
INTERNATIONAL JOURNAL OF c© 2009 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 6, Number 1, Pages 147–160
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Abstract. In this paper, we are concerned with a non-overlapping domain de-

composition method with nonmatching grids. In this method, a new pointwise

matching condition is used to define weak continuity of approximate solutions

on the interface. The main merit of the new method is that numerical integra-

tions can be avoided when calculating interface matrices. We derive an almost

optimal error estimate of the resulting approximate solutions for two kinds

of applicable situations. Some numerical experiments confirm the theoretical

result.
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1. Introduction

The domain decomposition method (DDM) with nonmatching grids is now pop-
ular in engineering and scientific computing (see [1], [2], [5], [9], [10], [12], [13], [14],
[15] and [17]). A key ingredient in this method is the choice of a suitable interface
matching condition, which defines the discrete variational problem associated with
this DDM. The convergence of the resulting approximate solution, which is only
weak continuous across the interface, strongly depends on such interface matching
condition.

There are two kinds of interface matching conditions in literature: the integral
matching condition (see [4], [3], [6] and [13]), and the pointwise matching condi-
tion (see [4] and [6]). When using the integral matching condition, calculation of
numerical integrations on the interface will be in general expensive, especially for
three-dimensional problems. Use of the pointwise matching condition can remove
this difficulty, but it may generate unsatisfactory approximate solutions (see [4] and
[6]).

In the present paper we investigate when the pointwise matching condition works
well in DDM with nonmatching grids for the second-order elliptic problem in three
dimensions. The main difficulty is the design of a weak conformity on the wire-
basket set to the approximation. For two-dimensional problems, one can require
that the approximation is continuous at the cross-points (see [4]). But, one can not
impose the same continuity on the wire-basket set, since the grids on the wire-basket
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set are still nonmatching. If no constraint is added on the wire-basket set, the re-
sulting approximation has low convergence. To remove this difficulty, we propose a
combination between the pointwise matching condition and the integral matching
condition. The idea is to define a suitable discrete L2 projection into the Lagrange
multiplier space defined on the common face of two neighboring subdomains. The
new matching condition implies that the restrictions of the underlying approxi-
mation on two neighboring subdomains has the same discrete L2 projection. In
essence, the new matching condition involves a set of internal nodes on each local
face. We require that the approximation has point to point continuity at the nodes
not closing the boundary of the face, and possesses weak continuity in the sense
of average at the nodes closing the boundary of the face. The whole matching
condition can be expressed in a unified manner by defining an interpolation type
operator. It will be shown that the resulting approximate solution possesses almost
the optimal error estimate for two practical situations.

The outline of this paper is as follows. In Section 2, we introduce DDM with
the new pointwise matching condition. In Section 3, we show that this pointwise
matching condition can result in almost the optimal error estimate for two applied
cases. In Section 4, we give some numerical results, which confirm the effectiveness
of this new interface matching condition.

2. DDMs with Pointwise Matching Condition

In this paper, we consider the following model problem

(1)
{ −∇(ω∇u) = f, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ R3 is a bounded, connected Lipschitz domain, and ω ∈ L∞(Ω) is a
positive real function.

Let H1
0 (Ω) be the standard Sobolev space and define the following bilinear form:

a(u, v) =
∫

Ω

ω∇u · ∇vdx, u, v ∈ H1
0 (Ω).

Then the corresponding weak form of (1) is: Find u ∈ H1
0 (Ω), such that:

(2) a(u, v) = (f, v), ∀ v ∈ H1
0 (Ω),

where (·, ·) denotes the L2(Ω)-inner product.
In the following, we define the discrete problem of (2) based on DDMs with a

new pointwise matching condition.
As usual, we decompose the domain Ω into the union of some subdomains Ω =

N∑
k=1

Ωk, which satisfies that Ωi ∩ Ωj = ∅ if i 6= j. For convenience, we assume that

the decomposition is geometrically conforming:
(1) if Ωi and Ωj are two neighboring subdomains, then ∂Ωi ∩ ∂Ωj is just a

common vertex, or a common edge or a common face of Ωi and Ωj .
(2) each subdomain has the same ”size” d in the usual way (refer to [20]).
In particular, when ∂Ωi ∩ ∂Ωj is a common face of Ωi and Ωj , we set Γij =

∂Ωi ∩ ∂Ωj and call Γij to be a local interface.
For each Ωk, we introduce a partition Tk which is made of elements that are

either hexahedra or tetrahedra. Let hk be the mesh size of Tk, i.e., hk denotes the
maximum diameter of all elements in Tk. Define h = min

1≤k≤N
hk. The triangulation
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of Ω generally does not match on the interface Γ. So each Γij relates to two different
2D meshes Tij and Tji, which are the restriction of Ti and Tj on Γij respectively.

