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MORTAR FINITE ELEMENTS FOR COUPLING COMPRESSIBLE

AND NEARLY INCOMPRESSIBLE MATERIALS IN ELASTICITY

BISHNU P. LAMICHHANE

Abstract. We consider the coupling of compressible and nearly incompressible

materials within the framework of mortar methods. Taking into account the

locking effect, we use a suitable discretization for the nearly incompressible

material and work with a standard conforming discretization elsewhere. The

coupling of different discretization schemes in different subdomains are handled

by flexible mortar techniques. A priori error analysis is carried out for the

coupled problem, and several numerical examples are presented. Using dual

Lagrange multipliers, the Lagrange multipliers can easily be eliminated by local

static condensation.
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1. Introduction

Often coupled problems with completely different material properties in different
subdomains occur in solid mechanics. To get optimal a priori estimates, a proper
discretization scheme should be used in each subdomain. Here, we consider cou-
pling of compressible and nearly incompressible linear elastic materials with mortar
techniques. The boundary value problem of elasticity involves a critical Lamé pa-
rameter λ. For nearly incompressible materials the Lamé parameter λ is very large,
and it is well-known that working with low order finite elements with displacement
based formulation suffers from so-called locking effect yielding a poor convergence,
see [13, 18, 4]. Various approaches have been proposed to overcome this difficulty.
Among these are to apply higher-order finite elements with a standard displacement
formulation. For example, in [31], it is shown that working with the h-version finite
elements of order higher than three on a class of triangular meshes completely avoid
locking. On the other hand, in [4], it has been shown that the h-version can never
be fully free of locking in rectangular meshes no matter how higher-order finite
elements are used in the sense that optimal orders of convergence are not obtained.
The other approach is related to working with mixed methods. The linear elastic-
ity problem can be formulated as a mixed formulation in many different ways, see
[18, 13, 11, 33, 3, 1]. The general approach in these mixed formulations is to intro-
duce extra variables leading to a problem of saddle point type with a penalty term.
The essential point is to prove that the method is robust for the limiting problem,
which is the Stokes problem. Methods associated with nonconforming finite ele-
ments have also been analyzed leading to the uniform convergence in the nearly
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incompressible case, see [21, 17, 30, 15]. The central point in these approaches is
to construct an interpolation operator at each element which preserves zero diver-
gence. We point out that many different methods like the reduced integration, the
enhanced assumed strain and the mixed enhanced strain can be analyzed within
the framework of mixed formulation, see [18, 12, 14, 32, 26, 27, 29]. All these ap-
proaches have in common that the finite element approximation is robust for nearly
incompressible materials.

In order to avoid the problem of locking-effect, we consider suitable discretization
schemes for nearly incompressible materials. Introducing the pressure as an ad-
ditional unknown for the nearly incompressible case, we arrive at the problem of
coupling a saddle point problem with a positive definite one. Working exclusively
with non-matching triangulations, we use mortar techniques to realize the coupling
of different discretization schemes.

This paper is organized as follows. In the next section, we describe the boundary
value problem of linear elasticity and introduce a new formulation of the boundary
value problem in the continuous setting suitable for coupling a nearly incompressible
material with a compressible material. In Section 3, we show the stability of the
scheme and prove optimal a priori estimates. Finally in Section 4, we present some
numerical results illustrating the performance of our approach.

2. The problem of linear elasticity in the mortar framework

We consider a bounded polygonal or polyhedral domain Ω ⊂ R
d, d ∈ {2, 3}, which

is decomposed into two non-overlapping subdomains Ω1 and Ω2 with the common
interior interface Γ, Γ̄ = ∂Ω1∩∂Ω2. For simplicity, we restrict ourselves to the case
of two subdomains. However, the approach can easily be generalized to more than
two subdomains.

We assume that the subdomains Ω1 and Ω2 are occupied with different isotropic
linear elastic materials. Furthermore, the material in Ω1 is supposed to be nearly
incompressible, whereas Ω2 is occupied with a compressible material. We consider
the following linear elasticity problem of finding the displacement field u in Ω such
that

−div (C1ε(u)) = f1 in Ω1,

−div (C2ε(u)) = f2 in Ω2
(1)

with homogeneous Dirichlet boundary conditions on ∂Ω. Here, C1 and C2 are con-
stant and symmetric fourth-order elasticity tensors corresponding to different ma-
terials in Ω1 and Ω2, respectively. Denoting the identity tensor by 1, their actions
on the strain tensor are defined as

C1ε(u) = λ1(divu)1 + 2µ1 ε(u), and C2ε(u) = λ2(divu)1 + 2µ2 ε(u).

Moreover, the plane strain is assumed in the two-dimensional case. We define
the global Hooke tensor C which takes the value C1 on Ω1 and C2 on Ω2, and set
u1 := u|Ω1

and u2 := u|Ω2
. We assume that f i ∈ (L2(Ωi))

d, i = 1, 2. The interface
conditions on Γ are given by

[u] := u1 − u2 = 0 on Γ,(2)

[u]n := (C1ε(u1))n− (C2ε(u2))n = 0 on Γ,

where n is the outer normal to Γ from Ω1.



