
INTERNATIONAL JOURNAL OF c© 2009 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 6, Number 1, Pages 161–176

NUMERICAL MODELING OF A DUAL VARIATIONAL
INEQUALITY OF UNILATERAL CONTACT PROBLEMS USING

THE MIXED FINITE ELEMENT METHOD

GUANGHUI WANG AND XIAOZHONG YANG

Abstract. We study the dual mixed finite element approximation of unilateral

contact problems. Based on the dual mixed variational formulation with three

unknowns (stress, displacement and the displacement on the contact bound-

ary), the a priori error estimates have been established for both conforming

and nonconforming finite element approximations. A Uzawa type iterative al-

gorithm is developed to solve the resulting linear system. Numerical example

shows good performance of the method.
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1. Introduction

While contact problems are being solved and many finite element programs offer
contact analysis capabilities for production and research, efforts to obtain more
effective solutions are still made (cf. [2]). One reason is that many different kinds
of contact problems can involve large relative motion, frictional forces, and static
or dynamic condition. Another reason is that contact solution procedures only stay
in research and easy-to-use finite element schemes for contact problems are still
unavailable in applications.

Developing efficient computing tools for the numerical simulation of contact
problem with unilateral Signorini boundary conditions is of a permanent grow-
ing interest in many physical areas (cf. [2, 3, 4, 15, 16, 18]). The particular feature
of the unilateral problems is that the mathematical variational statement leads
to variational inequalities set on closed convex functional cones. The modeling of
the non-penetration condition in the discrete finite element level is of crucial impor-
tance. This condition may be imposed on the displacement and expressed in a weak
sense. The way that enforced depends on the well-posedness of the discrete inequal-
ities and the accuracy of the approximation algorithm. This point is addressed in
many published papers, especially for Lagrangian finite element discretizations (cf.
[18, 16, 17, 3, 19]). In these papers, either the displacement is the only unknown
or the displacement and the stress on the contact zone are independent unknowns.
The convergence rate of these methods have been established. Much attention
has been paid to the numerical simulation of variational inequalities modeling for
unilateral contact problems by finite element methods (cf. [3, 9, 11, 16]). Either
from the accuracy point of view or from developing efficient algorithms to solve the
resulting minimization problem(cf. [20]), the hardest task is the discretization of
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the Signorini unilateral condition, which usually can not be satisfied exactly by the
numerical solution. This often leads to nonconforming method (cf. [19]).

When high accuracy of the stress and the displacement on the contact boundary
are desirable, a possible way is to successively refine the mesh. An alternative way is
to resort to a new mixed variational formulation that includes stress, displacement
and the displacement on the contact boundary as the main unknowns. However,
the well-posedness of such mixed variational problem depends heavily on the so-
called ellipticity condition and the B.-B. inequality, which is the source of trouble
in constructing finite element approximation spaces. To overcome this difficulty,
we modify the dual variational formulation by adding a new term that enhances
the ellipticity and brings more freedom in choosing finite element spaces. Based on
this modified variational formulation problem, we introduce two new types of finite
element approximation spaces. A priori error estimates have been carried out for
both methods and our numerical results confirm the efficiency of the methods.

The remaining part of this paper is as follows. In the next section we will state the
functional setting and the unilateral contact problem. In Section 3, we shall derive
the dual variational formulation of the unilateral contact problems by Lagrange
multiplier method. In Section 4, we introduce the conforming and nonconforming
finite element approximations of the dual mixed variational problem and derive the
a priori error estimates. In Section 5, a Uzawa type iterative algorithm is presented
to solve the approximation problem. Numerical study of two methods is described
in Section 6. Finally, we give concluding remarks in Section 7.

2. Functional setting and contact Problem

Notation. Let Ω ⊂ R2 be a Lipschitz domain with generic point x. The Lebesgue
space Lp(Ω) is endowed with the norm: ∀ψ ∈ Lp(Ω),

‖ψ‖Lp(ψ) =
(∫

Ω

|ψ(x)|pdx

)1/p

.

We make use of the standard Sobolev space Hm(Ω), m ≥ 1, equipped with the
norm:

‖ψ‖Hm(Ω) =


 ∑

0≤|α|≤m

‖∂αψ(x)‖2L2(Ω)




1/2

,

where α = (α1, α2) is a multi-index in N and the symbol ∂α represents a partial
derivative. In particular, L2(Ω) = H0(Ω). The fractional order Sobolev space
Hν(Ω), ν ∈ R+ \N is defined as in [1] and equipped with the norm

‖ψ‖Hν(Ω) =


‖ψ‖2Hm(Ω) +

∑

|α|=m

∫

Ω

∫

Ω

(∂αψ(x)− ∂αψ(y))2

|x− y|2+2θ
dxdy




1/2

,

where ν = m + θ, m is the integer part of ν and θ ∈ [0, 1] is the decimal part.
For any portion γ of the boundary ∂Ω and any ν ∈ R+ \ N , the Hilbert space

Hν(γ) is associated with the norm

‖ψ‖Hν(γ) =
(
‖ψ‖2Hm(γ) +

∫

γ

∫

γ

(∂m
Γ ψ(x)− ∂m

Γ ψ(y))2

|x− y|2+2θ
dΓdΓ

)1/2

,

where m is the integer part of ν, θ its decimal part. The symbol ∂m
Γ ψ stands for

the m-th order derivative of ψ along γ and dΓ denotes the linear measure on ∂Ω.
The space H−ν(γ) stands for the topological dual space of Hν(γ) and the duality

pairing is denoted < ., . >ν,γ . The spacial space H
m+ 1

2
00 (γ) is defined as the set
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of the restrictions to γ of the function of Hm+ 1
2 (∂Ω) that vanish on ∂Ω \ γ, it is

also obtained by Hilbertian interpolation between Hm+1
0 (γ) and Hm

0 (γ). To be
complete with the Sobolev functional tools used hereafter, recall that for ν > 3