Remark 2.1 For each Ωk, we assume the partition on ∂Ωk is regular and quasi-
uniform because our theoretical analysis involves some mathematical tools such as
inverse estimates and discrete norms on interfaces. But it is not an essential restric-
tion for some applications such as solving the elliptic problems with singularity. In
general, we can divide Ω into more subdomains to meet this assumption.

For 1 ≤ k ≤ N , define

V (Ωk) = {v : v ∈ C(Ωk), v|∂Ω∩∂Ωk
= 0; ∀ e ∈ Tk, v|e ∈ P1(e)}

and
V (∂Ωk) = {v|∂Ωk

: v ∈ V (Ωk)}.
where e is any element in Tk and P1(e) denotes the space consisting of continuous
linear (or trilinear) functions on e.

The definition of the finite element space on Ω involves a suitable matching
condition on each Γij . To describe the idea more clearly, we want to use a local
multiplier space W (Γij) on Γij . There are many ways to define such local multiplier
space (see [3], [4], [6], [13], [16] and [19]). As an example, we consider only the local
multiplier space defined in [3].

Without loss of generality, we assume that hi ≤ hj for each face Γij . Then, the
local multiplier space on Γij is defined by the triangulation Tij (instead of Tji). For
convenience, we only consider the case that Tij is made up of triangles here.

Let {xk}N0
ij

k=1 ⊂ Γij be all interior nodes associated with Tij , and let {xk}Nij

k=N0
ij+1

⊂
∂Γij be all the boundary nodes associated with Tij . Then, basis functions {φk}N0

ij

k=1

of W (Γij) can be defined as in [3], with φk corresponding to a interior node xk. For
the quadrangle case, the definition is similar. It is known that we have, for both

cases,
N0

ij∑
k=1

φk = 1, and

W (Γij) ⊂ Vi(Γij), dim(W (Γij)) = dim(V 0
i (Γij)) = N0

ij .

In the following we will use the discrete L2(Γij)-inner product (refer to [20])

〈v, w〉0,Γij , h = h2
ij

Nij∑

k=1

u(xk) · v(xk), ∀ u, v ∈ C(Γij),

where hij is the mesh size of Tij .
Let ‖·‖0, Γij , h denote the discrete norm induced by the inner-product 〈·, ·〉0,Γij , h.

It is well known that

‖v‖20, Γij , h
=∼ ‖v‖20,Γij

, ∀ v ∈ Vi(Γij).

For two neighboring subdomains Ωi and Ωj , let vi ∈ V (Ωi) and vj ∈ V (Ωj)
be the restriction of the solution on Ωi and Ωj respectively. We require vi and vj

satisfy the following weak continuous condition on the interface Γij

〈vi|Γij − vj |Γij , φ〉
Γij , h

= 0, ∀ φ ∈ W (Γij).

Define Πij : C(Γij) → W (Γij) as

Πij v =
N0

ij∑

k=1

v(xk) · φk, ∀ v ∈ C(Γij).
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By the definition of the discrete L2(Γij)-inner product, one can verify directly
that

〈vi|Γij
− vj |Γij

, φ〉
Γij , h

= 0, ∀ φ ∈ W (Γij) ⇔ Πij (vi|Γij
) = Πij (vj |Γij

).

Remark 2.2 The above interface continuous condition is a variant of the original
pointwise matching condition. Here, we require that vi|Γij and vj |Γij have the same
interpolation-type projection in the local multiplier space W (Γij). The difference
from that of [4] is that we require the continuity of vi|Γij and vj |Γij only at most
of the interior nodes on Γij .

Remark 2.3 The pointwise matching condition can avoid calculation of compli-
cated integrations on the local faces in the process of generating coupling matrixes.
Compared with the integral matching condition, it will reduce the arithmetic com-
plexity greatly.

Set V (Ω) =
N∏

k=1

V (Ωk), and define

Ṽ (Ω) = {v = (v1, · · · , vN ) ∈ V (Ω) : Πij (vi|Γij ) = Πij (vj |Γij ), ∀ Γij ⊂ Γ}.
Note that we do not require the conformity Ṽ (Ω) ⊂ H1(Ω).

Define the local bilinear form

ak(u, v) =
∫

Ωk

ω∇u · ∇vdx u, v ∈ H1(Ωk).

The discrete problem of (2) is: Find uh = (uh1 , · · · , uhN
) ∈ Ṽ (Ω), such that

(3)
N∑

k=1

ak(uhk
, vhk

) = (f, vh), ∀ vh ∈ Ṽ (Ω).

