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MULTISCALE ASYMPTOTIC METHOD FOR HEAT TRANSFER
EQUATIONS IN LATTICE-TYPE STRUCTURES

FANG-MAN ZHAI AND LI-QUN CAO

Abstract. In this paper, we discuss the initial-boundary value problem for the
heat transfer equation in lattice-type structures that arises from the aerospace
industry and the structural engineering. The main results obtained in this pa-
per are the convergence theorems by using the homogenization method and
the multiscale asymptotic method (see Theorems 2.1 and 2.2). Some numer-
ical examples are given for three types of lattice structures. These numerical
results suggest that the first-order multiscale method should be a better choice
compared with the homogenization method and the second-order multiscale

method for solving the heat transfer equations in lattice-type structures.
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1. Introduction

In this paper, we consider the initial-boundary value problem for second order
parabolic equations with rapidly oscillating coefficients as follows

8u55(x,t) 0 (aij(g t)M) = f(z,t), (z,t) € Qes x (0,T)

ot oz \4ilE Dy
(1) usé(xat) = g(xvt)a ({E,t) € 89 X (OvT)
ed
viaij(£,1) %1; =0, (x,t) €075 x(0,T)
J

where f(x,t), g(x,t), Go(z) are some known functions. We follow Cioranescu’s
notation (see [6], p.74) by denoting Q.5 = Q\ T'.s the perforated domain, where
is a bounded domain of R™,n > 2, T.s = 7(eTs) is the set of all translated images
of €T of the form e(2 +Ts), 2 = (21, -+ ,2n) € Z", Ts =Y \ Y5, Y = (0,1)". Here
Y5 is a lattice structure as shown in Figs. 1-3. The boundaries of €2 and T.5 are
respectively Q2 and 0T.s and ¥ = (v1,- -+ ,v,) is the unit outer normal to 97T.s.

In order to apply the extension theorem (see, e.g. Theorem 2.10 of [6], p. 28),
we make the following assumption

(H1) The holes do not intersect the boundary 9.

This assumption restricts the geometry of the open set 2. For example, ) can
be a finite union of the periodic cells.

Set ¢ = e 'z, and suppose that

(A1) the coefficients a;;(€,t) are 1-periodic in &;

(A2) olnl® < ai;(& nin; <mnl?, Y(n, - mm) € R,
Y0, Y1 are positive constants independent of ¢;
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FIGURE 1. (a) lattice-type structure: Type I;  (b) the unit cell Y;.
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FIGURE 2. (a) lattice-type structure: Type II;  (b) the unit cell Y;.
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FIGURE 3. (a) lattice-type structure: Type III;  (b) the unit cell Y5.

(As) f € L2(0, T3 LA(Q)), g € L=(0, T3 HY2(9Q)), dhg € L2(0, T; HY2(99),
o € HY(Q), g(z,0) = tp(x).

Lattice-type structures are characterized by two properties: periodicity and small
thickness of the material. Such structures have a wide range of applications in
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the aerospace industry and the structural engineering. Two small parameters are
essential in thermal problem for lattice-type structures. One is periodic parameter
¢ and the other is thickness parameter ¢ of the domain. They make direct numerical
computation of the solution difficult because it would require a very fine mesh.

The periodic distribution of lattice-type structures suggests that we can use
the homogenization method for the perforated domain when ¢ — 0 and 6 — 0.
The basic idea of the homogenization method is to give the overall behavior of the
structures. The homogenization method for lattice-type structures was first studied
by Panasenko [2].

We would like to state that, if €,0 are not sufficiently small, the numerical
accuracy of the standard homogenization method may not be satisfactory(see, e.g.
[4],[5]). Therefore it is necessary to seek the multiscale asymptotic methods.

For the problems of lattice-type structures, Bakhvalov and Panasenko [2] ob-
tained formal asymptotic expansions for the limit solution when ¢ and ¢ are small
enough. They justify the first terms of these expansions by proving sharp error
estimates. Cioranescu and Saint Jean Paulin ([6],[7],[8]) studied the same types of
structures in a different way. They used variational methods to establish conver-
gence theorems, and developed a general method for treating structures with very
complicated geometry.

In this paper, we consider parabolic equations in lattice-type structures, and
obtain the convergence results for the multiscale asymptotic method. The main
difficulty is how to deal with the multiscale asymptotic solution near the boundary
00, Allegretto, Cao and Lin [1] studied parabolic equations with rapidly oscillating
coefficients, and gave the explicit convergence rates for the multiscale asymptotic
method in a general domain. There was only a small parameter ¢ in [1]. But
now there are two parameters ¢, for the lattice-type structures. In such case,
we obtain the new convergence rate for the approximate solutions and numerical
approximations techniques. In this paper, we focus on the three types of lattice
structures, see Figs.1-3.

The remainder of this paper is organized as follows. In Section 2, we derive the
convergence theorems for the homogenization method and the multiscale asymp-
totic method for solving the heat transfer equation in the lattice-type structures.
An algorithm based on the multiscale finite element method is proposed in Section
3. Finally, we do some numerical experiments for three types of lattice structures,
which support the convergence results of this paper. These numerical results sug-
gest that the first-order multiscale method should be a better choice compared with
the homogenization method and the second-order multiscale method for solving the
heat transfer equations in lattice-type structures.

Throughout the paper the Einstein summation convention on repeated indices
is adopted. By C we shall denote a positive constant independent of ¢, §.