2 ,
the trace operator

T : ψ 7−→ (ψ|∂Ω, (
∂ψ

∂n
)|∂Ω),

is continuous from Hν(Ω) onto Hν− 1
2 (∂Ω) (cf, [1, 10, 14]). Otherwise, if 1 ≤ ν ≤ 3

2 ,
define the space Xν(Ω) to be

Xν(Ω) = {ψ ∈ Hν(Ω), ∆ψ ∈ L2(Ω)},
equipped with the graph norm

‖ψ‖Xν(Ω) = (‖ψ‖2Hν(Ω) + ‖∆ψ‖2L2(Ω))
1
2 .

Then the trace operator T is continuous from Xν(Ω) onto Hν− 1
2 (∂Ω)×Hν− 3

2 (∂Ω).

Contact Problem. We consider a material body to be the closure of a set Ω in
R2 of material particles x. Let ∂Ω = Γ, the deformation of the body unilaterally
supported by a frictionless rigid foundation and subjected to body force ~f and
surface traction ~t applied to a portion ΓF of the body’s surface. The body is fixed
along a portion ΓD of its boundary and we denote by ΓC a portion of the body
which is a candidate contact surface. The actual surface on which the body comes in
contact with the foundation is not know in advance but is contained in the portion
ΓC of Γ. We confine our attention to infinitesimal deformations of the body. In
addition, we further assume that the measures of ΓD and ΓC are positive. To avoid
technicalities arising from the special Sobolev space H

1/2
00 (ΓC), we assume that ΓD

and ΓC do not touch. Under the linear elasticity frame, let ~u = (u1, u2) denote
displacement, and have the following basic relation:

ε(~v) = (εij)1≤i,j≤2, εij =
1
2
(∂jvi + ∂ivj), 1 ≤ i, j ≤ 2,(2.1)

σ(~v) = (σij)1≤i,j≤2, σij = σEijklεkl(~v), 1 ≤ i, j ≤ 2,(2.2)

where ε(~v), σ(~v) denote strain tensor and stress tensor, respectively, and E =
{Eijkl}, 1 ≤ i, j, k, l ≤ 2, is the Hook tensor of elastic material. The frictionless
unilateral contact problem in elasticity is described as follows (cf. [18])

(2.3)





−div σ(~u) = ~f in Ω,
σ(~u) = Eε(~u) in Ω,
~u = 0 on ΓD,
σ(~u)~n = ~t on ΓF ,
σT (~u) = 0 on ΓC ,
σn(~u)(un − g) = 0, un − g ≤ 0, σn(~u) ≤ 0 on ΓC ,

where un = ~u · ~n = uini, σn(~u) = σij(~u)ninj , σT (~u) = σ(~u)~n − σn(~u)~n, ~n
denotes the unit outward normal to Γ.

3. Dual Variational formulation of contact problem

Ref [22] gives the following dual variational formulation of (2.3)

Problem 3.1. Find σ ∈ K∗, ~u ∈ (L2(Ω))2, such that

(3.1)
{

(Cσ, τ − σ) + (div(τ − σ), ~u) ≥ 〈τn − σn, g〉ΓC
, ∀τ ∈ K∗,

(div σ,~v) = −(~f,~v), ∀~v ∈ (L2(Ω))2,
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where{
K∗ = {τ ∈ Qt|τn ≤ 0, on ΓC},
Qt = {τ ∈ H(div, Ω)|τij = τji, in Ω ; τ · ~n = ~t, on ΓF ; ~τT = 0, on, ΓC}.

C = {cijkl} is the inverse of Hookean tensor E = {Eijkl}, and satisfies the following
conditions (cf. [18]):

(3.2)





Cijkl ∈ L∞(Ω), Max‖Cijkl‖0,∞ ≤ M ′,
Cijkl = Cjikl = Cklij ,
Cijkl(x)τijτkl ≥ m′τijτij , ∀x ∈ Ω,

where M,M ′,m and m′ are positive constants.
Using classical complementary energy principle, Problem 3.1 is equivalent to the

following minimal problem (cf. [6]):

inf
τ∈K∗

{
1
2
(Cτ, τ)− 〈τn, g〉ΓC

}
,(3.3)

where 



〈τn, g〉ΓC
=

∫

ΓC

τngds,

K∗ = {τ ∈ V ∗|τn ≤ 0, on ΓC},
V ∗ = {τ ∈ H(div, Ω)| div τ + ~f = 0, τij = τji, in Ω, τ · ~n = 0,

on ΓF , ~τT = 0, on ΓC},
H(div; Ω) = {τ ∈ (L2(Ω))2, div τ ∈ L2(Ω)}.

In order to relax the constrains div τ + ~f = 0 and τn|ΓC
≤ 0 from K∗ simultane-

ously, we introduce Lagrange multiplier ṽ and µ,

inf
τ∈K∗

{
1
2
(Cτ, τ)− 〈τn, g〉ΓC

}
(3.4)

= inf
τ∈Qt

sup
ṽ∈L2(Ω),µ∈Λ

{1
2
(Cτ, τ) + (div τ + ~f,~v) + 〈τn, µ− g〉ΓC

},

where {
Λ = {µ ∈ H

1/2
00 (ΓC)| µ ≥ 0, on ΓC},

H
1/2
00 (ΓC) = {µ ∈ H1/2(ΓC)|ξ−1/2µ ∈ L2(ΓC)}.