It is easy to see that the bilinear form defining (3) is coercive in Ṽ (Ω). Then the
existence of the solution uh can be guaranteed.

3. The Main Result

For simplicity, we will frequently use the notations <∼ and =∼ . For any two
non-negative quantities x and y, x <∼ y means that x ≤ Cy for some constant C

independent of mesh size h, subdomain size d and the related parameters. Similarly,
x =∼ y means x <∼ y and y <∼ x.

Define

‖v‖A = (
N∑

k=1

ak(vk, vk))
1
2 , v = (v1, · · · , vN ) ∈

N∏

k=1

H1(Ωk).

Theorem 3.1 Assume that u|Ωk
∈ H1+αk(Ωk) with αk ∈ ( 1

2 , 1] (k = 1, · · · , N).
Let uh be the solution of (3). When one of the following two conditions holds:

(i) Vj(Γij) ⊂ Vi(Γij);
(ii) αi ≤ αj , and hi ≤ h

2αj

j ,
we have

(4) ‖u− uh‖A
<∼ (

N∑

k=1

(1 + log
d

hk
)h2αk

k ‖u‖21+αk, Ωk
)

1
2 .

Remark 3.1 The error estimate described in Theorem 3.1 is different slightly from
the most existing results: there is a logarithm factor in (4). It seems that this
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logarithm factor can not be eliminated.

Remark 3.2 It is known that fine mesh would be used in the subdomain associated
with a low regularity. Thus, the assumption αi ≤ αj in the condition (ii) is natural,
since the multiplier space W (Γij) is defined by Tij with hi ≤ hj .

As usual, the result can be proved by Strang lemma. The main difficulty of the
proof lies in how to derive various interpolation errors of the operator Πij . The
proof of Theorem 3.1 will be given in Subsection 3.2. In Subsection 3.1, we first
give some lemmas.

3.1. Some lemmas. For an element of Tij , we call the element to be an interior
element, if all of its vertexes are in the interior of Γij . In addition, for each Γij ,
let Nij and Nji denote the sets of all nodes of the triangulation Tij and of Tji

respectively.
Throughout the paper, we set vi = vh|Ωi

and vj = vh|Ωj
for vh ∈ Ṽ (Ω). Let

πij : C(Γij) → Vi(Γij) be the standard nodal interpolation operator.
The following Lemma 3.1∼3.5 will be used to analyze the approximate error.

Lemma 3.1 If hi ≤ hj , then the following estimate holds

‖(πij −Πij)vj‖0, Γij

<∼ h
1
2
i |vj |1, Ωj ,

where hi, hj denotes the mesh sizes of Tij and Tji respectively.
Proof: It is clear that (πij −Πij)vj ∈ Vi(Γij). Thus,

‖(πij −Πij)vj‖20, Γij

=∼ ‖(πij −Πij)vj‖20, Γij ,h.

We further get by the definition of the discrete L2(Γij) norm

‖(πij −Πij)vj‖20, Γij

=∼ h2
i

∑

xk∈Nij

(πijvj(xk)−Πijvj(xk))2.

For each internal node xk ∈ Nij , we have by the definition of πij and Πij

πijvj(xk)−Πijvj(xk) = 0.

Thus,

(5) ‖(πij −Πij)vj‖20, Γij

=∼ h2
i

∑

xk∈ ∂Γij∩Nij

(πijvj(xk)−Πijvj(xk))2.

In the following we estimate the right side of (5) by three steps.

Step 1: Transform the sum in (5) into a sum over the edges close to Γij .

Let xk be a boundary node on ∂Γij , and let xk1 , xk2 , xk3 ∈ Nij denote the interior
nodes which are connected to xk by an edge. Then, there are three different location
relations between xk and the interior nodes neighboring to xk (see Figure 1 (a)-(c)).

The definition of Πij shows that for each interior node x in Nij

Πijvj(x) = vj(x),

and for all cases showed in Figure 1,

Πijvj(xk) = a1Πijvj(xk1) + a2Πijvj(xk2)

where a1 > 0, a2 > 0 and a1 + a2 = 1.
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Figure 1. (a) xk is not a vertex. (b) xk is a vertex, and all edges
connected to xk lie on ∂Γij . (c) xk is a vertex, and there is at least
one internal node which is connected to xk by an edge.

Specially, for the case showed in Figure 1 (b), we have by the definition of Πij

Πijvj(xk1) = Πijvj(xk3), Πijvj(xk2) = Πijvj(xk3).