COUPLING COMPRESSIBLE AND NEARLY INCOMPRESSIBLE MATERIALS 179

In order to write the variational formulation of the linear elasticity problem (1), we
introduce H1(Ωk) := (H1(Ωk))d for k = 1, 2 and define the unconstrained product
space

X :=
2
∏

k=1

{v ∈ H1(Ωk)| v|∂Ω∩∂Ωk
= 0}.

The interpolation space H
1/2
00 (Γ) is defined by H

1/2
00 (Γ) :=

(

H1
00(Γ)

)d
, and its

dual space will be denoted by H−1/2(Γ). The weak matching condition on the
interface is imposed by introducing the vector-valued Lagrange multiplier space
M := H−1/2(Γ) on the interface Γ. Here, we consider the positive definite varia-
tional problem on the constrained finite element space which is given by means of
the global Lagrange multiplier space M

V := {v ∈ X |

∫

Γ

[v] ·ψ dσ = 0, ψ ∈ M}.(3)

Then, the variational problem of linear elasticity in the mortar formulation can be
written as: given l ∈ (L2(Ω))d find u ∈ V such that

a(u,v) = l(v), v ∈ V,(4)

where the bilinear form a(·, ·) and the linear form l(·) are defined by

a(u,v) : =

∫

Ω1

C1ε(u) : ε(v) dx +

∫

Ω2

C2ε(u) : ε(v) dx, and

l(v) : =

∫

Ω1

f1 · v dx +

∫

Ω2

f2 · v dx,

respectively. Taking into account the definition of Cε(u), we can write the varia-
tional formulation (4) as

2
∑

i=1

2µi

∫

Ωi

ε(u) : ε(v) dx + λi

∫

Ωi

divu divv dx =

2
∑

i=1

∫

Ωi

f i · v dx.(5)

From the assumption on C, we find that a(·, ·) is symmetric, continuous and V-
elliptic, and hence the problem (5) has a unique solution u ∈ V. Since the material
occupying Ω1 is supposed to be nearly incompressible λ1 is very large, and hence
the divergence of the exact solution divu1 is very small. This constraint for the low
order approximation based on displacement approach leads to the locking. In the
next paragraph, we will relax this constraint by introducing an additional variable
for the pressure.

There are many efficient numerical approaches to handle a nearly incompressible
material, see [32, 18, 11, 29]. In general, they are more complex than the standard
displacement formulation. Our goal is to combine the standard formulation with a
suitable scheme for a nearly incompressible material without losing the simplicity
and optimality of the approach. For that purpose, we want to get a variational
formulation which is uniformly well-posed in terms of λ1. Now we introduce an
additional unknown variable p := λ1divu in Ω1 leading to a mixed formulation.
Then the variational problem (5) is given by: find (u, p) ∈ V × L2(Ω1) such that

(6)
ã(u,v) + b̃(v, p) = l(v), v ∈ V,

b̃(u, q) − 1
λ1

c̃(p, q) = 0, q ∈ L2(Ω1),
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where

ã(u,v) :=
2
∑

i=1

2µi

∫

Ωi

ε(u) : ε(v) dx + λ2

∫

Ω2

divu divv dx,

b̃(v, q) :=

∫

Ω1

divv q dx and c̃(p, q) :=

∫

Ω1

p q dx.

As usual, for v ∈ Hs(Ω) (H0(Ω) ≡ L2(Ω)), s ∈ R, ‖v‖s,Ω denotes the standard
norm in Hs(Ω), and we use the same notation for norms on Hs(Ω) and Hs(Ω),
whereas a broken norm is used on X defined as

‖v‖1 := ‖v‖1,Ω1
+ ‖v‖1,Ω2

.

We remark that in contrast to the setting of the Stokes problem with homogeneous
boundary condition, where p ∈ L2

0(Ω1), here, the pressure p ∈ L2(Ω1). The essential
points for the existence and the uniqueness of the solution of a saddle point problem
are ellipticity, continuity and a suitable inf-sup condition. Furthermore, for the
saddle point problem with penalty, it is necessary that the bilinear form c̃(, ·, )
should be positive semi-definite and bounded, see [11]. The bilinear form ã(·, ·) is
symmetric, continuous and V-elliptic uniformly with respect to λ1. It is also clear
that the bilinear form c̃(·, ·) is continuous, symmetric and positive definite. The

continuity of b̃(·, ·) follows from its definition.

Lemma 1. The bilinear form b̃(·, ·) on V × L2(Ω1) satisfies an inf-sup condition
uniformly with respect to λ1.

Proof. The proof is based on applying the argument due to Boland and Nicolaides
[10]. Given q ∈ L2(Ω1), we split q = q0+qc, where

∫

Ω1
q0 dx = 0 and qc is a constant

such that
∫

Ω1
q dx =

∫

Ω1
qc dx = |Ω1|qc. Thus ‖q‖2

0,Ω1
= ‖q0‖2

0,Ω1
+ ‖qc‖2

0,Ω1
. Since

q0 ∈ L2
0(Ω1), there exists a v0 ∈ H1

0(Ω1) with ‖v0‖1,Ω1
≤ C‖q0‖0,Ω1

such that

‖q0‖
2
0,Ω1

= b̃(v0, q0), see [23, Corollary 2.4].