The norm of H
1/2
00 (ΓC) is defined as follows:

00‖µ‖1/2,ΓC
= {‖µ‖21/2,ΓC

+ ‖ξ−1/2µ‖20,ΓC
}1/2,

here ξ is the distance from any point on ΓC to two ends of ΓC . In fact, 00‖µ‖1/2,ΓC

is equivalent to ‖µ‖1/2,ΓC
(cf.[18]).

Assume that

L(τ ; ṽ, µ) =
1
2
(Cτ, τ) + (div τ, ṽ) + 〈τn, µ− g〉ΓC

+ (~f,~v).(3.5)

The saddle point (σ; ũ, λ) of L(τ ; ṽ, µ) on Qt× ((L2(Ω))2×Λ) satisfies the following
variational formulation (cf [18]):

Find σ ∈ Qt, ũ ∈ (L2(Ω))2, λ ∈ Λ, such that, for ∀τ ∈ Q0, ṽ ∈ (L2(Ω))2, µ ∈ Λ

(3.6)
{

(Cσ, τ) + (div τ, ũ) + 〈τn, λ〉ΓC
= 〈τn, g〉ΓC

,

(div σ, ṽ − ũ) + 〈σn, µ− λ〉ΓC
+ (~f, ṽ − ũ) ≤ 0,

where Q0 = {τ ∈ H(div, Ω)|τij = τji, in Ω, τ · ~n = 0, on ΓF , ~τT = 0, on ΓC},
The existence and uniqueness of the solution of (3.6) depends on the ellipticity

condition and the B-B condition [18]. However, it is not easy to find finite element
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spaces satisfying these two conditions simultaneously. We instead enhance the
ellipticity of (Cσ, τ) by adding an extra term (div σ, div τ). Therefore, we define

a(σ, τ) = (Cσ, τ) + (div σ, div τ).

It is clear that for any τ ∈ H(div),

a(τ, τ) ≥ c‖τ‖2H(div,Ω).

This shows that the modified bilinear form a(·, ·) satisfies the coercive condition
over the whole space H(div) instead of the kernel space, which shall bring more
freedom for constructing the finite element spaces as we will show later on. Similar
idea has been exploited by Brezzi et al in [7] to obtain continuous stress approxima-
tion in mixed finite element set-up. We reshape (3.6) into another dual variational
formulation of unilateral contact problem:

Problem 3.2. Find σ ∈ Qt, ũ ∈ (L2(Ω))2, λ ∈ Λ such that

(3.7)
{

a(σ, τ) + b(τ ; ũ, λ) = 〈τn, g〉ΓC
− (~f, div τ), ∀τ ∈ Q0,

b(σ; ṽ − ũ, µ− λ) ≤ −(~f, ṽ − ũ), ∀ṽ ∈ (L2(Ω))2, µ ∈ Λ,

where
b(τ ; ṽ, µ) = (div τ, ṽ) + 〈τn, µ〉ΓC

.

It is easy to obtain

(3.8)
{

a(τ, τ) ≥ C0‖τ‖2H(div,Ω),

a(σ, τ) ≤ M0‖σ‖H(div,Ω)‖τ‖H(div,Ω).

It follows from [21] the following B.-B. condition and the existence result.

Lemma 3.1. If measΓD > 0, then there exists a constant β > 0, independent of
ṽ, µ, such that

(3.9) sup
τ∈Q0

b(τ ; ṽ, µ)
‖τ‖H(div,Ω)

≥ β(‖ṽ‖0,Ω + ‖µ‖1/2,ΓC
), ∀ṽ ∈ (L2(Ω))2, µ ∈ Λ.

Theorem 3.1. If the conditions in Lemma 3.1 and condition (3.8) are satisfied,
then Problem 3.2 has one and only one solution.

Remark 3.1: The relation of solutions between Problem 3.1 and Problem 3.2 can
be derived as follows. Substituting

(Cσ, π) = 〈un, πn〉ΓC + 〈τ, ~u〉ΓC − (div π, ~u)

into the first equation of Problem 3.2, we obtain{ 〈πn, un + λ− g〉ΓC
= 0, ∀π ∈ Q0,

〈τ, ~u〉ΓD + (div τ, ũ− ~u) = 0, ∀τ ∈ Q0.

This immediately implies λ = g − un on ΓC , namely, the meaning of Lagrange
multiplier µ. When ~u|ΓD = 0 and measΓD > 0, ũ = ~u, i.e. ũ denotes elastic
displacement ~u. The advantage of Problem 3.2 is that the three unknowns can be
solved simultaneously.

4. The Mixed Finite Element of Dual Variational Formulation

In this section we present a mixed finite element approximation of Problem 3.2 by
conforming and nonconforming finite element methods, respectively. For conform-
ing FEM, we use standard RT1 element to approximate the stress, the piecewise
linear element to approximate the displacement and the piecewise continuous lin-
ear element to approximate the boundary displacement. As to the nonconforming
FEM, we use the piecewise constant element to approximate both the boundary
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displacement and the displacement, the standard RT0 to approximate the stress.
We derive the error estimate in what follows.

4.1 The Abstract Framework

Let Ω be a convex polygon. The triangulation Th of Ω consists of triangular
elements denoted e so that

Ω̄ =
⋃

e∈Th

ē.