2. The Main Convergence Theorems

In this section, we first present a formal multiscale asymptotic expansion of the
solution for problem (1). Then we obtain the main convergence theorems in this
paper. For simplicity, we discuss problem (1) only for a type of lattice structure:
Type I (see Fig.1) in the two-dimensional case. The others can be treated similarly.

We can take the following particular cell as a representative cell (see [6], p.76),
thanks to the periodicity,
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Denote the part occupied by the material by
1) 1)
Ys={yeYllnl<g or [pl<gh

and set Ts =Y \ V5.
We set formally

> t
(2) u(z,t) = & Z N3 o (&, Do (xa) 1<s<2,
=0 a, - ,0p=1 ’ thz
with & = e~ 1.
We define the cell functions in turn.
(3) No(& ) =1, (&) € Y5 x (0,T),

é
(a0 5 ) = - D 60), (€0 €Y x 0,T)

4 ON? (&t
( ) ViQij (g,t) 5(5 ) —Viaml( ,t) (5 t) € 0T x (0, T)
6 . .
N§, (&,t) is 1-periodic in ¢, fyé (&, t)de =0,
where t plays the role of a parameter, and 7 = (v1,- - ,14,) is the unit outer normal

to the boundary 0Ts}.

(ot Pags &Y — 0 (o (€ V2, (€.0)

é
o —en@n B a6+ aL 0. @0 evix0.T)

0
viaiy 6,0 e — i €OV (€0, (€0 €05 x (0.7)
a1a2(§ t) is 1-periodic in &, fY5 Sas (&5 1)dE =0,

where

iy = T ey V&Y
(© (0 = 5= Y/ s (6.0) + aute. ) =2 s

and |Y5| denotes the Lebesgue measure of Yj.
For any fixed § > 0, we get the homogenized equation of equation (1) given by

J s
% - a?ci (dfj(f)%é’ﬂ) = f(z,1), (2,t) € Qx(0,T)

(7) u(x,t) = g(x,t), (x,t) € 00 % (0,T)
ud(x,0) = tg(z),
5

where the homogenized coefficients matrix (ag;(t)) is given as in (6).

Remark 2.1. Note that we add the index ¢ to the homogenized solution and to
the homogenized coefficients because the geometry of the material in the periodic
of reference depends on . Indeed, the cell functions N, gl are solutions of a system
posed in Yy, while the coefﬁcients d . are integrals computed on Ys and containing
NZ,. Finally, the solution u® depends on ¢ via afJ (t).

Next we would like to study the limit behavior of the solution u®(z,t) as § — 0.
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Theorem 2.1. If we assume that the coefficients of problem (1) only depend
on time variable ¢, under the assumptions of (Hj), (A1) — (A43), we have

u® — u*  strongly in L2(0,T; HY(Q)),
(8) ud — u* strongly in L°°(0,T; L?(52)),

%“— _3_ strongly in L?(0,T; H-1(Q2)), as & — 0,

where u*(x,t) is the solution of the following equation

% - a?ci (afj(f)%y) = f(z,t), (2,t)€Qx(0,T)
©) u*(z,t) = g(z,t), (2,t) € 9Qx (0,T)

with

1 Ak (t)ak-(t)

10 () = 5 [20i5(t) - ZEESHEE]
( ) a’z]() 2 aJ() akk(t)

It is obvious that (aj;(t)) is a positive-definite matrix for any fixed t € (0,7).
So equation (9) has exactly one solution.

Proof. If we assume that coefficients a;; of problem (1) only depend on time
t, a;; are constants for any fixed ¢ € (0,T). Following the lines of the proof of
Theorem 1.1 of ([6], p.75), we have
(11) afj —aj, as 6—0.

*

The positive definiteness of the matrix (a;(¢)) comes from that of the matrix

(ai;(t)), which is equivalent to the ellipticity condition (As). In other words, there
are two positive constants g, vi such that

(12) wnl* < ajs(Onim; < i, ae. te€(0,T).
In order to obtain (8), we first prove

u® = wu*  weakly in L2(0,T; H(Q)),

(13) u® = u*  weakly in L°°(0,T; L?(Q)),
5 *
%u? — %UT weakly in L?(0,T; H-1(Q)), as 4§ — 0.

We rewrite dfj (t) as
(14) a8,(t) = afy (1) + S50,

)

where Sfj — 0 as 0 — 0, thanks to (11).
From (7), we get (u® — g) € L?(0,T; H}(2)) and the integral identity

R ou’ (%
//—vd:cdt+// fja " dadt
z//fvdxdt,

0 Q

holds for any v € L?(0,T; H3()).
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Setting v(z,t) = (u’(z,t) — g(x,t)) , and using the decomposition (14) in (7),
we have

