,
where ~α∗ denotes the minimizer of the functional J and ~α∗

sur denotes the mini-
mizer of the surrogate functional Jsur . In Table 4, we provide the average (over
ten random choices for ~α∗) of |Jsur(~α

∗
sur) − J (~α∗)| = |Jsur(~α

∗
sur)|, where the last

equality holds since, by construction, J (~α∗) = 0.
From Tables 1–4, we see a correlation between the accuracy of truncated ANOVA

expansions of the functional and the accuracy of results obtained using surrogate
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w(u) = (u − û)2 w(u) = |u − û|1/2

sampling f(u) f(u)

method u2 eu |u|1/2 u2 eu |u|1/2

MC 0.036 0.018 0.086 0.556 0.566 0.574

LHS 0.021 0.012 0.035 0.378 0.427 0.380

HAL 0.032 0.022 0.081 0.601 0.634 0.670

HAM 0.064 0.040 0.172 0.447 0.447 0.441

CVT 0.067 0.026 0.069 0.436 0.433 0.436

Table 3. Absolute error, averaged over 10 realizations, in the lo-

cation of the minimizing parameter point for each of the point sam-

pling methods used in the surrogate construction.

w(u) = (u − û)2 w(u) = |u − û|1/2

sampling f(u) f(u)

method u2 eu |u|1/2 u2 eu |u|1/2

MC 1.85E-5 7.87E-6 4.38E-5 0.052 0.051 0.052

LHS 9.75E-6 6.07E-6 2.12E-5 0.053 0.083 0.054

HAL 4.53E-5 2.35E-5 1.49E-4 0.457 0.448 0.447

HAM 6.36E-5 3.62E-5 1.84E-4 0.228 0.208 0.204

CVT 9.08E-5 3.39E-5 3.11E-4 0.289 0.256 0.234

Table 4. Absolute error, averaged over 10 realizations, in the

minimum value of the functionals for each of the point sampling

methods used in the surrogate construction.

optimization. Specifically, for the case w(u) = |u − û|1/2, we see from Table 1 that
short ANOVA expansions are inaccurate and from Tables 3 and 4 that minimizing
points and minimum values of the surrogate functional are also inaccurate, com-
pared to the results obtained for the integrand w(u) = (u − û)2. In fact, for the
integrand w(u) = |u− û|1/2, the minimizing points of the surrogate functionals are
essentially useless as approximations of the minimizing points of the given func-
tional. We also see from Tables 3 and 4 that, for w(u) = (u − û)2, results are
generally worse for the nonlinearity f(u) = |u|1/2 than for the other two nonlin-
earities; this is again consistent with the relative accuracy of truncated ANOVA
expansions as indicated in Tables 1 and 2.

The results provided in Tables 1–4 are interesting for at least two reasons. First,
one sees that parameter sampling strategies that are known to be better for some
applications, e.g., multidimensional integration, that involve sampling a large num-
ber of points are not necessarily better in our setting which requires sparse sam-
pling. For example, Halton and Hammersley sampling were developed as improve-
ments over Monte Carlo sampling for multidimensional integration applications,
but Monte Carlo sampling seems to be more effective in our specific example. Sec-
ond, given that we cannot use results about sampling strategies that hold for a large
number of sample points, we can use ANOVA expansions as a tool to provide guid-
ance for choosing the form of the surrogate functional. For example, when short
truncated ANOVA expansions provide good approximations to the functional, one
sees that quadratic surrogate functionals based on sampling 15 points provide good
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approximations. On the other hand, for cases where the terms in the ANOVA
expansion do not decay, poor approximations are obtained. It is likely that both
the number of sampling points must be increased and the form of the surrogate
functional must be changed in order to obtain better approximations in the latter
case.

Of course, no definitive conclusion can be drawn from just the examples consid-
ered here. Further experiments on the various sampling strategies should be carried
out as well as the testing of some of the many other sampling strategies available
in the literature.

6. Concluding Remarks

We have studied the application of ANOVA expansions to optimization problems
constrained by nonlinear elliptic partial differential equations. We demonstrate
that when the the ANOVA expansion of the solution of the optimization problem
has low effective dimension, we can use lower-order polynomials to build surrogate
functionals for the optimization problem.