Thus, we derive for the case (a) and (c)

(πijvj(xk)−Πijvj(xk))2 = (vj(xk)−Πijvj(xk))2

≤ a2
1(vj(xk)−Πijvj(xk1))

2 + a2
2(vj(xk)−Πijvj(xk2))2

= a2
1(vj(xk)− vj(xk1))

2 + a2
2(vj(xk)− vj(xk2))2

≤ (vj(xk)− vj(xk1))
2 + (vj(xk)− vj(xk2))2,

and for the case (b)

(πijvj(xk)−Πijvj(xk))2 = (vj(xk)−Πijvj(xk))2

≤ a2
1(vj(xk)−Πijvj(xk1))

2 + a2
2(vj(xk)−Πijvj(xk2))

2

= a2
1(vj(xk)−Πijvj(xk3))

2 + a2
2(vj(xk)−Πijvj(xk3))

2

= a2
1(vj(xk)− vj(xk3))

2 + a2
2(vj(xk)− vj(xk3))

2

≤ (vj(xk)− vj(xk3))
2

≤ (vj(xk)− vj(xk1))
2 + (vj(xk1)− vj(xk3))

2.

Note that we can also get for the case (b)

(πijvj(xk)−Πijvj(xk))2 ≤ (vj(xk)− vj(xk2))
2 + (vj(xk2)− vj(xk3))

2.

Let T b
ij denote the set of elements in Tij , which have either one single vertex or

one edge lying on ∂Γij , and let Eb
ij be the set of edges of all elements in T b

ij . Then,
we obtain by (5) and above discussions

(6)

‖(πij −Πij)vj‖20, Γij

<∼ h2
i

∑
τ∈ T b

ij

∑
y, z∈ τ ∩Nij

(vj(y)− vj(z))2

<∼ h2
i

∑
e∈ Eb

ij

(vj(xe
1)− vj(xe

2))
2.

Hereafter, we use xe
1 and xe

2 to denote the two endpoints of an edge e associated
with Tij .

Step 2: Extend the sum in (6) into a multiple sums involving elements in Tji.

Consider an edge e ∈ Eb
ij . There are different location relations between the two

endpoints xe
1 and xe

2 and the elements in Tji: xe
1 and xe

2 lie in the same element
τe of Tji (see Figure 2 (a), (b) and (c)), or xe

1 and xe
2 lie in two different elements

τe
1 and τe

2 of Tji respectively (see Figure 2 (d), (e) and (f)). Let T e
ji ⊂ Tji be the

set of elements containing the endpoints of e. Namely, T e
ji = {τe} or T e

ji = {τ e
1 , τ e

2}.
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Figure 2. various location relations between the two endpoints
xe

1 and xe
2 and the elements in Tji.

By the triangle inequality, we have

(vj(xe
1)− vj(xe

2))
2 <∼ (vj(xe

1)− vj(xs))2 + (vj(xs)− vj(xe
2))

2

for any xs ∈ Nji. Noting that vj is linear on each element of Tji, we can derive for
all cases showed in Figure 2

(7) (vj(xe
1)− vj(xe

2))
2 <∼

∑

τ ∈T e
ji

∑

y, z∈ τ ∩Nji

(vj(y)− vj(z))2.

Thus, we obtain by (6) ∼ (7)

(8) ‖(πij −Πij)vj‖20, Γij

<∼ h2
i

∑

e∈ Eb
ij

∑

τ ∈ T e
ji

∑

y, z∈ τ ∩Nji

(vj(y)− vj(z))2.

Step 3: Eliminate the sum over Eb
ij .

For an element τ of Tji, there are at most O(hj

hi
) edges e ∈ Eb

ij such that an

endpoint of e contained in τ . Namely, each element τ ∈ Tji repeats at most O(hj

hi
)

times in the sums
∑

e∈ Eb
ij

∑
τ ∈ T e

ji

. Thus, we derive by (8)

(9) ‖(πij −Πij)vj‖20, Γij

<∼
hj

hi
· h2

i

∑

τ∈ Tji

∑

y, z∈ τ ∩Nji

(vj(y)− vj(z))2.

The definition of the discrete H1(Γij) semi-norm shows

(10)
∑

τ ∈ Tji

∑

y, z∈ τ ∩Nji

(vj(y)− vj(z))2 =∼ |vj |21, Γij
.

Thus, we get by (9), (10), the inverse estimate and the trace theorem

‖(πij −Πij)vj‖20, Γij

<∼ h2
i ·

hj

hi
|vj |21, Γij

<∼ hi|vj |21
2 , Γij

<∼ hi|vj |21, Ωj
.

The proof is then finished.