Q 0 Q
t
ou’ ou’
* 9
+/ (5 55) 3y oy
0 Q
i ou’ o
* ) U g
- oy il dt
/ (a + 55) - 5
0 Q

t

It is obvious that

_//%fgdmt__/ [(u5g)(x,t)_(ao(x)ﬂdﬂ/t/u“%dmt.
0 Q Q 0

Q

Due to ellipticity of (12), using Cauchy’s inequality, we thus get

t
1 *
S @ Oy +5 [ 196yt
0

t t

< [ISLI90 eyt + [ lat + 31190 o 1 o
0 0

t
+ / 20 gl ey de + el 2o 9l oo
0

t t
1
+ [ Ul eyt + [ 172 lgllaydt + 500l oy
0 0
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Using Young’s inequality, we get
1 t
;mem@+ﬁ/wmm@ﬁ
/|mw%mw+m/wmmwt
+a—/wwldwww%mwz + 3l )
iy / H(Q) Wl e) T, Ul L2
t 1 t
+/||“6||%2(Q)dt+§/||at9||%2(sz)dt
0 0

t t
1 1.
+ [ 11yt + 5 [ Mot + 5wl
0 0

We recall S’fj (t) = 0 as § — 0 for any fixed ¢t € (0,7). Therefore, if we take

5 > 0 sufﬁciently small, we have |Sfj| < 140—. On the other hand, we choose Cvy <
Ny < 1, and derive

t
1 *
1Ol + 2 [ 1967 Rt
0
t
1 2 1 2
(15) < O [ ol + 1ot Ol
0
t 1t
[ 11yt + 5 [ Nouglads
0 0
t t
2 1 2 172
+ [ 11yt + 5 [ ol + 5 0l
0 0

If we set E(t d:cdt and

o%‘*

Q

1 2 1 2
FO) = O [Nl + -l 0l
0

t t t
1 1
+y [ N0l + [t + 5 [l
0 0 0

+§||@0||%2(Q)=



MULTISCALE METHOD FOR LATTICE-TYPE STRUCTURES

then we conclude

) < Bty + F (1)
E(0) = 0.

Using Gronwall’s inequality, we obtain

t
B < 0e{ [ ol + ot 0]
0

t t
+ [ 10yt + [ 151t + ol
0 0

Substituting into (15), we have

*

t
1 Y
10 Ol + 2 [ 19673t
0
t
<+ [ ol @t + lote Ol
0

t t
+ [ Norgltaayde + [ 171yt + ol .
0 0

Therefore, we get
||u5||L°°(O,T;L2(Q)) + ||Vu6||L2(O,T;L2(Q))

< ) llgllzo. i @) + 9l w0 rin2@))

+H0egllL20,7:22()) + | fllL200,7502(0)) + ||a0||L2(Q)}a
where C' is independent of €, § but dependent of T.

Hence, up to a subsequence, we have

u® —u®  weakly in L2(0,T; HY(Q)),
uw® = u®  weakly* in L>°(0,T; L3(Q2)).

239

From (7) and (14), after multiplication by any v € L?(0,T; H}(2)) and integra-

tion by parts, we obtain

6u6 * 5
(W,’U)Lz(ﬂ) = — /(aij + Slj)al'] axz dx + /f’UdJI
Q Q

< laj; + Syl @ ol @) + 1 2 1ol @)

« . %
<(n+ IO)HU(;”Hl(Q)”UHHé(Q) + L llz2@ vl 5 )-
We thus have

o’ o’
<EaU>H*1(Q),H§(Q) = (Ea?})m(n)

< (Wl @) + I lz2@) ol 2 o)

ou’ 5
||§||H*1(sz) < C(lular ) + 1flL2@)),
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and
H HL2(0 ri-1@) < C(T) ([’ || 20,00 ) + 11201y %))
< C( ){||9HL2(0,T;H1(Q)) + 19/l Loe (0,722 (02))

09l 200,720 + | fllL200,7502(0)) + ”ﬂOHLz(Q)}-

This implies
ou® ou® N 1
W W Weakly in L (O, T, H (Q))
Multiplying both sides of equation (7) by any v € L?(0,T; Hi(f2)) and integrat-
ing over (0,7 respect to t, we get

T
/ / 02wt + / / al, gj; g;}zda:dt: / / fodadt.
0 Q

As § — 0, we find that «° is the solution of (9) and u° = u* by uniqueness.
Actually all sequences u® have the same limitation. Therefore, we prove (13).
The next step is to establish the claimed strong convergence result. We take

u® — u* as a test function in (7) and (9), respectively. Using (14), we obtain

t 5 * 5 *
- u —u®)dxdt + ar; - — xdt
u u ) dud Ua(uaxlu )B(Uax‘u )d d
(16) 0Q . . 0Q ¢ J
0Q

Z]I

It is obv1ous that
t
ff —u*)dxdt = ?({E”ué —u H%Q(Q)dt

e o) (az,t)n;(m,
p a( § *) 8( & *) p
N u’ —u u’ —u . .
a9 [ [an =G e > 5 [ 190 )y
0 Q 0
and

(19) '/ / S5 gu L

S | ij|Hvu5||L2((O,T)><Q)HU6 —u*| 20,7517 (02))-

Since S, — 0 as § — 0, from (16) to (19), we complete the proof of (8).
Next we define

(17)

s 5 ~ .\ 5 o'l (x,t)
(20) u(wt) =@ )+ D' Y NGty —p— 1<s<2.
=1 aq, =1 [e51 (o9}

In a standard way (see [1]), we can prove that

T
sup [ (u(2,1) —u’ (2, 1)) dx + [ [|u — w3 g, dt
(21) 0<t<TQ., 0 =

<C(T,0)e, 1<s<2
where C(T, ) is a constant independent of € but dependent on 7" and .
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FIGURE 4. The horizontal bar Hg

Since we do not know how C(T,d) depends on § > 0, we can not estimate the
magnitude of the error when comparing u%(x,¢) with u°(x,t). To overcome this
difficulty, we define the multiscale asymptotic solution given by

s n 1 %
(22) UL (@ t) =u(z,t) + Y b Y N‘Sl___al(g,t)M 1<s<2.

o D2a, - OTay’

=1 a1, =1

where u*(x,t) is the solution of the homogenized equation (9).