Our goal in this paper was to acquaint the reader of the possibilities offered by
two notions that are well known in the statistics and multidimensional integration
communities, namely ANOVA expansions of functions and the effective dimension
of functions, for problems governed by nonlinear partial differential equations. We
hope this paper encourages further work in this direction. Certainly, other sampling
strategies can be tested and the dependence on the results on the number of sample
points and on the grid size should be explored. Further mathematical analyses are
also called for. From the computational standpoint, we note that, in §anovaex,
all the numerical parameters, e.g., meshsize and number of quadrature points, are
fixed. It would be interesting to vary them in order to assess the effects on the
conclusions drawn.
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[22] J. Rodŕıguez and L. Sirovich, Low-dimensional dynamics for the complex Ginzburg-

Landau equations, Physica D 43, 1990, 77-86.
[23] Y. Saka, M. Gunzburger, and J. Burkardt, Latinized, improved LHS, and CVT point

sets in hypercubes, to appear.
[24] A. Saltelli, K. Chan, and E. Scott, Sensitivity Analysis, Wiley, Chichester, 2000.
[25] I. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo

estimates, Math. Comp. Simul. 55 2001, 271-280.
[26] S. Volkwein, Optimal control of a phase field model using the proper orthogonal decompo-

sition, ZAMM 81, 2001, 83-97.
[27] X. Wang and K. Fang, The effective dimension and quasi-Monte Carlo integration, J. Com-

plex. 19 2003, 101-124.
[28] D. Xiu and G. Karniadakis, Modeling uncertainty in steady state diffusion problems via

generalized polynomial chaos, Comp. Meth. Appl. Mech. Engrg. 191, 2002, 4927-4948.
[29] D. Xiu and G. Karniadakis, Modeling uncertainty in flow simulations via generalized poly-

nomial chaos, J. Comp. Phys. 187, 2003, 137-167.

Appendix A. Methods for uniform sampling in hypercubes

We describe the procedures used in §5 for sampling the unit hypercube in pa-
rameter space in order to obtain the values of the cost functional used in building
surrogate functionals. In addition to the methods described below, we also used
uniform, random sampling, i.e., Monte Carlo sampling, within the hypercube.
Latin hybercube sampling. To obtain a Latin Hybercube sample of N points in
the hypercube Ap, one first subdivides the hypercube into Np bins of equal size,
then randomly places one point within N randomly chosen bins with the following
restriction: if one projects the bins and points onto any one-dimensional face of the
hypercube, then there will be exactly one projected point within each projected
interval. See, e.g., [16] for details.
Halton and Hammersley sampling. Halton samples are an example of quasi-Monte
Carlo sequences and are defined as follows. To generate a sample of N points in the
unit hypercube Ap ⊂ R

p, one first chooses p prime numbers s1, s2, . . . , sp. Then,
each integer j = 1, . . . , N can be uniquely expressed in an expansion with respect
to the base sk of the form j =

∑
i≥0 bki(j)s

i
k, where bki(j) is the i-th coefficient of
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j in the expansion. One then lets

α
(j)
k =

∑

i≥0

bki(j)

si+1
k

for k = 1, . . . , p and j = 1, . . . , N.

The N -point Halton sequence of points in the hypercube generated by s1, . . . , sp is
then defined by

~αj = (α
(j)
1 α

(j)
2 · · · α(j)

p )T for j = 1, . . . , N.

The corresponding N Hammersley sample points are given by

~αj =
( j

N
α

(j)
1 α

(j)
2 · · · α

(j)
p−1

)T
for j = 1, . . . , N.

See, e.g., [6, 7, 16] for details.
Centroidal Voronoi tessellation sampling. Given an open set Ω ⊂ R

p, the set of

open subsets {Ωi}N
i=1 is called a tessellation of Ω if Ωi ∩ Ωj = ∅ for i 6= j and

∪N
i=1Ωi = Ω. Let ‖ · ‖ denote the Euclidean norm on R

p. Given a set of points

{~αi}N
i=1 belonging to Ω, the Voronoi region Ωi corresponding to the point ~αi is

defined by

Ω̂i = {~β ∈ Ω | ‖~β − ~αi‖ < ‖~β − ~αj‖ for j = 1, . . . , N , j 6= i}.
The points {~αi}N

i=1 are called the generators, the set {Ω̂i}N
i=1 the Voronoi tessella-

tion or Voronoi diagram of Ω corresponding to those generators, and each Ω̂i the
Voronoi region corresponding to ~αi. The Voronoi regions are polyhedra.

Given a bounded region D ⊂ R
p and a density function ρ(·) defined on D, the

center of mass or centroid α of D is defined by

α =

∫

D

ρ(~β)~β d~β

∫

D

ρ(~β) d~β

.

Given N points ~αi, i = 1, . . . , N , we can define their associated Voronoi regions

Ω̂i, i = 1, . . . , N . Then, for each Voronoi region Ω̂i, we can define the corresponding
centroid αi. In general, αi 6= ~αi, i.e., the generators of a Voronoi tessellation do
not coincide with the centers of mass of the Voronoi regions. The special situation
for which αi = ~αi for i = 1, . . . , N is referred to as a centroidal Voronoi tessellation
(CVT) of Ω. This situation is quite special, so that CVTs must be constructed.
Details about CVTs, including methods for their construction, are given, e.g., in
[3, 10, 23].

In the context of this paper, CVT uniform point sampling refers to choosing
the sample points to be the generators of a centroidal Voronoi tessellation (with a
constant density function) of the unit hypercube Ap.
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