Hence ‖q‖2
0,Ω1

= b̃(v0, q0) + q2
c |Ω1|. Now, we define a piecewise constant function f̃

in Ω with

f̃(x) :=

{

qc if x ∈ Ω1,

− qc|Ω1|
|Ω2|

if x ∈ Ω2

so that f̃ ∈ L2
0(Ω), and hence the divergence equation

∇ · w = f̃ in Ω(7)

has a solution vc ∈ H1
0(Ω) with ‖vc‖1 ≤ C‖f̃‖0, see [2, 22]. Thus

‖q‖2
0,Ω1

= b̃(v0, q0) + q2
c |Ω1| = b̃(v0, q0) +

∫

Ω1

∇ · vcqc dx = b̃(v0, q0) + b̃(vc, qc).

Since v0 ∈ H1
0(Ω1), we can extend v0 trivially on Ω by defining ṽ0 := v0 in Ω1 and

ṽ0 := 0 in Ω2, and find that ṽ0 ∈ H1
0(Ω). Hence b̃(v0, q0) = b̃(ṽ0, q0). On the other

hand,

b̃(ṽ0 + vc, q0 + qc) = b̃(ṽ0, q0) + b̃(vc, qc) + b̃(ṽ0, qc) + b̃(vc, q0).

Noting that b̃(ṽ0, qc) = 0, and b̃(vc, q0) = 0, we get

‖q‖2
0,Ω1

= b̃(ṽ0 + vc, q0 + qc).
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Finally, taking into account that ṽ0 ∈ H1
0(Ω) we get vc + ṽ0 =: v ∈ H1

0(Ω) with

‖v‖1 ≤ ‖vc + ṽ0‖1 ≤ C(‖f̃‖0 + ‖q0‖0,Ω1
), which completes the proof. �

An immediate consequence of the previous lemma is the following theorem.

Theorem 2. The problem 6 has a unique solution and there exists a constant C

independent of λ1 such that

‖u‖1 + ‖p‖0,Ω1
≤ C‖l‖0.

3. Mortar discretizations and a priori estimates

In this section, we briefly review mortar finite elements and prove optimal a pri-
ori estimates for the discretization errors. Let T1 and T2 be independent shape
regular triangulations on Ω1 and Ω2 with mesh-sizes bounded by h1 and h2, respec-
tively. We define the unconstrained discrete finite element space for the displace-
ment Xh := X1 × X2, where Xk := Xd

k , Xk being the conforming finite element
space of order pk > 1 in Ωk. We recall that no interface condition is imposed on
Xh, and the elements in Xh do not have to satisfy a continuity condition at the
interface. The pressure space L2(Ω1) is discretized by some finite elements and will
be denoted by Rh ⊂ L2(Ω1). The efficiency and optimality of the mortar method
depends on the choice of a discrete Lagrange multiplier space, which should satisfy
assumptions stated in [28, Assumptions 2–4]. Without loss of generality, the La-
grange multiplier space is based on a “d− 1”-dimensional mesh TΓ2

inherited from
T2, and its basis functions are defined locally having the same support as finite
element basis functions associated with the interior nodes of the slave side.

We observe that since the normal has jumps if Γ has corners although u ∈ Hs+1(Ω1),
ε(u)n is, in general, not an element in Hs−1/2(Γ) when s > 1

2 . Therefore, we de-
compose Γ into a finite number of subsets γi, 1 ≤ i ≤ N, such that each γi entirely
lies in a “d − 1”-dimensional hyperplane, and

Γ̄ =

N
⋃

i=1

γ̄i,

where γk ∩ γl = ∅, and γ̄k ∪ γ̄l does not entirely lie in a “d − 1”-dimensional
hyperplane, 1 ≤ k 6= l ≤ N . Denoting the discrete Lagrange multiplier spaces
on γi by Mi, 1 ≤ i ≤ N , we define Mi := Md

i , and our global discrete Lagrange
multiplier space is then given as the product space

Mh :=

N
∏

i=1

Mi.

The finite element nodes in ∂γi on the slave side, 1 ≤ i ≤ N , are the crosspoints and
they do not carry any degree of freedom for the Lagrange multipliers. We assume
that Wm

i and Ws
i are the trace spaces of X1 and X2 restricted to γi, respectively,

satisfying homogeneous boundary conditions on ∂γi, and we set

Wm
h :=

N
∏

i=1

Wm
i , Ws

h :=

N
∏

i=1

Ws
i .
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As in the continuous setting, we consider the positive-definite variational problem
on the constrained finite element space Vh which is given by means of the discrete
global Lagrange multiplier space Mh

Vh := {vh ∈ Xh | b(vh,ψh) = 0, ψh ∈ Mh},(8)

where b(vh,ψh) :=
∑N

i=1

∫

γi
[vh] ·ψh dσ. We remark that the elements of the space

Vh satisfy a weak continuity condition on the skeleton Γ in terms of the discrete
Lagrange multiplier space Mh. However, Vh is, in general, not a subspace of H1

0(Ω).
Replacing the space V × L2(Ω1) by our discrete space Vh × Rh in (6), we obtain
our discrete variational problem: find (uh, ph) ∈ Vh × Rh such that

ã(uh,v) + b̃(v, ph) = l(v), v ∈ Vh,

b̃(uh, q) − 1
λ1

c̃(ph, q) = 0, q ∈ Rh.
(9)

To establish a priori estimates for the discretization errors, we consider the saddle
point formulation (9) of the elasticity problem and apply the theory of mixed finite

elements. The continuity of the bilinear form ã(·, ·) on Vh×Vh, of b̃(·, ·) on Vh×Rh

and of c̃(·, ·) on Rh ×Rh is straightforward. Moreover, the continuity constants are
independent of λ1. Furthermore, we need the ellipticity of the bilinear form ã(·, ·)

on Vh×Vh, and a uniform inf-sup condition for the bilinear form b̃(·, ·) on Vh×Rh.