The discretization parameter h on Ω is given by

h = max
e∈Th

he,

where he denotes the diameter of the triangle e.
Let Qh, (L2

h)2,Mh be the finite element approximating space of H(div, Ω), (L2(Ω))2

and H1/2(ΓC), respectively. Let Qh
0 = Q0 ∩ Qh, Qh

t = Qt ∩ Qh and Λh = {µ ∈
Mh|µ ≥ 0}. The finite element approximation of Problem 3.2 is as follows:

Problem 4.1. Find σh ∈ Qh
t , ũh ∈ (L2

h)2, λh ∈ Λh, such that

(4.1)
{

a(σh, τh) + b(τh; ũh, λh) = 〈τhn, g〉ΓC
− (~f, div τh), ∀τh ∈ Qh

0 ,

b(σh; ṽh − ũh, µh − λh) ≤ −(~f, ṽh − ũh), ∀ṽh ∈ (L2
h)2, µh ∈ Λh.

For convenience, we assume that{
q = (ṽ, µ), p = (ũ, λ), N = H(div, Ω)×R, R = (L2(Ω))2 ×H1/2(ΓC),
U = (σ, p), V = (τ, q), (f̃ , q − p) = −(~f, ṽ − ũ),

and definite that the following norms{
‖q‖R = {‖ṽ‖20,Ω + ‖µ‖21/2,ΓC

}1/2,

‖V ‖N = {‖τ‖2H(div,Ω) + ‖q‖2R}1/2.

We write Problem 3.2 as follows:
Find σ ∈ Qt, p ∈ (L2(Ω))2 × Λ such that

(4.2)
{

a(σ, τ) + b(τ ; p) = 〈τn, g〉ΓC
− (~f, div τ), ∀τ ∈ Q0,

b(σ; q − p) ≤ (f̃ , q − p), ∀q ∈ (L2(Ω))2 × Λ.

Similarly, the finite element approximating Problem 4.1 is written as: Find σh ∈
Qh

t , ph ∈ (L2
h)2 × Λh, such that

(4.3)
{

a(σh, τh) + b(τh; ph) = 〈τhn, g〉ΓC − (~f, div τh), ∀τh ∈ Qh
0 ,

b(σh; qh − ph) ≤ (f̃ , qh − ph), ∀qh ∈ (L2
h)2 × Λh.

Furthermore, we define the following bilinear function F : N ×N → R1 as

F (U, V ) = a(σ, τ) + b(τ ; p)− b(σ; q), ∀U, V ∈ N ,(4.4)

and linear function L: N → R1 as

〈L, V 〉 = 〈τn, g〉ΓC − (~f, div τ)− (f̃ , q), ∀V ∈ N .(4.5)

From the definition of F , it is easy to get

F (V, V ) = a(τ, τ), ∀V ∈ N ,(4.6)
|F (U, V )| ≤ c‖U‖N ‖V ‖N .(4.7)

Lemma 4.1. Mixed variational problem 3.2 is equivalent to the following problem:
Find U = (σ, p) ∈ Q = Qt ×M, such that

F (U, V − U) ≥ 〈L, V − U〉, ∀V ∈ Q0 ×M,(4.8)

where M = (L2(Ω))2 × Λ.
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PROOF.
(i) Let (σ, p) be the solution of (4.2), then for ∀V ∈ Qo ×M, we get

F (U, V − U) = a(σ, τ − σ) + b(τ − σ; p)− b(σ; q − p)

≥ 〈τn − σn, g〉ΓC
− (~f, div(τ − σ))− (f̃ , q − p)

= 〈L, V − U〉.
(ii) Contrarily, if U = (σ, p) is the solution of (4.8), then

F (U, V − U) = a(σ, τ − σ) + b(τ − σ; p)− b(σ; q − p)

≥ 〈L, V − U〉 = 〈τn − σn, g〉ΓC
− (~f, div(τ − σ))

−(f̃ , q − p), ∀τ ∈ Q0, q ∈ (L2(Ω))2 × Λ.

Taking τ = σ in (4.9), we obtain

b(σ; q − p) ≤ (f̃ , q − p), ∀q ∈ (L2(Ω))2 × Λ.(4.9)

If taking q = p in (4.9), we have

a(σ, τ − σ) + b(τ − σ; p)

≥ 〈τn − σn, g〉ΓC
− (~f, div(τ − σ)), ∀τ ∈ Q0.

Furthermore, taking τ = 0 and τ = 2σ, respectively in (4.9), we can deduce

a(σ, σ) + b(σ; p) = 〈σn, g〉ΓC − (~f, div σ),(4.10)

which implies

a(σ, τ) + b(τ ; p) ≥ 〈τn, g〉ΓC − (~f, div τ), ∀τ ∈ Q0.(4.11)

By ±τ ∈ Q0, we obtain

a(σ, τ) + b(τ ; p) = 〈τn, g〉ΓC
− (~f, div τ), ∀τ ∈ Q0.(4.12)

Combining (i) and (ii), we finish the proof. 2

Similarly, we can prove that Problem 4.1 is equivalent to the following problem

Find Uh = (σh, ph) ∈ Qh = Qh
t ×Mh, such that

F (Uh, Vh − Uh) ≥ 〈L, Vh − Uh〉, ∀Vh ∈ Qh
0 ×Mh,(4.13)

where Mh = (L2
h)2 × Λh, in general, Qh 6⊂ Q.