As for the unit cell functions NJ (¢,t), N3 ., (&, t) of the expansion (22), the
following estimates hold as proved in ([6], p.77-98).

Lemma 2.1. Let NJ (1), N3 (& 1), 01,00 = 1,- -+, n be the weak solutions
of problems (4) and (5), respectively. For any fixed ¢ € (0,7"), we have

HNgl(&t)HL%Ya) < 06%7 .
(23) HV%Ngl(gat)”Lz(Yg) < 0557
NG, an (& D)l L2(vy) < €62,
IVeNg, s (& )20y < CO2,
where C' > 0 is a constant independent of §.
The following lemma estimates the difference between &fj (t) and aj;(t).
Lemma 2.2. Let the homogenized coeflicients dfj (t) and aj;(t) be as given in
(6) and (10), respectively. If the coeflicients a;;(§,¢) do not depend on &, we can

prove that
(24) lad; — aj;| < €03,
where C' > 0 is a constant independent of §.

Proof. We first decompose Yj into Hs U V5 U K; (see Figures 4-6). We define
the functions ®9(¢,t) and W9 (¢, t) given by

4
2 (4 (6.0 %) — L aule,t), (€0 € Hyx 0.7)

5
maij(f,t)%gig’w = —viai(§ 1), (1) € [0Hs \ (90Hs N 0OY)] x (0,T)
®9(¢,t) is 1-periodic in &,
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FIGURE 5. The vertical bar Vj
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FIGURE 6. The central square K

and
AW (&,t
6%(0@'({,15)_5%) :_3%(&“6(570), (g,t) € Vs x (O,T)
) ) () B
ViQij (55 t)TJ - ViQik (55 t)v (57 t) € [8‘/5 \ (8‘/5 N 8Y)] X (Oa T)
Wl (&,t) s 1-periodic in &,
where ¢ plays the role of a parameter, and 7 = (v1, - -+ , 1,) is the unit outer normal

to the associated boundary.
If we assume that the coefficients a;;(£,t) do not depend on &, a possible choice
up to a constant could be

_ agk (t)
a2 (t)

alk(t)

all(t)

(25) ) (&, 1) = & on Hjs, (&) =— & on V.
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We recall (6), and set

N} (€:t)

H)d =@,

(26) a;(t) a7 |/ aij (&) + ai (&, t)

where

1 ON? O(N! — @9)
Q1= W{—/aika—&gd§+/aik785k dg§

K5 Hé
O(N) — uh)
+ [an =20,
Vs
1 L H
QQ a”Lj |Y | |:H/ alka—&d§+/a’lk 5 d&}
é 5

It follows from (25) that

Q2 = ay(t) + 525 (ag () — ai(t)

(27) o
g2 ai;(t) + 50 ai; (1),

Following the lines of the proof of (1.66) in ([6],p.96), we can derive
(28) Q1] < C6'/2,

where C' is a constant independent of .
From (26), (27) and (28), we get

LI

al:(t) — ali(t) = ——a’;(t) + 550

17 7 9_§ U
Therefore, we complete the proof of Lemma 2.2.

We next give the main convergence theorem of this paper.

Theorem 2.2. Suppose that (s is a lattice-type structure which is the union of
entire cells. Let u®® be the weak solution of equation (1) and let the approximate
solution US%(x,t) be as given in (22). Under assumptions of (A1) — (43), (Hy),
if Ora;; € L°°((0,T) x Ys), u* € L0, T; WH(Q)), du* € L?(0,T; W(Q)), it
holds

T
sup [ (u(z,t) = U (,1))2de + [ u® = UL |3 g, dt
(29) 0<t<T Qg 0 “

< C(T){5263 162 5%2/(1}, 1<s<2,

where C'is a constant independent of ¢ and § , but dependent on T', ¢ = 2p/(p—2),
2<p<r,r>>2,1/p=X24+(1—-X)/r,0 <X <1,and X is close to 1.

Proof. We first prove (29) for s = 2.

From (22), (4)-(5), we can obtain

O -Us’) 0 [ w’-Us") _
(30) 9 [%7} = Fo(z, 1),
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where
(31)
Fo(z,6,t) = E{ - 12—2:1 gt N “Zn%él:l ONa,. = (&) 85:?*(96;92%
2 n I4+1,
+ al% 1aij(§,t) aNalog(g »t) azg‘xiféi)az
s 5 BN ) gt

2 n 14+2
+ 251_1 > ai; (&, )N, a1 oy (&5 t)axlaijaxafaf ) }

=1 a1,»~2,oq:1 ’ 6:Eo‘l
. 07Ut (z, 1)
+ (@~ ) T,
For (z,t) € 0 x (0,T), we have
(32) u (2, ) = Us® (2, ) = es(, &, 1),
where
2 [ %
o'u*(z,t)
_ ! s )
Ves(@,&,t) = ;a . Zal 1Na1 al(g,t)axmmazal.
(33) u55(:v,0) — UQE‘S(:E,O) = pes(z, ), z€Q,
where
2 n
ou*(z,t)
_ l N
(34)  pes(e,€) = Z oz (Voo €05 50 )
For (z,t) € 0T.s x (0,T), from (4) and (5), we get
x  0w® -U5’)
(39) v (20 5 = Sl 6.,
where
O3u* (1)
Ses(x,&,t) = —e®v3a45 (€, )N, a1a2 (@ﬂm-