3.1. Uniform inf-sup condition and ellipticity. The following two assump-
tions will be crucial to prove the inf-sup condition in the discrete setting and are
supposed to hold in the following.

Assumption 3. 3(i) For a constant qc ∈ R, there exist functions vs
h ∈ Ws

i ,v
m
h ∈

Wm
i for some i ∈ {1, · · · , N} with ‖vs

h‖H
1/2

00
(γi)

≤ C|qc|, ‖vm
h ‖

H
1/2

00
(γi)

≤

C|qc| so that
∫

γi

vs
h · n dσ = qc, and

∫

γi

(vs
h − vm

h ) ·ψ dσ = 0, ψ ∈ Mi.

3(ii) For any q ∈ Rh ∩L2
0(Ω1), there exists a constant C > 0 independent of the

meshsize such that

sup
vh∈X1∩H1

0
(Ω1)

b̃(vh, q)

‖vh‖1,Ω1

≥ C‖q‖0,Ω1
.

Assumption 3 (i) is readily met if the triangulation is fine enough and the discrete
Lagrange multiplier space satisfies the stability assumption [28, Assumption 2], and
Assumption 3 (ii) tells that the spaces X1 and Rh should be chosen carefully so that
they form a stable pair for the Stokes problem. The following lemma provides a
necessary tool to prove inf-sup condition.

Lemma 4. For a constant qc ∈ R, there exists a vh ∈ Vh with ‖vh‖1 ≤ C|qc| such
that

∫

Ω1

∇ · vh dx = qc.

Proof. Because of Assumption 3 (i), we can choose a function vs
h ∈ Ws

i with

‖vs
h‖H

1/2

00
(γi)

≤ C|qc| such that

∫

γi

vs
h · n dσ = qc,

and define a function vm
h ∈ Wm

i with ‖vm
h ‖

H
1/2

00
(γi)

≤ C|qc| so that
∫

γi
(vs

h −

vm
h ) · ψ dσ = 0, ψ ∈ Mi. Since vs

h,vm
h ∈ H

1/2
00 (γi) both vs

h and vm
h can trivially
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be extended to functions in Ws
h and Wm

h , respectively, still denoted by vs
h and

vm
h . Using the discrete harmonic extension, we obtain functions wm

h ∈ X1 and
ws

h ∈ X2 so that ws
h|Γ

= vs
h and wm

h |Γ
= vm

h . Defining a function vh ∈ Xh with

vh|Ω1
= wm

h , and vh|Ω2
= ws

h, we find that vh ∈ Vh, and from the well known

property of harmonic extension we have ‖vh‖1 ≤ C|qc|. Finally, the result follows
from

∫

Ω1

∇ · vh dx =

∫

Γ

vs
h · n dσ =

∫

γi

vs
h · n dσ = qc.

�

Theorem 5. For any qh ∈ Rh, there exists a constant C independent of λ1 and
the meshsize such that

sup
vh∈Vh

b̃(vh, qh)

‖vh‖1
≥ C‖qh‖0,Ω1

.

Proof. As in the continuous case, we resort to the argument due to Boland and
Nicolaides [10] to prove the inf-sup condition. We take qh ∈ Rh and split qh =
q0h + qch, where

∫

Ω1

q0h dx = 0 and qch is the L2-projection of qh onto R such that
∫

Ω1
qh dx =

∫

Ω1
qch dx. Since q0h ∈ Rh ∩ L2

0(Ω1), from Assumption 3 (ii), we get a

v0h ∈ X1 ∩ H1
0(Ω1) with ‖v0h‖1,Ω1

≤ C‖q0h‖0,Ω1
so that ‖q0h‖2

0,Ω1
= b̃(v0h, q0h).

Hence

‖qh‖
2
0,Ω1

= b̃(v0h, q0h) + q2
ch|Ω1|.(10)

From Lemma 4, we get a vch ∈ Vh such that
∫

Ω1
∇ · vch qch dx = q2

ch|Ω1|. Using

this in (10), we get

‖qh‖
2
0,Ω1

= b̃(v0h, q0h) + b̃(vch, qch)

The rest of the proof follows exactly as in continuous setting. �

Remark 6. Working with bilinear or trilinear finite elements and piecewise con-
stant pressure (Q1P0) in the subdomain with the nearly incompressible material, it
is well known that the uniform inf-sup condition does not hold, and one can ob-
serve some spurious pressure modes. Since Assumption 3 (ii) does not hold, the
theoretical analysis does not cover this case. However, as analyzed in [23] for a
problem posed in a single domain with homogeneous Dirichlet boundary condition,
the spurious pressure modes do not substantially affect the displacement. Further-
more, through the numerical results we will show that the Q1P0 formulation can be
successfully used in a subdomain with nearly incompressible material.