Lemma 4.2. Let (σ, p) and (σh, ph) be the solution of (4.2) and (4.3) respectively,
then (cf. [21]), for all qh ∈Mh, q ∈M, τh ∈ Qh

0 , τ ∈ Q0,

‖σ − σh‖2H(div,Ω) ≤ C1

{
‖σ − τh‖2H(div,Ω) + ‖p− qh‖2R

+ A1(τh) + b(σ, p− qh)− (f̃ , p− qh)
}

(4.14)

+ C2{A2(τ) + b(σ, ph − q)− (f̃ , ph − q)}+ ‖p− ph‖2R,

where
{

A1(τh) = a(σ, τh − σ) + b(τh − σ, p) + 〈σn − τhn, g〉ΓC − (~f, div(σ − τh)),
A2(τ) = a(σ, τ − σh) + b(τ − σh, p) + 〈σhn − τh, g〉ΓC − (~f, div(σh − τ)).

Remark 4.1: The first term of the bound given in Lemma 4.2 is the approximation
error. The second term is the consistency error, it is the ” variational crime” and
is due to the nonconformity of the approximation.
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Theorem 4.1. If Qh
0 ⊂ Q0, and b(τh, qh) satisfies B.–B. condition, i.e. exist

β = const. > 0 such that

sup
τh∈Qh

0

b(τh; qh)
‖τh‖H(div,Ω)

≥ β‖qh‖R, ∀qh ∈Mh,(4.15)

then

(1) ‖σ − σh‖2H(div,Ω)

≤ c1{‖σ − τh‖2H(div,Ω) + ‖p− qh‖2R}+ {b(σ; ph − q)− (f̃ , ph − q)}
+{b(σ; p− qh)− (f̃ , p− qh)},

(2) ‖p− ph‖R ≤ c2{‖σ − σh‖H(div,Ω) + ‖p− qh‖R},
for any τh ∈ Qh

0 , q ∈M, qh ∈Mh.

PROOF. Using Lemma 4.1 and Qh
0 ⊂ Q0, and taking τ = τh in (4.2), we have

a(σ, τh) + b(τh; p) = 〈τhn, g〉ΓC
− (~f, div τh).(4.16)

From (4.2) we have

a(σ, σ) + b(σ; p) = 〈σn, g〉ΓC
− (~f, div σ).(4.17)

It follows from the above two inequalities, we obtain

(4.18) a(σ, τh − σ) + b(τh − σ, p) = 〈τhn − σn, g〉ΓC − (~f, div(τn − σ)).

Therefore, A1(τh) = 0.
Similarly, we may get A2(τ) = 0.
Using discrete B.–B. condition, we obtain

β‖ph − qh‖R ≤ sup
τh∈Qh

0

b(τh; qh − ph)
‖τh‖H(div,Ω)

,(4.19)

and

b(τh; qh − ph) = b(τh; qh)− b(τh, ph)

= b(τh; qh) + a(σh, τh)− 〈τhn, g〉ΓC
+ (~f, div τh)

= b(τh; qh) + a(σh, τh)− a(σ, τh)− b(τh; p)
= b(τh; qh − p) + a(σh − σ, τh)
≤ c{‖qh − p‖R + ‖σh − σ‖H(div,Ω)}‖τh‖H(div,Ω).

Combining the above two inequalities we get

‖ph − qh‖R ≤ c{‖qh − p‖R + ‖σh − σ‖H(div,Ω)}.
By triangle inequality, it is easy to get

‖p− ph‖R ≤ ‖p− qh‖R + ‖qh − ph‖R
≤ c{‖p− qh‖R + ‖σ − σh‖H(div,Ω)}.

Substituting the estimate of ‖p− ph‖R into (4.14), and taking ε small enough, we
get the estimate of ‖σ − σh‖H(div,Ω). 2

4.2 Conforming discretization of dual variational formulation

Now we are ready to give the error estimates of finite element solution for some
special finite element subspace. Let Th be the triangulation of Ω. Denote by (L2

h)2

the piecewise linear function subspace of (L2(Ω))2 to approximate the displacement,
Mh the continuous piecewise linear function subspace of H1/2(ΓC) to approximate
the displacement on ΓC and Qh the RT1 subspace of H(div,Ω) to approximate
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the stress. For any element e ∈ Th, RT1 element have the following properties (cf.
[8, 6]):

(i) τh · ~n|∂e is piecewise linear on ∂e, ~n is the unit outward normal to ∂e.
(ii) div τh|e is a linear function.

Theorem 4.2. If the dual variational Problem 3.2 has unique solution, and Qh, (L2
h)2

are the finite element subspace of H(div, Ω), (L2(Ω))2, respectively. Λh = Mh ∩ Λ,
then discrete Problem4.1 exists a unique solution.

PROOF. Obviously, we only need to prove the discrete B.-B. condition.
Define the interpolation of πh : H(div, Ω) −→ Qh as follows(cf.[6]):

For any given τ ∈ H(div, Ω), πhτ is solved by the following equation

b(τ − πhτ ; ṽh, µh) = 0, ∀ṽh ∈ (L2
h)2, µh ∈ Λh.(4.20)

Let ei(i=1,2,3) be the three edges of element e, ` stands for the element on ΓC

corresponding to the triangulation. In order to make b(τ − πhτ ; ṽh, µh) = 0, i.e.∫

Ω

div(τ − πhτ)ṽhdx +
∫

ΓC

(τn − πhτn)µhds = 0.

We assume that∫

e

div(τ − πhτ)ṽhdx = 0,

∫

`

(τn − πhτn)µhds = 0.

Because ṽh is a piecewise linear function and µh is a continuous piecewise linear
function on ΓC , then∫

ei

(τ − πhτ)~n · ṽhds = 0,

∫

e

(τ − πhτ)∇ṽhdx = 0.