Remark 3.3 For vi = vh|Ωi , the following estimate also holds

‖(πij −Πij)vi‖0, Γij

<∼ h
1
2
i |vi|1, Ωi .

In fact, the above estimate is a direct result of Lemma 3.1 when Vj(Γij) = Vi(Γij).
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Lemma 3.2 Assume that αi ∈ ( 1
2 , 1]. Then,

(11) ‖Πijvi − vi‖ 1
2−αi, Γij

<∼ (1 + log
d

hi
)

1
2

hαi
i |vi|1, Ωi

.

Proof: By the inverse estimate, we get

(12) ‖vi −Πijvi‖ 1
2−αi, Γij

<∼ hαi−1
i ‖vi −Πijvi‖− 1

2 , Γij
.

The definition of the operator Πij indicates that the following equality

vi −Πijvi = 0

holds in all internal elements on Γij .
Then, we have by Lemma 6.8 in [11]

(13) ‖vi −Πijvi‖− 1
2 , Γij

<∼ (1 + log
d

hi
)

1
2

h
1
2
i ‖vi −Πijvi‖0, Γij

.

On the other hand, we derive by Remark 3.3, the inverse estimate and the trace
theorem

(14)

‖vi −Πijvi‖0, Γij
= ‖vi − πijvi‖0, Γij

+ ‖πijvi −Πijvi‖0, Γij

<∼ h
αi+

1
2

i |vi|αi+
1
2 , Γij

+ h
1
2
i |vi|1, Ωi

<∼ h
αi+

1
2

i h−αi
i |vi| 1

2 , Γij
+ h

1
2
i |vi|1, Ωi

<∼ h
1
2
i |vi|1, Ωi

.

Combining (12), (13) with (14), yields the desired result.

Lemma 3.3 Assume that Vj(Γij) ⊂ Vi(Γij) and αj ∈ (1
2 , 1]. Then,

(15) ‖vj −Πijvj‖ 1
2−αj , Γij

<∼ (1 + log
d

hj
)

1
2

h
αj

j |vj |1, Ωj
.

Proof: By the definition of the operator Πij , the equality

vj −Πijvj = 0

holds on all interior elements in Γij . Here, we have used the assumption Vj(Γij) ⊂
Vi(Γij).

For vj ∈ Vj(Γij) ⊂ Vi(Γij), we get by the inverse estimate

(16) ‖vj −Πijvj‖ 1
2−αj , Γij

<∼ h
αj−1
i ‖vj −Πijvj‖− 1

2 , Γij
.

By Lemma 6.8 in [11], we have

(17) ‖vj −Πijvj‖− 1
2 , Γij

<∼ (1 + log
d

hi
)

1
2

h
1
2
i ‖vj −Πijvj‖0, Γij

.

Note that hj ≥ hi, we obtain by Lemma 3.1, the inverse estimate and the trace
theorem

(18)

‖vj −Πijvj‖0, Γij
= ‖vj − πijvj‖0, Γij

+ ‖πijvj −Πijvj‖0, Γij

<∼ h
αj+

1
2

i |vj |αj+
1
2 , Γij

+ h
1
2
i |vj |1, Ωj

<∼ h
αj+

1
2

i h
−αj

j |vj | 1
2 , Γij

+ h
1
2
i |vj |1, Ωj

<∼ h
1
2
i |vj |1, Ωj

.
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Since 0 < hi ≤ hj < 1 and αj > 1
2 , we have

(19) (1 + log
d

hi
)

1
2 <∼ (1 + log

d

hj
)

1
2 (

hj

hi
)

1
2 <∼ (1 + log

d

hj
)

1
2 (

hj

hi
)αj .

Combining (16), (17), (18) with (19), gives the desired result.

Lemma 3.4 Assume that hi ≤ h
2αj

j (αj ∈ ( 1
2 , 1]). Then,

(20) ‖vj −Πijvj‖ 1
2−αj , Γij

<∼ h
αj

j |vj |1, Ωj
.

Proof: It is obvious that

(21) ‖vj −Πijvj‖ 1
2−αj , Γij

<∼ ‖vj −Πijvj‖0, Γij
.

By the inverse estimate, the trace theorem and the assumption that hi ≤ h
2αj

j ,
we obtain

(22)

‖vj − πijvj‖0, Γij

<∼ h
αj+

1
2

i |vj |αj+
1
2 , Γij

<∼ h
αj+

1
2

i · h−αj

j |vj | 1
2 , Γij

<∼ h
αj

j |vj |1, Ωj .