Now we turn our attention to the ellipticity of the bilinear form ã(·, ·) on the space
Vh. If ∂Ωk ∩ ∂Ω has a non-zero measure for k = 1, 2, we can apply Korn’s and
Poincare’s inequalities to each subdomain and obtain the desired results

ã(v,v) =

2
∑

k=1

ãk(v,v) ≥ C

2
∑

k=1

‖v‖2
1,Ωk

= C‖v‖2
1, v ∈ Xh,

where ãk(·, ·) stands for the restriction of ã(·, ·) to the subdomain Ωk. Thus ã(·, ·) is
elliptic on Xh ×Xh. Unfortunately, there are many interesting situations where we
cannot satisfy this assumption. However, it is sufficient to have ellipticity of ã(·, ·) in
Vh ×Vh for the problem (9) to be uniquely solvable. Since the bilinear form ã(·, ·)
does not involve λ1 the ellipticity can been shown exactly as in [34, 16, 24] uniformly
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with respect to λ1. It is shown in [16, 24] that the ellipticity constant is independent
of the number and the size of different subdomains of the decomposition.

Remark 7. Using the Stokes equation in the subdomain Ω1 instead of equation
of elasticity we arrive at the Stokes flow coupled with a linear elastic body. The
coupled problem can be written as: given l ∈ L2(Ω) find (uh, ph) ∈ Vh × Rh such
that
∫

Ω2

C2ε(uh) : ε(vh) dx +µ1

∫

Ω1

∇uh : ∇vh dx +

∫

Ω1

divvh ph dx = l(vh), vh ∈ Vh

∫

Ω1

divuh qh dx = 0, qh ∈ Rh,

where uh restricted to the subdomain Ω2 represents the displacement, uh restricted
to the subdomain Ω1 represents the velocity, and µ1 is the kinematic viscosity for
the incompressible fluid. The mathematical analysis of mortar finite elements for
the Stokes problem can be found in [6, 7]. The mortar finite element method for
mixed elasticity problems is analyzed in [5].

3.2. A priori estimates. The immediate consequence of the above discussion is
the well-posedness of the discrete problem (9). From the theory of saddle point
problem, see, e.g., [18], we have

Lemma 8. The discrete problem (9) has exactly one solution (uh, ph) ∈ Vh × Rh

which is uniformly stable with respect to the data f i, i = 1, 2, and there exists a
constant C independent of Lamé parameter λ1 such that

‖uh‖1 + ‖ph‖0,Ω1
≤ C‖f‖0.

The convergence theory is provided by an abstract result about the approximation
of saddle point problems by nonconforming methods, see [20, 6, 5].

Lemma 9. Assume that (u, p) and (uh, ph) be the solutions of problems (6) and
(9), respectively. Then, we have the following error estimate uniform with respect
to λ1:

(11) ‖u− uh‖1 + ‖p− ph‖0,Ω1

≤ C

(

inf
vh∈Vh

‖u−vh‖1+ inf
qh∈Rh

‖p−qh‖0,Ω1
+ sup

vh∈Vh\{0}

|ã(u,vh) + b̃(vh, p) − l(vh)|

‖vh‖1

)

.

We note that the first two terms in the right hand side of (11) denote the best
approximation error and the last one is the consistency error.

Lemma 10. The following identity holds for the consistency error in Lemma 9

sup
vh∈Vh\{0}

|ã(u,vh) + b̃(vh, p) − l(vh)|

‖vh‖1
= sup

vh∈Vh\{0}

|
∫

Γ
C2ε(u2)n · [vh] dσ|

‖vh‖1
,

where the integral
∫

Γ C2ε(u2)n · [vh] dσ is to be understood as a duality pairing

between H− 1

2 (Γ) and H
1

2 (Γ).
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Proof.

ã(u,vh) + b̃(vh, p) − l(vh) =

2
∑

k=1

∫

Ωk

Ckε(u) : ε(vh) dx

+

∫

Ω1

(p − λ1∇ · u)∇ · vh dx − l(vh)

=

∫

Γ

C2ε(u2)n · [vh] dσ,

where in the last step we have used the second equation of (2), and u ∈ H1
0(Ω). �

The a priori error estimate is obtained by combining the approximation of the
saddle point problem in our nonconforming situation with the best approximation
property of Vh, Rh and Mh.

Theorem 11. Assume that u ∈ Π2
k=1H

rk+1(Ωk), p ∈ Hr1(Ω1), and χ := C2ε(u2)n ∈

ΠN
i=1H

r2−
1

2 (γi) with rk > 1
2 , k = 1, 2. Moreover, assume that

inf
qh∈Rh

‖q − qh‖0,Ω1
≤ Ch

p1

1 ‖q‖p1,Ω1
, q ∈ Hp1(Ω1).

Then the following a priori error estimate holds for the discretization error

‖u− uh‖1 + ‖p− ph‖0,Ω1
≤C

(

2
∑

k=1

htk

k ‖u‖tk+1,Ωk
+ ht1

1 ‖p‖t1,Ω1

)

,

where tk := min(rk, pk), k = 1, 2.