For any given τ , we can get the expression of πhτ from above equations, and have
the following inequality (cf. [6]):

‖πhτ‖H(div,Ω) ≤ c‖τ‖H(div,Ω).(4.21)

In order to make πhτ ∈ Qh
0 , when ei is located on ΓF , we may assume that

(πhτ)~n|ΓF = τ~n|ΓF .

Combining (4.20) and (4.21), we obtain

sup
τh∈Qh

0

b(τh; ṽh, µh)
‖τh‖H(div,Ω)

≥ sup
τ∈Q0

b(πhτ ; ṽh, µh)
‖πhτ‖H(div,Ω)

≥ sup
τ∈Q0

b(τ ; ṽh, µh)
c‖τ‖H(div,Ω)

≥ β(‖ṽh‖0,Ω + ‖µh‖1/2,ΓC
).

This gives the discrete B.-B. condition. 2

Theorem 4.3. If Ω is a convex polygon, ~f ∈ (L2(Ω))2, g ∈ H3/2(ΓC); (σ; ũ, λ)
and (σh; ũh, λh) are the solutions of Problem 3.2 and Problem 4.1, respectively,
then when Qh, (L2

h)2 and Λh are chosen as the above, we have the following error
estimate

‖σ − σh‖H(div,Ω) + ‖ũ− ũh‖0,Ω + ‖λ− λh‖1/2,ΓC
≤ ch3/4.

PROOF. By the construction of πhτ , we have the following basic estimates:

‖σ − πhσ‖0,Ω ≤ ch‖σ‖1,Ω,

‖div(σ − πhσ)‖0,Ω ≤ ch‖div σ‖1,Ω.
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Let ũI ∈ (L2
h)2 and λI ∈ Λh be the Lagrangian interpolants of ũ and λ, respectively.

By the standard approximation theory (cf. [10]), we have

‖ũ− ũI‖0,Ω ≤ ch‖ũ‖1,Ω,

‖λ− λI‖1/2,ΓC
≤ ch‖λ‖3/2,ΓC

.

Taking (τh; ṽh, µh) = (πhσ; ũI , λI), q = ph, and µh = λI , we obtain

b(σ; p− qh)− (f̃ , p− qh) = (div σ, ũ− ṽh) + 〈σn, λ− µh〉ΓC
+ (~f, ũ− ṽh)

= 〈σn, λ− µh〉ΓC

≤ ‖σn‖0,ΓC
‖λ− λI‖0,ΓC

≤ ch3/2‖σn‖0,ΓC
‖λ‖3/2,ΓC

.

Using Theorem 4.1, we obtain

‖σ − σh‖2H(div,Ω)

≤ ch3/2(‖σ‖1,Ω + ‖ũ‖1,Ω + ‖div σ‖1,Ω + ‖λ‖3/2,ΓC
),

and

‖ũ− ũh‖0,Ω + ‖λ− λh‖0,ΓC

≤ ch3/4(‖σ‖1,Ω + ‖ũ‖1,Ω + ‖div σ‖1,Ω + ‖λ‖3/2,ΓC
).

This gives the proof. 2

4.3 Nonconforming discretization of dual variational formulation

We define Qh as the standard RT0 space to approximate the stress, and (L2
h)2 as

the piecewise constant space to approximate the displacement, and Λh as the piece-
wise constant subset of L2(ΓC) to approximate the displacement on ΓC . Obviously,
Λh 6⊂ Λ. Therefore, it is a nonconforming approximation of Λ.

Similar to the conforming element case, we firstly define the interpolation oper-
ator πh : H(div,Ω) → Qh. For any given τ ∈ H(div, Ω)

b(τ − πhτ ; ṽh, µh) = 0, ∀ṽh ∈ (L2
h)2, µh ∈ Λh.

In order to make b(τ − πhτ ; ṽh, µh) = 0, let
{

(div(τ − πhτ), ṽh) = 0, ∀ṽh ∈ (L2
h)2,∫

ΓC
(τn − πhτn)µhdΓ = 0, ∀µh ∈ Λh.

i.e. ∑

e∈Th

∫

e

div(τ − πhτ)ṽhdx = 0, ∀ṽh ∈ (L2
h)2,

∑

`∈ΓCh

∫

`

(τn − πhτn)µhds = 0, ∀µh ∈ Λh,

where ΓCh denotes the partition of ΓC , and ` is corresponding partition on ΓC . Let
ṽh and µh be piecewise constants in Ω and on ΓC , respectively.

For any given τ , we have the explicit expression of πhτ . Therefore, it is easy to
prove the following inequality (see[6])

‖πhτ‖H(div,Ω) ≤ c‖τ‖H(div,Ω).

Theorem 4.4. If the dual variational Problem 3.2 has a unique solution, and
Qh, (L2

h)2 are the finite element subspace of H(div,Ω), (L2(Ω))2, respectively.
Λh ⊂ L2(ΓC), is the external approximation of Λ, then Problem 4.1 has a unique
solution.
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PROOF. Similar to the proof of Theorem 4.2, we only need to verify the discrete
B.-B. condition.

According to the definition of interpolation operator πh above, we have

sup
τh∈Qh

0

b(τh; ṽh, µh)
‖τh‖H(div,Ω)

≥ sup
τ∈Q0

b(πhτ ; ṽh, µh)
‖πhτ‖H(div,Ω)

≥ sup
τ∈Q0

b(τ ; ṽh, µh)
c‖τ‖H(div,Ω)

.

By Lemma 3.1 we have

sup
τ∈Q0

b(τ ; ṽh, µ)
‖τ‖H(div,Ω)

≥ β{‖ṽh‖20,Ω + ‖µ‖21/2,ΓC
}1/2, ∀ṽh ∈ (L2

h)2, µ ∈ H1/2(ΓC).