Since t € (0,T) plays the role of a parameter, from (4), we derive

ON? (¢,
6% (a’ij (57 t)%) = _3%(6taia1 (67 t))

) ONG, (&, 1)
- (atamsé_t)—ﬁ), (6,) € Y5 x (0,7)
8t(1/iaij(§,t) 8N 5(5 t)) = —ui(?taml (f t) (f t) (S 8T5 X (O,T)

Np, (&t) s L-periodic in &, f S,4(&t)dE =0.

where Ngl (&) = (’%Ngl(ﬁ,t).
If Oia;; € L*°((0,T) x Y5), it holds

WIVNE ey < @Ml 2IVAG, ey,

+ VN 2 IVNS, dllr2(vy)-
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Given |Ys| = 26(1 — %), it follows from Lemma 2.1 that
(36) IVNG, 2,y < €812,

where C' is a constant independent of €, §.
Following the lines of proof of (1 72) in ([6], p. 98), we have

(37) INS, illzzcvy) < C8°72.
We can check that

(38) ING, oy il L2(vy) < CO°/2,

where Na1a2 L = ONS .-

Given Q5| = 9, it follows from (31), Lemmas 2.1 and 2.2 that

[Follrzga.,) < Cedd32||[u*|lwioeq) + 6% 2(|u* |l w2 (o

+ 8100l (@) + 282 O wa.e )
+ 2|t lws.se () + 632 [[ut lws. o)
+ 555/2”1‘*“""4*”(9)}+O5||U*||W2vw(ﬂ),
and
(39)

||FO||L2(O,T;L2(Q€5)) 05{53/2””* ||L2(0,T;W1’°°(Q)) + 655/2”“* ||L2(0,T;W2’°°(Q))
832)|0pu* || 120,71 () + 6%/ 2|00 || L2 (0, w2 (2))
65/2||U*||L2(O,T;W3’°°(Q)) + 53/2||U*||L2(0,T;W3,oo(sz))
855/2”’(1,* ||L2(07T;W4,oo(gl)) + Cé”'l,L*HLQ(O’T;WZoo(Q))
C(T)(e6%/? +6).
where C(T) is a constant independent of ¢, but dependent of T'.

In order to estimate |15l fr1/2(a0), it suffices to find a function W5 € H'(Qe5)
such that

IN + + + IA

O*u* (x,t)

0% o, 0q,

x,t
U5+ N2 (€,1) a; ) +E2NJ o, (6,1)
a1
where H'(Qes,00) = {v € H(Qys), v]oa = 0}.
Let ¢, be a scalar function such that ¢. € D(Q), ¢ = 1 if dist(x,00) <e, p. =
0 if dist(x,00) > 2e, [Vp| < czs_l. Set

€ H'(Qus,09),

O*u* (x,t) );

\IJEJ = —@e (‘C-:]V(s (5 t) (x t) 2N6 (55 t) ax 6$

0% q, araz
Kes ={x: dist(z,00) <2} N Q.
It is easy to see that W5 € H'(Qs) and

OV¥es  _ a‘ﬂs NO ou* 6N L ou*
r;  “0r; e O%a, ~ %0, O,
5 O%u* &2 Ope o%u*
(40) - 6<P€N HIJ 3760[1 a_JNalag gxoq gzog
aN(glO[g 82’UJ* agu*

T &P 08 0xq,0zq, - € SDENOZW? 01,024, 00,
Using Holder’s inequality, it is easy to check that
(41) oo < Nulldao lull sy, for we L7(Q),
where 2<p<r,1/p=X/2+(1—-X)/r,0< A <1, and X is close to 1.
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From (4) and (5), under the assumptions of Theorem 2.2, for any fixed ¢ € (0,T),
we can prove that

(42) ||N21 (55 t)”Wm’“’(Ya) < Ov m = 07 15

where C' is a constant independent of 4.
Setting @ = Ys , and using Lemma 2.1, (41)-(42), we get

NS, (& t)lle(vy) < Cs%,
[VeN3, (&, )| Logvy) < 8%,

[ am(é )l Loy < COF,
IVENS 0y (€ D)l Lo(ry) < C8F,

where C' > 0 is a constant independent of §, and p = 2r/((r — 2)A + 2), r >> 2.
Now we consider the first term on the right side of (40). Using the cut-off function
e, we have

ou*(z
Qfa |E_<&N6 %) a$i1)|2dx

8 *
<c [ N @)P5Epa
KES

C(Kf INéill”di”) ( / |axa sd) "
<o(sen g ) ([ 1)

2z’ z/+Y5
< OFN w1

where C' > 0 is a constant independent of §, K.s = Je(2'+Y5), and ¢ = 2p/(p—2).
The other terms on the right side of (40) can be treated similarly. We thus get

IN

BA 1k 2 *
s a1 (62.0) Co% | utwragr.y) + 02 u*lwragr.s)
+ &0 ullwea (i) +€0F Ut lweax.s)

+ 07 |utlwea(k.,) +%0°2 [u*|lws.ack.s) ¢-

Following the lines of the proof of Lemma 1.5 of ([12], Chap.I), and using The-
orem 1 of (][9], p.258), we can prove that

||u*||W5’q(K55) S Cgl/q||u*||W5+l’q(Q)7 s = 17 27 37

and
IWesllmr(a,) < 0{5%5”‘Illu*llwzwq<m + 0% V9 |u* | w20
+ c(1+1/9) 5% ([ w*|yys. () + c(1+1/a) 5% ”U*HW&Q(Q)
+ ePHDEE [0t |

where g =2p/(p—2),2<p<r,r>>2,1/p=X/2+(1-X)/r,0 <A <1, and
A is close to 1.
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We use the trace theorem, and get
Vesll 20,112 (00)) < CllWesllL2(0,1: 0 (02.5))