By the above inequality, Lemma 3.1 and hi ≤ h
2αj

j , we can derive

(23)

‖vj −Πijvj‖0, Γij
= ‖vj − πijvj‖0, Γij

+ ‖πijvj −Πijvj‖0, Γij

<∼ h
αj

j |vj |1, Ωj
+ h

1
2
i |vj |1, Ωj

<∼ h
αj

j |vj |1, Ωj
.

By (21), (22) and (23), yields the inequality (20).

For convenience, set ω = ωk on Ωk. Let ∂u
∂ni

denote the unit outward normal
derivative of u|Ωi on ∂Ωi.
Lemma 3.5 Assume that u|Ωk

∈ H1+αk(Ωk) with αk ∈ ( 1
2 , 1] ( k = 1, · · · , N).

Then,

(24)
| ∫
Γij

ωi
∂u
∂ni

· (vi − vj)ds| <∼
∑
Γij

‖ωju‖1+αj , Ωj
· ‖vj −Πijvj‖ 1

2−αj , Γij

+
∑
Γij

‖ωiu‖1+αi, Ωi
· ‖vi −Πijvi‖ 1

2−αi, Γij
.

Proof : Using the pointwise matching condition, yields

(25)

| ∫
Γij

ωi
∂u
∂ni

· (vi − vj)ds| ≤ | ∫
Γij

ωi
∂u
∂ni

· (vi −Πijvi + Πijvj − vj)ds|

≤ | ∫
Γij

ωi
∂u
∂ni

· (Πijvi − vi)ds|

+| ∫
Γij

ωj
∂u
∂nj

· (Πijvj − vj)ds|.

Here, we have used the fact that ωi
∂u
∂ni

= −ωj
∂u
∂nj

. By the definition of the negative
norm and the trace theorem, we derive

(26)
| ∫
Γij

ωi
∂u
∂ni

· (vi −Πijvi)ds| <∼ ‖ωi
∂u
∂ni
‖

αi− 1
2 , Γij

· ‖vi −Πijvi‖ 1
2−αi, Γij

<∼ ‖ωiu‖1+αi, Ωi
· ‖vi −Πijvi‖ 1

2−αi, Γij

and

(27) | ∫
Γij

ωj
∂u
∂nj

· (vj −Πijvj)ds| <∼ ‖ωju‖1+αj , Ωj
· ‖vj −Πijvj‖ 1

2−αj , Γij
.
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Substituting (26), (27) into (25), yields the inequality (24).

The following results will be used to analyze the consistence error.
Lemma 3.6 The following inequality holds

(28) ‖Πijv‖0, Γij
<∼ ‖πijv‖0, Γij

, ∀v ∈ C(Γij).

Proof : By the definition of the discrete L2(Γij)-norm, we have

‖Πij v‖0, Γij
=∼ ‖Πij v‖0, Γij , h

<∼ ‖πij v‖0, Γij , h
=∼ ‖πij v‖0, Γij

.

This gives the desired result.

Let us number all internal nodes in Nij from 1 to N0
ij . For the convenience, we

define the operator Π̂ij : W (Γij) → V 0
i (Γij) by

Π̂ij v =
N0

ij∑

i=1

v(xi) · ψi,

where ψi ∈ V 0
i (Γij) is the nodal basis function related to xi.

The following result gives the stability of the operator Π̂ij with respect to L2

norm.

Lemma 3.7 The operator Π̂ij satisfies

(29) ‖Π̂ijv‖0, Γij

<∼ ‖v‖0, Γij
, ∀ v ∈ W (Γij).

Proof : Note that

‖Π̂ijv‖0, Γij

=∼ ‖Π̂ijv‖0, Γij , h and ‖v‖0, Γij

=∼ ‖v‖0, Γij , h.

By the definition of the discrete L2(Γij)-norm and Π̂ij , we can derive the inequality
(29).

Lemma 3.8 For vi ∈ V (Ωi) and vj ∈ V (Ωj), we have

Πij(vj |Γij )−Πij(vi|Γij ) = Πij(Π̂ij(Πij(vj |Γij )− (vi|Γij ))).

Proof : For convenience, set

v = Πij(vj |Γij )−Πij(vi|Γij ) ∈ W (Γij).

Then, by the definitions of Πij and Π̂ij , we know that

ΠijΠ̂ijv(xk) = Π̂ijv(xk) = v(xk)

at each interior nodes xk. Let φk denote the basis function of W (Γij) associated
with the interior node xk (k = 1, · · · , N0

ij). Thus, the definition of W (Γij) implies
that

ΠijΠ̂ijv(x) =
N0

ij∑

k=1

ΠijΠ̂ijv(xk)φk(x) =
N0

ij∑

k=1

v(xk)φk(x) = v(x)

for any x ∈ Γij . Here, we have used the fact that both v and ΠijΠ̂ijv belong to
W (Γij). This gives the desired result.

