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CONVERGENCE OF THE TIME-DOMAIN PERFECTLY
MATCHED LAYER METHOD FOR ACOUSTIC SCATTERING

PROBLEMS

ZHIMING CHEN

Abstract. In this paper we establish the stability and convergence of the

time-domain perfectly matched layer (PML) method for solving the acoustic

scattering problems. We first prove the well-posedness and the stability of

the time-dependent acoustic scattering problem with the Dirichlet-to-Neumann

boundary condition. Next we show the well-posedness of the unsplit-field PML

method for the acoustic scattering problems. Then we prove the exponential

convergence of the non-splitting PML method in terms of the thickness and

medium property of the artificial PML layer. The proof depends on a stability

result of the PML system for constant medium property and an exponential

decay estimate of the modified Bessel functions.

Key Words. perfectly matched layer, acoustic scattering, exponential conver-
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1. Introduction

We consider the acoustic scattering problem with the sound-hard boundary con-
dition on the obstacle

∂u

∂t
= −divp + f(x, t),

∂p
∂t

= −∇u in [R2\D̄]× (0, T ),(1.1)

p · nD = 0 on ΓD × (0, T ),(1.2) √
r(u− p · x̂) → 0, as r = |x| → ∞, a.e. t ∈ (0, T ),(1.3)

u|t=0 = u0, p|t=0 = p0.(1.4)

Here u is the pressure and p is the velocity field of the wave. D ⊂ R2 is a bounded
domain with Lipschitz boundary ΓD, x̂ = x/|x|, and nD is the unit outer normal to
ΓD. f, u0,p0 are assumed to be supported in the circle BR = {x ∈ R2 : |x| < R} for
some R > 0. (1.3) is the radiation condition which corresponds to the well-known
Sommerfeld radiation condition in the frequency domain. We remark that the
results in this paper can be easily extended to solve scattering problems with other
boundary conditions such as the sound-soft or the impedance boundary condition
on ΓD.

One of the fundamental problems in the efficient simulation of the wave propa-
gation is the reduction of the exterior problem which is defined in the unbounded
domain to the problem in the bounded domain. The first objective of this paper is
to prove the well-posedness and stability of the system (1.1)-(1.4) by imposing the
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Dirichlet-to-Neumann boundary condition on the ΓR = ∂BR. The proof depends
on the abstract inversion theorem of the Laplace transform and the a priori estimate
for the Helmholtz equation which seems to be new and is of independent interest.
In Lax and Phillips [20], the scattering problem of the wave equation is studied by
using the semigroup theory of operators in the absence of the source function f .
We remark that the well-posedness of scattering problems in the frequency domain
is well-known (cf. e.g. Colten and Kress [10]).

The non-local Dirichlet to Neumann boundary condition for (1.1)-(1.4) is the
starting point of various approximate absorbing boundary conditions which have
been proposed and studied in the literature, see the review papers Givoli [16],
Tsynkov [25], Hagstrom [17] and the references therein. An interesting alternative
to the method of absorbing boundary conditions is the method of perfectly matched
layer (PML). Since the work of Bérenger [5] which proposed a PML technique
for solving the time-dependent Maxwell equations in the Cartesian coordinates,
various constructions of PML absorbing layers have been proposed and studied
in the literature (cf. e.g. Turkel and Yefet [27], Teixeira and Chew [24] for the
reviews). Under the assumption that the exterior solution is composed of outgoing
waves only, the basic idea of the PML technique is to surround the computational
domain by a layer of finite thickness with specially designed model medium that
would either slow down or attenuate all the waves that propagate from inside the
computational domain.

There are two classes of time-domain PML methods for the wave scattering prob-
lems. The first class, called “split-field PML method” in the literature, includes the
original Bérenger PML method. It is shown in Abarbanel and Gottlieb [2] that the
Bérenger PML method is only weakly well-posed and thus may suffer instability
in practical applications. The second class, the so-called “unsplit-field PML for-
mulations” in the literature, is however, strongly well-posed. One such successful
method is the uniaxial PML method developed in Sacks et al [23] and Gedney [15]
for the Maxwell equations in the Cartesian coordinates. In the curvilinear coordi-
nated, the split-field PML method is introduced in Collino and Monk [9] and the
unsplit-field PML methods are introduced in Petropoulos [22] and [24] for Maxwell
equations.