< 0{5% e 9)lu*|| 20, mw2a ()

+5%51/q||u ||L2(0TW2‘1(Q))
(43) +e+1/9 5% [|u* ||L2(0TW3‘1(Q))
+e 1+1/¢Z)5 2 ||’u, ||L2(0TW3‘7(Q))

+e 2+1/¢Z)5 2 ||’u, ||L2(0TW4Q(Q))
( )5)\/2 1/q.

where C(T) is a constant independent of ¢, but dependent of T'.
From (34), it follows from Lemma 2.1 that

(44) Ipesllz2(.y) < C|6%2(|Tollwroo () + 8255/2||110||Wz~>o(sz)}-
From (35), we observe that 0T.5 C 2, and have

1Sesl| 22015y < CE2INS, sl L207es) U™ lws.co )

where

|| 0(1042||L2(8T56) = faT s | 041042|2d8( )

n ! Z faT5 alag 2d5(§)
~ Ce™ 1‘”' T o, ING, o, Pds().

Using the trace theorem and Lemma 2.1, we derive
||Na1a2||L2(8Ta < C” a1a2||H1(Y5) < 053/25
and consequently
(45) [1Sesll 20,72 (0ms)) < CE* 2832 ||u* || L20,0; W () -

From (30)-(35), combining (39), (43), (44) and (45), and using a priori estimate
for parabolic equations, we obtain

T
sup [ (u(z,t) = U (x,1))2de + [ u®® = U2 |30 g, dt
0<t<T 0,5 0

2 2
<Ol oy 1Pz

HSesll Lz 0,7:02(0m ) + IPes ”%%Qsa)}
< CM){2 + 2+ e}, s =2,

where C is independent of ¢, § but dependent of T, ¢ = 2p/(p—2),2 <p <71, 1 >>
2,1/p=X2+(1-X)/r,0<A<1, and A is close to 1.
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We next prove (29) for s = 1. From (4) and (5), we have

R ) [a &z t)a(usé _ Ufﬂ
ﬂ— ?_ ig\e > T

2u>~<
= {(aij + aik—ag—J 3§_(QkiN6) - diJ} %3(3?)

5 &*u*(z,1) s _OPut(x,t)
+(a @i —a”) 5x15xj +eaijNg 10x; Zixﬁxal

8N5 t
8155 m%y ) N t)ia Ef 2
_ D ING o, \ O*u*(z,1)
3] ("” 3 )axalaﬁm

. 0%u*(z,1) OPu*(z,t)

5 4

+(a’zj az;) O, ax_ +eaij Ny, 0x;02,;0%q,
N2 (£,1) Ou*(x,t) 0%u’ (z.t)

—€ Ot ax _ENal (gat) atafﬂal

ON? 0% (1)

— Q2

0
= —e - (o R et ) + Fi(@.6.0),

where

ONS oy OPu'(z,t
Fi(z,6,t) = eay 352 ana?{);ia)xi
. Pu*(x,1)
5
+ (aj; —aj) ;015
6N5 (&) Out (2, t)

0*u* (1)
) é )
- T owe . Na &) g

For (z,t) € 0Tz x (0,T), from (4) and (5), we get
o — U

2 %
oW U)o s O (xt)
Vilij Ox; - Eyzag‘l Na, 8:62(11 0% oy
O u*(z,t)
— .. 061042
T T D2y 0Ty

O3u* (1)

5
+ea;; N,
i ;0702 0,

Repeating the process of the proof for s = 2, we can prove (29) for s = 1.
Therefore, the proof of Theorem 2.2 is complete.
Corollary 2.1. Under the assumptions of Theorem 2.2, we have

(46) sup /(us‘s(x,t) —u*(x,t))?de < C(T){5263 +6% + 6A52/q},
0<t<T
Qs

where C' is a constant independent of € and ¢ , but dependent on T, ¢ = 2p/(p — 2),
2<p<r,r>>2,1/p=A/24+(1—=X)/r,0 <A< 1, and X is close to 1.

Remark 2.2. We prove Theorems 2.1 and 2.2 for a kind of lattice structure
of Type I. In fact, Theorems 2.1 and 2.2 are valid for other lattice-type structures
such as Type IT and Type III.

Remark 2.3. If the coefficients a”(g, t) do not depend on z and t, i.e. the
coefficients a;; are constants, we can also prove Theorems 2.1 and 2.2.

3. Multiscale Finite Element Method and Numerical Examples

In this section, we first present the multiscale finite element method for solving
heat transfer equation in lattice-type structures. Then we show some numerical
results for three kinds of lattice-type structures which have the same volume ratio
of a solid material.
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From (20) and (22), the multiscale finite element method for solving problem (1)
is composed of three steps:

Step 1 Compute the cell functions NJ (&,t), N3 o, (£,t), € = e 'z in a refer-
ence cell Y.

Step 2 Solve numerically the initial-boundary value problem of the homoge-
nized parabolic equation (9) with constant coefficients over a whole domain Q x
(0,T) in a coarse mesh.

Step 3 Calculate the higher-order derivatives DZu*(x,t) by using the finite
difference method. Note that we cannot directly compute higher-order derivatives
for the finite element solutions.