Because H1/2(ΓC) is dense in L2(ΓC), further, we deduce

sup
τ∈Q0

b(τ ; ṽh, µh)
‖τ‖H(div,Ω)

≥ β{‖ṽh‖20,Ω + ‖µh‖20,ΓC
}1/2, ∀~vh ∈ (L2

h)2, µh ∈ L2(ΓC).

Finally, we have

sup
τh∈Qh

0

b(τh; ṽh, µh)
‖τh‖H(div,Ω)

≥ β{‖ṽh‖20,Ω + ‖µh‖20,ΓC
}1/2, ∀~vh ∈ (L2

h)2, µh ∈ Λh.

This has proven the discrete B.-B. condition. 2

Theorem 4.5. If Ω is a convex polygon, f ∈ (L2(Ω))2, g ∈ H3/2(ΓC); (σ; ũ, λ)
and (σh; ũh, λh) are the solution Problem 3.2 and Problem 4.1, respectively, then
when Qh, (L2

h)2 are respectively chosen as the subspace of H(div,Ω) and (L2(Ω))2;
Λh = {µ ∈ Mh|µ ≥ 0} is the nonconforming approximation of Λ, we have the
following estimates

‖σ − σh‖H(div,Ω) + ‖~u− ~uh‖0,Ω + ‖λ− λh‖0,ΓC
≤ ch1/2.

PROOF. Here we mainly estimate the consistence error

b(σ; ph − q)− (~f, ph − q).

Other terms can be estimated as that in Theorem 4.3. A direct calculation gives

b(σ; ph − q)− (~f, ph − q)
= (div σ, ~uh − ~v) + 〈σn, λh − µ〉ΓC + (f, ~uh − ~v)
= 〈σn, λh − µ〉ΓC

.

To estimate 〈σn, λh − µ〉ΓC , we define the following interpolation operator(see [5])
rh : L2(ΓC) → Mh ⊂ H1/2(ΓC), which preserves the non-positivity, i.e. if τn ≤ 0
then rhτn ≤ 0. Using the above derivation and choosing µ = λ, we have: ∀rhσn ∈
Mh,∫

ΓC

σn(λh − λ)dΓ =
∫

ΓC

(σn − rhσn)(λh − λ)dΓ +
∫

ΓC

rhσn(λh − λ)dΓ.

The first integral is easily bounded as∫

ΓC

(σn − rhσn)(λh − λ)dΓ ≤ ch1/2‖σ‖1,Ω‖λh − λ‖0,ΓC
.(4.22)

By σn|ΓC ≤ 0 and λ = g − un, we get∫

ΓC

rhσn(λh − λ)dΓ ≤ −
∫

ΓC

rhσnλdΓ =
∫

ΓC

(σn − rhσn)λdΓ(4.23)

≤ ‖σn − rhσn‖0,ΓC
‖λ‖0,ΓC

≤ ch1/2‖σ‖1,Ω‖λ‖0,ΓC .
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Combining the estimates (4.22) and (4.23), we obtain

(4.24) b(σ; ph − p)− (~f, ph − p) ≤ ch1/2‖σ‖1,Ω(‖λh − λ‖0,ΓC + ‖λ‖0,ΓC ).

Substituting (4.24) into (1) of Theorem4.1, we get

‖σ − σh‖2H(div,Ω) ≤ ch1/2(‖σ‖1,Ω + ‖~u‖1,Ω + ‖div σ‖1,Ω + ‖λ‖0,ΓC
).

Substituting (4.25) into (2) of Theorem 4.1 and using Young’s inequality, we obtain

‖ũ− ũh‖0,Ω + ‖λ− λh‖0,ΓC
≤ ch1/2.(4.25)

This finishes the proof. 2

Remark 4.2: The convergence rate of nonconforming method is lower than the
conforming method, because we have not found a refined estimate for the consis-
tence terms, e.g. (4.24). We will discuss this problem in another paper.

5. Optimization Algorithm for Mixed Finite Element Discrete Problem

In this section, the Uzawa type algorithm is presented for solving Problem 4.1.
If we assume that {

L(τ ; v, µ) = J0(τ) + (div τ, v) + 〈τn, v〉ΓC ,
J0 = 1

2 (τ, τ)− 〈τn, g〉ΓC + (f, div τ + v),

then Problem 3.2 and Problem 4.1 can be written as the following equivalent saddle-
point problems, respectively.

Problem 5.1. Find σ ∈ Qt, ũ ∈ (L2(Ω))2, λ ∈ Λ such that

L(σ; ṽ, µ) ≤ L(σ; ũ, λ) ≤ L(τ ; ũ, λ), ∀τ ∈ Q0, ṽ ∈ (L2(Ω))2, µ ∈ Λ.

Problem 5.2. Find σh ∈ Qh
t , ũh ∈ (L2

h)2, λh ∈ Λh such that

L(σh; ṽh, µ) ≤ L(σh; ũh, λh) ≤ L(τh; ũh, λh), ∀τh ∈ Qh
t , ṽh ∈ (L2

h)2, µh ∈ Λh.

The above two inequalities immediately implies

Lemma 5.1. If {σh;uh, λh} is the saddle-point of the problem 5.2, then

(i) J0(σh) + (div σh, ũh) + 〈σhn, λh〉ΓC

≤ J0(τh) + (div τh, ũh) + 〈τhn, λh〉ΓC , ∀τh ∈ Qh
0 .