Lemma 3.9 Assume that u|Ωk
∈ H1+αk(Ωk) with αk ∈ (1

2 , 1] ( k = 1, · · · , N). Let
ṽk ∈ V (Ωk) be the nodal interpolation of u|Ωk

. Then, we have for each Γij

‖Πij(ṽi|Γij − ṽj |Γij )‖0, Γij

<∼ h
αi+

1
2

i ‖u‖1+αi, Ωi
+ h

αj+
1
2

j ‖u‖1+αj , Ωj
.
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Proof : We derive by Lemma 3.6

‖Πij(ṽi|Γij − ṽj |Γij )‖0, Γij

<∼ ‖πij(ṽi|Γij − ṽj |Γij )‖0, Γij

=∼ ‖πij(ṽi|Γij − ṽj |Γij )− u|Γij + u|Γij‖0, Γij

=∼ ‖ṽi|Γij − u|Γij + u|Γij − πij(ṽj |Γij )‖0, Γij

<∼ ‖u|Γij
− ṽi|Γij

‖
0, Γij

+ ‖u|Γij
− πij(ṽj |Γij

)‖
0, Γij

<∼ h
1
2+αi

i ‖u|Γij
‖ 1

2+αi, Γij
+ ‖u|Γij

− πij(ṽj |Γij
)‖

0, Γij
.

In addition, we have

‖u|Γij
− πij(ṽj |Γij

)‖
0, Γij

= ‖u|Γij
− ṽj |Γij

+ ṽj |Γij
− πij(ṽj |Γij

)‖
0, Γij

<∼ ‖u|Γij
− ṽj |Γij

‖
0, Γij

+ ‖ṽj |Γij
− πij(ṽj |Γij

)‖
0, Γij

<∼ h
1
2+αj

j ‖u|Γij‖ 1
2+αj , Γij

+ ‖ṽj |Γij
− πij(ṽj |Γij

)‖
0, Γij

.

Then, we get for any constant sij ∈ (1, 1
2 + αj) (note that hi ≤ hj)

‖ṽj |Γij − πij(ṽj |Γij )‖0, Γij

<∼ ‖(πij − I)(u|Γij
− ṽj |Γij

)‖
0, Γij

+ ‖u|Γij
− ṽi|Γij

‖
0, Γij

<∼ h
sij

i ‖u|Γij − ṽj |Γij‖sij , Γij
+ h

1
2+αi

i ‖u|Γij‖ 1
2+αi, Γij

<∼ h
sij

i · h
1
2+αj−sij

j ‖u|Γij‖ 1
2+αj , Γij

+ h
1
2+αi

i ‖u|Γij‖ 1
2+αi, Γij

<∼ h
1
2+αj

j ‖u|Γij‖ 1
2+αj , Γij

+ h
1
2+αi

i ‖u|Γij‖ 1
2+αi, Γij

,

where I denotes an identical operator.
Combining above three inequalities, we can derive the desired result.

3.2. The proof of Theorem 3.1. For each Ωi, let J(i) denote the set of all faces
Γij satisfying

(a) Γij ⊂ ∂Ωi

and
(b) W (Γij) ⊂ Vi(Γij).

The condition (a) implies that Γij is a face of Ωi. The condition (b) indicates that
we take Tij (instead of Tji) as the triangulations defining the nodal basis functions
of W (Γij).

The proof of Theorem 3.1 is based on the following Strang Lemma

(30) ‖u− uh‖A
<∼ inf

vh∈Ṽ (Ω)
‖u− vh‖A + sup

vh∈Ṽ (Ω)

|
N∑

k=1

∫
∂Ωk

ωk
∂u
∂nk

(vh|Ωk
)ds|

‖vh‖A

.

Step 1: Estimate the first term (the consistence error) in the right of (30).

Let uhk
∈ V (Ωk) be the standard nodal interpolation of u|Ωk

. For each Γij , set

tij = Π̂ij(Πij(uhj |Γij )−Πij(uhi |Γij )).

Then, tij ∈ V 0
i (Γij). Let t̃iij ∈ V (∂Ωi) be the zero extension of tij . Let Ri

ij :
V (∂Ωi) → V (Ωi) denote the discrete harmonic extension operator, and set

ri
ij = Ri

ij(t̃
i
ij).