We implement the subdivisions for Ys and 2, respectively. hg and h denote the
sizes of the corresponding meshes.

Define first-order difference quotients given by

1 [8u}§

(47) iju;(vati) = (N ]e(Npati)a

( p) e€o(Np) 8$j

where o(N,) is the set of elements with node Np; 7(N) is the number of elements

of o(Np), [gu?] (Np,t;) is the value of the derivative g;? at node N, associated

with element e at time t = ¢;.
We define second-order difference quotients as follows

S 13 AP, ) L] (N ),

eco(Ny) j=1

(48) A2 ui(Np,t;) =

L] Tm 7_( )
where d is the number of nodes on e, P; are the nodes of e, x;(z) are Lagrange’s
type shape functions.

The multiscale finite element formula is written as

Ulgého, (Np, ti) = UZ(Npat)‘FENéhOA%I 5 (Np, i),
(49) Ustyon(Npsti) = uj (Nt )+€N§h°Axaluh(Np,ti)
+ 2Nglha[c)2 Ai x ;FL(NP) tZ)
a1 Tag

Next we do some numerical experiments for heat transfer equation for three
types of lattice structures as shown in Figs. 1-3 in the two-dimensional case.

9 ed ,t b ed ,t
u 8(tx ) %(aij(%,t)%f)) = f(z,t), (z,t) € Qs x (0,7)

u¥(z,t) =0, (x,t) €09Qx (0,T)
Viaij(g,t)%u—J =0, (2,t) €T x (0,T)
u(z,0) =0, z € Q.

where (.5 is a lattice-type structure which is the union of entire cells, 97T.s is the
surface of holes and ¢ is the thickness of solid walls.

We take € = %, and the thicknesses of three types of lattice structures are given
as in Table 1.

(50)

TABLE 1. Thicknesses of solid walls for three types of lattice-type structures

thickness(d)
Type I 0.0150888

Type IT | 0.0176776

Type IIL | 0.0125
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Example 3.1. Suppose that the coefficients a;; are constants.

Case 1.1: ). is a lattice structure of Type I as shown in Fig.1 (a). f(z,t) =
100(z + y)(2 + sin(207t)), ai;(2) = 1008;5, t. = 1.0.

Case 1.2: Qs is a lattice structure of Type II as shown in Fig.2 (a), f(z,t) =

Case 1.3: .5 is a lattice structure of Type IIT as shown in Fig.3 (a), f(z,t) =
100(x + ) (2 + sin(207t)), a;;(2) = 10085, t. = 1.0.

Example 3.2. Suppose that the coefficients a;; only depend on ¢.

Case 2.1: Qs is a lattice structure of Type I as shown in Fig.1 (a), f(x,t) =
100, azj(£,t) = 100(2 + sin(207t))y;, t. = 1.0.

Case 2.2: Q) is a lattice structure of Type II as shown in Fig.2 (a), f(z,t) =
100, aij(f,t) = 100(2 + Sin(?Oﬂ't))(Sij, te = 1.0.

Case 2.3: ()5 is a lattice structure of Type IIT as shown in Fig.3 (a), f(z,t) =
100, ai;(£,t) = 100(2 +sin(207t))d;;, t. = 1.0, where d;; is the Kronecker symbol.

Since it is extremely difficult to find out the exact solution of (50), in order to
show the numerical accuracy of our method, we replace u®(x,t) with its approx-
imate solution in a very fine mesh. We would like to point out that we do not
need to solve the original problem (50) in a very fine mesh in real engineering prob-
lems. Here we use the linear Lagrangian element to solve problem (50). Without
confusion we continue to use u®®(z,t) to denote the numerical solution in a fine
mesh.

We implement triangle partitions for Y5 and 2, respectively, and use the linear
Lagrangian elements. The computational cost is listed in Tables 2 and 3.

In Cases 1.1-1.3, the homogenized coefficients a;; for three types of lattice struc-
tures can be calculated by algebraic expressions( see [6], p.75, p.112, p.127), and dfj
defined in (6) can be computed numerically. Some numerical results are as shown
in Tables 4 and 5. In Cases 2.1-2.3, the homogenized coefficients aj;(t) and dfj (t)
can be easily obtained by multiplying the factor (2 + sin(20xt)).

For simplicity, we denote u*(z,t) the finite element solution for the homogenized
heat transfer equation (9) in a coarse mesh, and U§®(z,t), U5%(z,t) the first-order
and the second-order multiscale finite element solutions, respectively.

Set

eo = u°(z,t) — u*(x,1), e1 = u(x,t) — UP (2, 1), ea = u (x,t) — US* (x, ).

We introduce some notati%ls: "
Julle = ([l 0Pde) ™ i = ( [lute 0P +Vatz 0Pdz) = el =

(1l ae) ™, and ey = ( ] ulr)

Some numerical results are shown as in Table 6.

Figs.7-9 show some numerical results for solutions u®(z,t), u*(x,t), U (x, 1),
and US%(x,t) along the diagonal of the square 0.5 in Cases 1.1-1.3, 2.1-2.3 at time
t. , which t, are as given in Cases 1.1-1.3, 2.1-2.3 .

Figs.10-15 clearly show the evolution of the relative errors of approximate so-
lutions with time ¢ in Cases 1.1-1.3, 2.1-2.3, where the horizontal axis denotes
time t, the vertical axis is the relative error, where erreOL2, errell2, erre2l.2,

lleollp2  lleallp2 lezllp2 leollyr  llexll g
erre0H1, errelH1, and erre2H1 denote Tl Talhs Turtls Tueollqr Taeo ] gr?