Proof. The best approximation property of Vh is quite standard and can be found,
e.g., in [8, 9]. Hence using Lemma 9 it is sufficient to consider the consistency error.
The definition of space Vh, the best approximation property of Mh and the trace
theorem yield for ψh ∈ Mh

∫

Γ

χ · [vh] dσ =

∫

Γ

(C2ε(u2)n−ψh) · [vh] dσ

≤
N
∑

i=1

inf
ψh∈Mi

‖C2ε(u2)n −ψh‖(H1/2(γi))′‖[vh]‖1/2,γi

≤ Cht2
2

N
∑

i=1

‖C2ε(u2)n‖t2−1/2,γi
‖vh‖1

≤ Cht2
2 ‖u‖t2+1,Ω2

‖vh‖1.

�

The assumption of Theorem 11 requires a strong assumption on the regularity
of the solution u ∈ Π2

k=1H
rk+1(Ωk) with rk > 1

2 , k = 1, 2. In the following,
invoking a result about the regularity of the co-normal derivative on Lipschitz
domain [19], we prove an optimal estimate under a weaker regularity assumption
such that 0 < rk < 1

2 . We note that we have to exclude the case rk = 1
2 as the

result in [19] does not cover this case.
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Theorem 12. Assume that u ∈ Π2
k=1H

rk+1(Ωk), p ∈ Hr1(Ω1) with 0 < rk < 1
2 ,

k = 1, 2. If

inf
qh∈Rh

‖q − qh‖0,Ω1
≤ Chr1

1 ‖q‖r1,Ω1
, q ∈ Hr1(Ω1),

the following a priori error estimate holds for the discretization error

‖u− uh‖1 + ‖p − ph‖0,Ω1
≤ C

(

2
∑

k=1

hrk

k ‖u‖rk+1,Ωk
+ hr1

1 ‖p‖r1,Ω1
+ hr2

2 ‖f2‖0,Ω2

)

.

Proof. As f2 ∈ (L2(Ω2))
d and u|Ω2

∈ Hr2(Ω2), Lemma 4.3 of [19] yields χ|Γ ∈

Hr2−
1

2 (Γ) with

‖χ‖r2−
1

2
,Γ ≤ C (‖u‖1+r2,Ω2

+ ‖f2‖0,Ω2
) .

Let ψh ∈ Mh. Proceeding exactly as in Theorem 11 and using the previous result,
we obtain

∫

Γ

χ · [vh] dσ ≤ Chr2

2

N
∑

i=1

‖C2ε(u2)n‖r2−1/2,γi
‖vh‖1

≤ Chr2

2 (‖u‖1+r2,Ω2
+ ‖f2‖0,Ω2

) ‖vh‖1.

We note that the inegral
∫

Γ χ · [vh] dσ is to be understood as a duality pairing

between Hr2−
1

2 (Γ) and H
1

2
−r2(Γ). �

Here we have assumed f2 ∈ (L2(Ω2))
d to use the result of [19]. For a loading

function f2 with low regularity and for the case with some rk = 1
2 , results similar

to those of [19] are obtained in [25].

Remark 13. If Ω1 is on the slave side of the interface Γ, then we have to estimate
the term

N
∑

i=1

inf
ψh∈Mi

‖C1ε(u1)n−ψh‖(H1/2(γi))′ ,

where now the Lagrange multiplier spaces Mi are defined on γi, 1 ≤ i ≤ N , with the
mesh inherited from T1. In this case, assuming r2, r1 > 1

2 , we can use the second
equation of (2) to obtain

∫

Γ

χ · [vh] dσ ≤
N
∑

i=1

inf
ψ

h
∈Mi

‖C1ε(u1)n −ψh‖(H1/2(γi))′‖[vh]‖1/2,γi

=

N
∑

i=1

inf
ψh∈Mi

‖C2ε(u2)n −ψh‖(H1/2(γi))′‖[vh]‖1/2,γi

≤ Cht1
1

N
∑

i=1

‖C2ε(u2)n‖t1−1/2,γi
‖vh‖1

≤ Cht1
1 ‖u‖t1+1,Ω2

‖vh‖1.
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4. Numerical results

In this section, we investigate the computational performance of our approach
through some numerical examples. In particular, we compare the results from
the standard approach and mortar approach for different test examples. In the
following, Q1 or Q2 denotes that standard bilinear or quadratic serendipity ele-
ments are used in the whole domain Ω, whereas Q1-Q1P0, Q2-Q2P0 or Q2-Q2P1

denotes that Q1P0, Q2P0 or Q2P1 formulation is used in subdomains with a nearly
incompressible material (ν → 0.5) in combination with the standard Q1 or Q2 for-
mulation in subdomains with smaller ν. We note that the mathematical theory
presented in the previous sections do not cover the case of Q1P0 discretizations as
these discretizations do not satisfy a local inf-sup condition.

In all our examples, we work with non-matching triangulations and employ dual La-
grange multiplier spaces introduced in [34] to realize the weak matching condition.
Construction of dual Lagrange multiplier spaces for higher order finite elements can
be found in [28]. For the pressure space, piecewise constant pressure is used for
Q1P0 and Q2P0, whereas discontinuous linear pressure is used for Q2P1 case. Fur-
thermore, we do not specify the measurement units, and they should be understood
with proper scaling.