Although the tremendous attention and success in the application of PML meth-
ods in the engineering literature, there are few mathematical results on the conver-
gence of the PML methods. For the Helmholtz equation in the frequency domain,
it is proved in Lassas and Somersalo [19], Hohage et al [18] that the PML solution
converges exponentially to the solution of the original scattering problem as the
thickness of the PML layer tends to infinity. In Chen and Wu [8], Chen and Liu
[7], an adaptive PML technique is proposed and studied in which a posteriori error
estimate is used to determine the PML parameters. In particular, it is shown that
the exponential convergence can be achieved for fixed thickness of the PML layer by
enlarging PML medium properties. For the time-domain PML method, not much
mathematical convergence analysis is known except the work in Hagstrom [17] in
which the planar PML method in one space direction is considered for the wave
equation. In de Hoop et al [12], Diaz and Joly [13], the PML system with point
source is analyzed based on the Cagniard - de Hoop method.

The long time stability of the PML methods is also a much studied topic in the
literature (see e.g. Bécache and Joly [3], Bécache et al [4], Appelö et al [1]). For a
PML method to be practically useful, it must be stable in time, that is, the solution
should not grow exponentially in time. We remark that the well-posedness of the
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PML system which follows from the theory of symmetric hyperbolic systems allows
the exponential growth of the solutions. In [3, 4, 1] the stability of the Cauchy
problem of the PML systems is considered for the constant PML medium property
by using the energy argument.

In this paper we will show the exponential convergence and stability of the
unsplit-field PML method for the acoustic wave scattering problem in the polar co-
ordinates. Our analysis starts with the well-posedness and stability of the scattering
problem (1.1)-(1.4) in Section 2. We then introduce the upsplit-field PML method
in the polar coordinates by following the procedure in [22] for Maxwell equations
in Section 3. Also the well-posedness of the initial boundary value problem of the
PML system is established. In Section 4 we prove the stability of the initial bound-
ary value problem of the PML system for the constant medium property based on
the method of the Laplace transform and the analysis in the frequency domain. In
Section 5 we prove the exponential convergence of the PML method.

One of the key ingredients in our analysis is the following uniform exponential
decay property of the modified Bessel function Kn(z) (Lemma 5.1)

|Kn(sρ1 + τ)|
|Kn(sρ2)| ≤ e

−τ

�
1− ρ2

2
ρ2
1

�
,

for any n ∈ Z, s ∈ C with Re (s) > 0, ρ1 > ρ2 > 0, and τ > 0. The proof depends
on the Macdonald formula for the integral representation of the product of modified
Bessel functions and extends our earlier uniform estimate in [7] for the first Hankel
function H1

ν (z), ν ∈ R, in the upper-half complex plane.

2. The acoustic scattering problem

For any s ∈ C such that Re (s) > 0, we let uL = L (u) and pL = L (p) be
respectively the Laplace transform of u and p in time

uL(x, s) =
∫ ∞

0

e−stu(x, t)dt, pL(x, s) =
∫ ∞

0

e−stp(x, t)dt.

Since L (∂tu) = suL−u0 and L (∂tp) = spL −p0, by taking the Laplace transform
of (1.1) we get

suL − u0 = −divpL + fL , spL − p0 = −∇uL in R2\D̄,(2.1)

where fL = L (f). Because fL , u0, p0 are supported inside BR, we know that uL

satisfies the Helmholtz equation outside BR

−∆uL + s2uL = 0.

Moreover, (1.3) implies that uL satisfies the radiation condition

√
r

(
∂uL

∂r
+ suL

)
→ 0, as r →∞.

We have the following series representation for uL outside BR [17]

uL =
∞∑

n=−∞

Kn(sr)
Kn(sR)

un
L
(R, s)einθ,(2.2)

where un
L
(R, s) = 1

2π

∫ 2π

0
uL(R, θ, s)e−inθdθ. Let G : H1/2(ΓR) → H−1/2(ΓR) be

the Dirichlet-to-Neumann operator for the Helmholtz equation

GuL(R, θ, s) =
1
s

∂uL

∂r

∣∣∣
ΓR

=
∞∑

n=−∞

K ′
n(sR)

Kn(sR)
un

L
(R, s)einθ.(2.3)
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Then, since p0 is supported in BR, by (2.1),

pL · x̂ + GuL = 0 on ΓR.

By taking the inverse Laplace transform we obtain the following Dirichlet-to-Neumann
boundary condition for the acoustic scattering problem

p · x̂ + T (u) = 0 on ΓR × (0, T ),(2.4)

where T = L −1 ◦G ◦L and from (2.3) we know that

T (u)(R, θ, t) =
∞∑

n=−∞

[
L −1

(
K ′

n(sR)
Kn(sR)

)
∗ un(R, t)

]
einθ,(2.5)

where un(R, t) = L −1(un
L
(R, s)) = 1

2π

∫ 2π

0
u(R, θ, t)e−inθdθ.