(ii) 〈σhn, µh − λh〉ΓC
+ (div σh + f, ṽh − ũh) ≤ 0, ∀µh ∈ Λh, ṽh ∈ (L2

h)2.

Lemma 5.2. The following variational formulation

〈σhn, µh − λh〉ΓC
+ (div σh + f, ṽh − ũh) ≤ 0, ∀µh ∈ Λh, ṽh ∈ (L2

h)2,

is equivalent to

div σh + f = 0, λh = PΛ(ρσhn + λh),

where PΛ is the project operator: L2(ΓC) → Λh, ρ > 0.

The proof of Lemma 5.2 can be found in [20].
Basing on Lemma 5.1 and Lemma 5.2 , we define the following Uzawa type

iterative algorithm

(i) Given ũm
h ∈ (L2

h)2, λm
h ∈ Λh, we define σm

h ∈ Qh
t such that

J0(σm
h ) + (div σm

h , ũm
h ) + 〈σm

hn, λm
h 〉ΓC

≤ J0(τh) + (div τh, ũm
h ) + 〈τhn, λm

h 〉ΓC ,∀τh ∈ Qh
0 .
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(ii) Find ũm+1
h and λm+1

h by using the following iterative method
{

ũm+1
h = ũm

h + ρm(div σm
h + ~f),

λm+1
h = PΛ(ρmσm

hn + λm
h ),

where ρm > 0 is a constant chosen properly and PΛ is defined in Lemma 5.2.

Theorem 5.1. There exist a0, a1 = constant, 0 < a0 ≤ ρn ≤ a1 such that above
Uzawa type iterative algorithm is convergent according to the following sense

(i) σm
h → σh strongly in H(div, Ω).

(ii) lim
m→∞

‖ũm+1
h − ũm

h ‖0,Ω = 0, lim
m→∞

‖λm+1
h − λm

h ‖0,ΓC = 0.

(iii) {ũm
h , λm

h }m → {ũh, λh} weakly in (L2
h)2 × Λh.

The proof of the above theorem is similar to [13, Theorem 3.1].

6. Numerical Discussion

We consider the following unilateral problem (cf.[13]):

(6.1)





−∆u = f inΩ,
u = 0 onΓD,
u ≥ 0, ∂u

n ≥ 0, onΓC
∂u
n · u = 0, onΓC ,

where

(6.2)
{

Ω = [0, 1]× [0, 1], ∂Ω = ΓC ∪ ΓD,
ΓC = {(x, y)|0 ≤ x ≤ 1, y = 0} ∪ {(x, y)|0 ≤ x ≤ 1, y = 1},

(6.3) f(x, y) =
{

10, if (x, y) ∈ [0, 1/2]× [0, 1],
−10, if (x, y) ∈ [1/2, 1]× [0, 1].

6.1 Numerical Modeling for Conforming Finite Element
(i) Given any initial value um

hi ∈ L2
h, λm

hj ∈ Λh, find σm
hi as the solution of the

following linear equations:

(σh, τh)− (div τh, uh) + 〈τnh, λh − g〉ΓC = 0, ∀τh ∈ Qh
0 .

(ii) Using σm
hi, find um+1

hi and λm+1
hj{

um+1
hi = um

hi + 1
S∆i

∫
∆i

ρm(div σm
hi + f)dxdy,

λm+1
hj = min{0, λm

hj + si},
where S∆i is the area of i-th element, si = 1

li

∫
li

ρ(div σn
hi + fi)ds.

(iii) The criterion of stopping iteration is

error =
∑

i |um+1
i − um

i |∑
i |um+1

i | ≤ 10−5.

In this case, we use 8 × 8 triangulation, ρm = 0.05 and the iterative number
is 200. uh and λh are depicted in Figure 6.2. From these figures we see that uh

is very close to the value of u on fixed boundary ΓD = {(x, y)|0 ≤ y ≤ 1, x =
0} ∪ {(x, y)|0 ≤ y ≤ 1, x = 1}. The dentation in the graph of uh is caused by the
triangular meshes, and decreases with the refinement of the mesh. For λ, we give
the graph of λh when y = 1. λh on ΓC is very close to that of uh on ΓC .
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Figure 6.1. Triangulations and nodes employed in the conform-
ing finite element method
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Figure 6.2. Computed u and λ using conforming finite element method.

6.2 Numerical Modeling for Nonconforming Finite Element
The iterative formulations are similar to (i)-(iii) of Section 6.1. In this case, we

use 14 × 14 triangulation, ρm = 0.05 and the computing time is the same as that
of Section 6.1. uh and λh are depicted in Figure 6.4. It follows from Table 6.1
that both conforming element and nonconforming element are numerically stable.
Therefore, we see that uh and λh in Figure 6.4 have better approximation than
those of Figure 6.2. In addition, Table 6.1 shows that the nonconforming method
converges faster than the conforming method.

7. Concluding Remarks

This paper includes the finite element error estimates and the numerical simu-
lation of the dual mixed variational formulation of unilateral contact problem. We
obtain the convergence rate of both the conforming and nonconforming methods.
The numerical example shows that the nonconforming method converges faster
than the conforming method.
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Figure 6.3. Triangulations and nodes employed in the non-
conforming method
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Figure 6.4. Computed u and λ using nonconforming finite element.

itearative number conforming FEM nonconforming FEM
10 0.0391011 0.0667215
20 0.0395721 0.0354249
30 0.0365382 0.0131121
40 0.0315310 0.0047859
50 0.0227896 0.0017652
60 0.0149436 0.0006545
70 0.0094068 0.0002429

Table 6.1. The comparisons of errors for two finite element ap-
proximations when the partition of Ω is 12× 12.
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