Example 1: Cook’s membrane problem. In this example, we consider a struc-
ture occupying a region Ω := conv {(0, 0), (48, 44), (48, 60), (0, 44)}, where conv ξ is
the convex hull of the set ξ. The left boundary of Ω is fixed and an in-plane shearing
load of 100N is applied along the positive y-direction on the right boundary. Here,
the domain Ω is decomposed into two subdomains Ω1 and Ω2 with

Ω2 := conv{(12, 20.25), (36, 38.75), (36, 50.25), (12, 38.75)},

and Ω1 := Ω\Ω̄2. The decomposition of domain Ω and the initial triangulation are
given in Figure 1. The material parameters are taken to be E1 = 250, E2 = 80,

T

Figure 1: Cook’s membrane decomposed into two subdomains

ν1 = 0.49999, and ν2 = 0.35 to get a nearly incompressible response in Ω1. We
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recall that Lamé parameters λ and µ are related to Young’s modulus E and Poisson
ratio ν by

λ =
Eν

(1 + ν)(1 − 2ν)
, and µ =

E

2(1 + ν)
,

and note that λ → ∞ corresponds to ν → 0.5. In Figure 2, we have shown the
absolute error in the vertical tip displacement of the membrane at point T . We
have used a reference solution in a fine mesh computed by using Q2P1 formulation
in the whole domain Ω to obtain the error. We see that uniform convergence is
obtained if we work with Q1-Q1P0, Q2-Q2P0, Q2-Q2P1 or Q2, see Figure 2. In
this problem, we see that Q1-Q1P0 and Q2 elements work as good as Q2-Q2P0 and
Q2-Q2P1. To show the influence of the choice of the master and the slave side, we
have given the plot of the absolute error in the vertical tip displacement at the top
right corner of the membrane in the left and right pictures of Figure 2 for different
choices of master and slave sides. Comparing both of these pictures, we can see
that there is not any essential difference between choosing Ω1 or Ω2 as the slave
side. However, since the Lagrange multiplier space Mh is based on a coarser mesh
if Ω2 is on the slave side, we see some influence in the first step.

0

1

2

3

4

5

6

 

 

Q
1

Q
2

Q
1
−Q

1
P

0

Q
2
−Q

2
P

0

Q
2
−Q

2
P

1

0

1

2

3

4

5

6

 

 

Q
1

Q
2

Q
1
−Q

1
P

0

Q
2
−Q

2
P

0

Q
2
−Q

2
P

1

Figure 2: Absolute error in the vertical tip displacement at the top right corner
versus number of elements (Ω1 master, Ω2 slave) (left) and (Ω2 master, Ω1 slave)
(right), Ω1 nearly incompressible, Example 1

In a next step, we investigate the situation with the nearly incompressible material
in Ω2 so that the material parameters are E1 = 80, E2 = 250, ν1 = 0.35, and ν2 =
0.49999. As before we also want to see the influence of the choice of the master and
the slave side. The vertical tip displacement at the top right corner of the membrane
for different levels of refinement are shown in the left and the right pictures of Figure
3 for different choices of master and slave sides. The standard approach in both
subdomains leads to locking, whereas we obtain a good convergence behavior if a
mixed formulation is used in Ω2. As before, we do not see any influence of the
choice of the master and slave side when we refine the mesh.

Example 2: Comparison of errors in the L2- and H1-norms. In this exam-
ple, a two-dimensional region Ω := (−1, 1) × (−1, 1) is decomposed into four non-
overlapping subdomains defined by Ω1 := (−1, 0) × (−1, 0), Ω2 := (0, 1) × (−1, 0),
Ω3 := (−1, 0) × (0, 1) and Ω4 := (0, 1) × (0, 1). The problem for this example is
taken from [15] with a slight modification to enforce that the jump of the flux across
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Figure 3: Absolute error in the vertical tip displacement at the top right corner
versus number of elements (Ω1 master, Ω2 slave) (left), and (Ω2 master, Ω1 slave)
(right), Example 1, Ω2 nearly incompressible

the interface Γ is zero. Here, the exact solution u = (u1, u2) is

u1(x, y) :=
sin (2 π y) (−1 + cos (2 π x)) (2 + 2 ν)

E

+xy sin (π x) sin (π y)
(1 + ν) (1 − 2 ν)

1 − ν − 2 ν2 + Eν
,

u2(x, y) :=
sin (2 π x) (1 − cos (2 π y)) (2 + 2 ν)

E

+xy sin (π x) sin (π y)
(1 + ν) (1 − 2 ν)