Define vh ∈ V (Ω) by

vh|Ωi = uhi +
∑

Γij∈ J(i)

ri
ij , i = 1, · · · , N.
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It can be verified by Lemma 3.8 that such vh belongs to Ṽ (Ω).
Using the stability of the discrete harmonic extension operator and the inverse

estimate, we deduce

(31) ‖ri
ij‖1, Ωi

<∼ ‖t̃iij‖ 1
2 , ∂Ωi

<∼ h
− 1

2
i ‖t̃iij‖0, ∂Ωi

= h
− 1

2
i ‖tij‖0, Γij

.

This, together with Lemma 3.6, yields

‖u− vh‖1, Ωi
<∼ ‖u− uhi

‖1, Ωi
+

∑
Γij∈J(i)

‖ri
ij‖1, Ωi

<∼ ‖u− uhi‖1, Ωi
+

∑
Γij∈J(i)

h
− 1

2
i ‖tij‖0, Γij

= ‖u− uhi
‖1, Ωi

+
∑

Γij∈J(i)

h
− 1

2
i ‖Π̂ij(Πij(uhi

|Γij
− uhj

|Γij
))‖

0, Γij

<∼ hαi
i ‖u‖1+αi, Ωi

+
∑

Γij∈J(i)

h
− 1

2
i ‖Πij(uhi

|Γij
− uhj

|Γij
)‖

0, Γij
.

By the above inequality and Lemma 3.9, we obtain

(32) inf
vh∈Ṽ (Ω)

‖u− vh‖A
<∼ (

N∑

k=1

h2αk

k ‖u‖21+αk, Ωk
)

1
2 .

Here, we have used the fact that hi ≤ hj .

Step 2: Estimate the second term (the approximate error) in the right of (30).

Since ωi
∂u
∂ni

= −ωj
∂u
∂nj

for each face Γij , we derive

(33)
N∑

k=1

∫

∂Ωk

ωk
∂u

∂nk
(vh|Ωk

)ds =
∑

Γij

∫

Γij

ωi
∂u

∂ni
(vi − vj)ds.

It follows by Lemma 3.1∼3.5 that

(34)
| ∫
Γij

ωi
∂u
∂ni

(vi − vj)ds|2 <∼
∑

k=i, j

(1 + log d
hk

)h2αk

k ‖ωku‖21+αk, Ωk
· |vk|21, Ωk

<∼ ‖vk‖2A ·
∑

k=i, j

(1 + log d
hk

)h2αk

k ‖u‖21+αk, Ωk
.

Then, we obtain by (34) and (33)

(35) sup
vh∈Ṽ (Ω)

|
N∑

k=1

∫
∂Ωk

ωk
∂u
∂nk

(vh|Ωk
)ds|

‖vh‖A

<∼ (
N∑

k=1

(1 + log
d

hk
)h2αk

k ‖u‖21+αk, Ωk
)

1
2 .

Now combining (35) with (32), we get Theorem 3.1.

4. Numerical Experiment

Consider the model problem

(36)
{ −∇(ω∇u) = f, in Ω,

u = g, on ∂Ω,

where Ω = [0, 1]× [0, 1]× [0, 1].
We decompose Ω into Np ×Np ×Np cubes with the same size, and number all

subdomains in the usual way, where each cube corresponds to a subdomain. Let
each subdomain closing the boundary ∂Ω be divided into nb×nb×nb smaller cubes,
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and let each interior subdomain be divided into nf ×nf ×nf smaller cubes. Then,
we divide further each small cube into six tetrahedral elements.

As usual, we transform the resulting discrete problem (3) into a saddle-point
system, in which a singular subproblem is involved for each interior subdomain
(floating subdomain). We use the regularization method (see [8]) to solve such
saddle-point system, where we choose the regularization parameter η = 1.0× 10−5

to handle the singularity on the floating subdomains.
For convenience, we take Np = 3 here. The l2 errors of the approximate solutions

are shown in the following tables for different nf and nb.

Example 4.1 Let f and g be defined such that the exact solution u = sin πx ·
sin πy · sin πz and ω = 1 + xyz.

Table 4.1
Np nb nf l2 error nf l2 error
3 4 8 1.28× 10−2 7 1.32× 10−2

3 8 16 3.25× 10−3 14 3.34× 10−3

3 16 32 7.53× 10−4 28 8.27× 10−4

Example 4.2 Let f and g be defined such that the exact solution u = (x2 + y2 + z2)
1
5

and ω = 1.
Table 4.2

Np nb nf l2 error nf l2 error
3 4 8 2.32× 10−3 7 2.42× 10−3

3 8 16 6.46× 10−4 14 6.74× 10−4

3 16 32 1.70× 10−4 28 1.78× 10−4

Remark 4.1 The above tables indicate that the errors of the approximate solutions
are almost optimal, which confirm our theoretical results.
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