€ .
and IIHUS“HIIH L, respectively.
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TABLE 2. Comparison of the numbers of nodes

original equation | cell problem | homogenized equation
case 1.1 12309 684 441
case 1.2 20181 921 441
case 1.3 28257 1173 441

TABLE 3. Comparison of the numbers of elements

original equation | cell problem | homogenized equation
case 1.1 16664 912 800
case 1.2 27416 1232 800
case 1.3 38704 1576 800

TABLE 4. Homogenized coefficients aj; for three types of structures

ary atp a3 aszy
case 1.1 | 50.0 0.0 0.0 50.0
case 1.2 | 50.0 | 20.71068 | 20.71068 | 50.0
case 1.3 | 50.0 0.0 0.0 50.0

TABLE 5. Homogenized coefficients dgj for three types of structures

~0 ~0 ~0 ~0

a11 a1 a1 p)
case 1.1 | 51.37552 | —7.98636 x 10~ | —7.98636 x 10~2 | 51.37552
case 1.2 | 51.02844 20.46541 20.46541 51.02845
case 1.3 | 51.41881 | 1.97295 x 10—~ 1.97295 x 10~7 | 51.41881

Remark 3.1. Observing the numerical results in Tables 4 and 5, it is obvious
that if § > 0 is very small, dfj and aj; are very close, which are entirely consistent
with (24). ‘ ‘

Remark 3.2. Table 6 clearly shows that the first-order multiscale finite element
method has the better numerical accuracy. But neither the homogenization method
nor the second-order multiscale finite element method has good numerical accuracy
in these cases (see Cases 1.2-1,3, 2.2-2.3).

Remark 3.3 Theoretically, the first-order multiscale method yields the same
convergent order as the second-order one. Numerically, in the computation of
all kinds of physical fields for composites, when the difference between different
materials is very large, the first-order multiscale method is insufficient to describe
local fluctuation of the solution for considering problems. We need to seek the
second-order multiscale method. Numerous numerical results clearly show that
the numerical accuracy of the second-order multiscale method is better than that
of the homogenization method or the first-order multiscale method. However, for
lattice-type structures, since the solid part of the structures is made of only one
kind of material and the cell functions are very small (see Lemma 2.1 of this paper),
the numerical accuracy of the first-order multiscale method is sufficient good. The
numerical results of the second-order multiscale method may be bad because of the
numerical errors.
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TABLE 6. Comparison of computational results
leoll(0) Meill(o) le21l(0) leoll(1) el le2ll(1)
[u=21l(0) lu=21l (0 [u=21l(0) lus?lay | Mullay | Meslla
Case 1.1 | 0.039937 | 0.039845 | 0.10197 | 0.97475 | 0.11316 | 4.8086
Case 1.2 | 0.028745 | 0.028619 | 0.19844 1.0017 | 0.13893 | 6.4708
Case 1.3 | 0.029338 | 0.029285 | 0.14833 | 0.96451 | 0.12759 | 10.980
Case 2.1 | 0.039772 | 0.039685 | 0.099143 | 0.97188 | 0.10799 | 4.8241
Case 2.2 | 0.029107 | 0.028990 | 0.18847 | 1.0029 | 0.13521 | 6.0305
Case 2.3 | 0.029407 | 0.029358 | 0.14177 | 0.96259 | 0.12420 | 10.690
0.15 / \\ i 0.25 /*/ Qt\\\
' \\ 0.2 g
ot // / \‘\\ 015} ﬁ/ \\
0.05 V4 \\\ 4 0.1 A
/'4 \ 0.05 "/ \\’\ 1
0%~ \ / \Y
" : o : : :
FIGURE 7. Computational results: (a) case 1.1; (b) case 1.2.
03 /ﬁ’f:ﬁf‘: N —— :g i 0.07 «/:\*
0.2 / ,}\\ B z':i /,,/ \q.\ \
o *)f \\ 0.03F // \\\
N / A 0.02} / \\
0.05 ﬁ/j \\ 0.01 / +:0 \
(a) ' (b) ‘ ' ‘
FIGURE 8. Computational results: (a) case 1.3,; (b) case 2.1.
Conclusions

for solving the heat transfer equations in lattice-type structures.

This paper discussed the initial-boundary value problem for the heat transfer
equation in lattice-type structures. The new contribution obtained in this paper
was the determination of the convergence rate for the approximate solutions by
using the homogenization method and the multiscale asymptotic methods. We did
some numerical experiments for three types of lattice structures. The numerical
results suggested that the first-order multiscale method should be a better choice
compared with the homogenization method and the second-order multiscale method
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FIGURE 9. Computational results: (a) case 2.2,; (b) case 2.3.
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FIGURE 10. (a) case 1.1, the evolution of L? relative errors with
t;  (b) case 1.1, the evolution of H! relative errors with ¢
0.2 7
0.18
of
0.16
ol
0.14
012 4
0.1 erre2l2| | 3l erre2H1
0.08
A
0.06
0.04 :
002 012 0‘4 0‘5 0‘5 oO 0.2 0.4 0‘6 018 1
(a) (b)
FIGURE 11. (a) case 1.2, the evolution of L? relative errors with
t;  (b) case 1.2, the evolution of H! relative errors with ¢
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