1 − ν − 2 ν2 + Eν
,

where ν = 0.3, E = 25 in Ω1 and Ω4, and ν = 0.49999, E = 250 in Ω2 and Ω3 so
that a nearly incompressible response is obtained in Ω2 and Ω3. In this example,
the right hand side and the Dirichlet boundary conditions are computed by using
the exact solution. We have given the decomposition of the domain and the initial
triangulation in the left picture of Figure 4, and the error plot versus number of
degrees of freedom for different levels of refinement for the L2 and H1-norms are
given in the middle and the right pictures, respectively. From Figure 4, we can see
that the optimality can be obtained by using Q1P0 and Q2P1-approaches for the
nearly incompressible material, whereas the standard Q1-approach locks. Further-
more, we can observe the sub-optimal behavior for Q2P0 and Q2-discretizations.
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Figure 4: Decomposition of the domain and initial triangulation (left), error plot
versus number degrees of freedom in L2-norm (middle) and error plot versus number
of degrees of freedom in H1-norm (right), Example 2
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Example 3: Three-dimensional I-beam. In this numerical test, we consider the
coupling of compressible and nearly incompressible elasticity in three-dimensional
elasticity. The computational domain Ω, which is an I-beam, is decomposed into
three subdomains Ω1, Ω2 and Ω3 with Ω1 := (0, 50)×(0, 10)×(0, 2), Ω2 := (0, 50)×
(3, 7) × (2, 11) and Ω3 := (0, 50) × (0, 10) × (11, 13). We impose zero Dirichlet
boundary condition on ΓD, where ΓD is a part of the boundary of Ω with x = 0
and x = 50 so that the left and the right sides of each subdomain are fixed. And a
constant vertical force is applied on a small part of the top boundary (z = 13) so
that σ(u)n = gN on ΓN with ΓN := ∂Ω\ΓD. The function gN = (g1, g2, g3) on ΓN

is given as g1 = g2 = 0, and

g3 =

{

−20.35 if 22 ≤ x ≤ 28 and z = 13

0 otherwise
.

The material parameters are E1 = 250, ν1 = 0.3, E2 = 300, ν2 = 0.4, and E3 = 350,
ν3 = 0.49999. We have shown the setting of the problem in the left picture of Figure
5, and the resulting deformation of the structure is shown in the right.

x

z
y

0 50

0
3

7
10

0
2

13
11

Ω1 compressible

Ω2 compressible

Ω3 nearly incompressible

Figure 5: Left: I-beam decomposed into three subdomains, Right: the distorted
mesh

In Figure 6, we have shown the error in the vertical displacement along the line
y = 0, z = 13 versus x-coordinates. The error is obtained by using a reference
solution computed in a fine mesh with Q2P1 formulation in the whole domain Ω.
As can be seen from this figure, the standard approaches show performance worse
than a coupled approach due to the locking effect. In the case of coupled approach,
the mixed formulation is used only in subdomain Ω3. The vertical displacements
from Q2, Q2-Q2P1 and Q2-Q2P0-approaches are computed by using a one-level
coarser mesh than those from Q1-approach. We can see that numerical solutions
from the coupled approach with Q2P0 and Q2P1 discretizations are almost the
same.
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[20] N. Débit and Y. Maday. The coupling of spectral and finite element methods for the approxi-
mation of the Stokes problem. In Proceedings of the 8th Joint France-Italy-USSR Symposium

of Computational Mathematics and Applications, pages 139–163, Pavia, 1987.
[21] R.S. Falk. Nonconforming finite element methods for the equations of linear elasticity. Math-

ematics of Computation, 57:529–550, 1991.
[22] G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-Stokes Equations,

Volume I, volume 38 of Springer Tracts in Natural Philosophy. Springer, first revised edition,
1997.

[23] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-
Verlag, Berlin, 1986.

[24] P. Hauret and P. Le Tallec. Stabilized discontinuous mortar formulation for elastostatics and
elastodynamics problems - Part I: formulation and analysis. CMAP Internal Report 553,
2004.

[25] Q. Hu. Generalized normal derivatives and their applications in DDMs with nonmatching
grids and DG method. Numerical Mathematics: Theory, Methods and Applications, 1:383–
409, 2008.

[26] E.P. Kasper and R.L. Taylor. A mixed-enhanced strain method. Part I: geometrically linear
problems. Computers and Structures, 75:237–250, 2000.

[27] E.P. Kasper and R.L. Taylor. A mixed-enhanced strain method. Part II: geometrically non-
linear problems. Computers and Structures, 75:251–260, 2000.

[28] B.P. Lamichhane. Higher Order Mortar Finite Elements with Dual Lagrange Multiplier

Spaces and Applications. PhD thesis, University of Stuttgart, 2006.
[29] B.P. Lamichhane, B.D. Reddy, and B.I. Wohlmuth. Convergence in the incompressible limit

of finite element approximations based on the Hu-Washizu formulation. Numerische Mathe-

matik, 104:151–175, 2006.
[30] C.-O. Lee, J. Lee, and D. Sheen. A locking-free nonconforming finite element method for

planar linear elasticity. Advances in Computational Mathematics, 19:277–291, 2003.
[31] L.R. Scott and M. Vogelius. Norm estimates for a maximal right inverse of the divergence

operator in spaces of piecewise polynomials. Mathematical Modelling and Numerical Analysis,
19:111–143, 1985.

[32] J.C. Simo and M.S. Rifai. A class of assumed strain method and the methods of incompatible
modes. International Journal for Numerical Methods in Engineering, 29:1595–1638, 1990.

[33] C. Wieners. Robust multigrid methods for nearly incompressible linear elasticity. Computing,
64:289–306, 2000.

[34] B.I. Wohlmuth. Discretization Methods and Iterative Solvers Based on Domain Decomposi-

tion, volume 17 of LNCS. Springer Heidelberg, 2001.

Centre for Mathematics and its Applications, Mathematical Sciences Institute, Australian Na-
tional University, ACT 0200, Canberra

E-mail : Bishnu.Lamichhane@maths.anu.edu.au