Based on (2.4) we know that the original scattering problem (1.1)-(1.4) is reduced
to the following problem on the bounded domain ΩR × (0, T ), ΩR = BR\D̄,

∂u

∂t
= −divp + f,

∂p
∂t

= −∇u in ΩR × (0, T ),(2.6)

p · nD = 0 on ΓD × (0, T ),(2.7)
p · x̂ + T (u) = 0 on ΓR × (0, T ),(2.8)
u|t=0 = u0, p|t=0 = p0.(2.9)

In this section we show that the reduced scattering problem on the bounded domain
(2.6)-(2.9) is well-posed and stable. We first state the assumptions on the boundary
and initial data:

(H1) u0 ∈ H2(ΩR) and supp(u0) ⊂ BR;
(H2) p0 ∈ H(div; ΩR), divp0 ∈ H2(ΩR), and supp(p0) ⊂ BR;
(H3) f ∈ H1(0, T ;L2(ΩR)), f |t=0 = 0, and supp(f) ⊂ BR × (0, T );
(H4) Compatibility conditions: p0 · nD = 0, ∇u0 · nD = 0 on ΓD.

In the rest of this paper, we will always assume that f is extended so that
f ∈ H1(0,+∞; L2(ΩR)) and ‖f‖H1(0,+∞;L2(ΩR)) ≤ C‖f‖H1(0,T ;L2(ΩR)). We also
remark that the assumption f |t=0 = 0 in (H3) is not very restrictive in practical
applications. If f(x, 0) 6= 0, let w be the solution of the equation −∆w = f(x, 0)
in ΩR with the boundary condition ∇w · n = 0 on ∂ΩR. Then q0 = −∇w satisfies
divq0 = f(x, 0) and (u,p−q0) satisfies (1.1)-(1.4) with the source f ′ = f − f(x, 0)
and the initial condition p′0 = p0 − q0.

The following theorem is the main result of this section.

Theorem 2.1. Let the assumptions (H1)-(H4) be satisfied. Then the problem
(2.6)-(2.9) has a unique solution u ∈ L2(0, T ;H1(ΩR)) ∩ H1(0, T ;L2(ΩR)), p ∈
L2(0, T ;H(div, ΩR)) ∩H1(0, T ; L2(ΩR)) such that u|t=0 = u0, p|t=0 = p0, and for
any v ∈ L2(0, T ;H1(ΩR)), q ∈ L2(0, T ; L2(ΩR)),

∫ T

0

[(∂u

∂t
, v

)
− (p,∇v)− 〈T (u), v〉ΓR

]
dt =

∫ T

0

(f, v)dt,(2.10)

∫ T

0

[(∂p
∂t

,q
)

+ (∇u,q)
]

dt = 0.(2.11)

Here T (u) ∈ L2(0, T ; H−1/2(ΓR)). Moreover, (u,p) satisfies the following stability
estimate

max
0≤t≤T

(‖ ∂tu ‖L2(ΩR) + ‖∇u ‖L2(ΩR) + ‖ ∂tp ‖L2(ΩR) + ‖divp ‖L2(ΩR)

)
(2.12)

≤ C‖(u0,p0)‖ΩR
+ C‖∂tf‖L1(0,T ;L2(ΩR)),
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where ‖(u0,p0)‖ΩR
= ‖u0 ‖H1(ΩR) + ‖divp0 ‖L2(ΩR).

We remark that the stability estimate (2.12) means the solution of the scattering
problem does not grow in time. In the absence of the source f , however, it is
proved in Lax and Phillips [20] by using the semigroup theory of operators that the
solution of the scattering problem tends to zero in any bounder domain as time goes
to infinity. For star-shaped obstacles, the exponential decay of scattering solutions
for the wave equations is well-known, see, e.g. Morawetz [21].

The proof of Theorem 2.1 which depends on the abstract inversion theorem of
the Laplace transform and the a priori estimate for the Helmholtz equation will
be given in §2.2. In the following we first consider the properties of the modified
Bessel functions to be used in the paper.

2.1. The modified Bessel function. For ν ∈ C, the modified Bessel functions
Kν(z), where z ∈ C, is the solution of the ordinary differential equation

z2 d2y

dz2
+ z

dy

dz
− (z2 + ν2)y = 0,(2.13)

which satisfies the following asymptotic behavior as |z| → ∞

Kν(z) ∼
( π

2z

)1/2

e−z.

The importance of the function Kν(z) in mathematical physics lies in the fact that
it is a solution of (2.13) which tends to zero exponentially as z → ∞ through
positive values. We refer to the treatise Watson [28] for extensive studies on the
functions Kν(z).

The following lemma is proved in [28, P.439].

Lemma 2.2 (Macdonald formula). For any ν ∈ C and z1, z2 ∈ C satisfying

| arg z1| < π, | arg z2| < π and | arg(z1 + z2)| < 1
4
π,

we have

Kν(z1)Kν(z2) =
1
2

∫ ∞

0

e−
v
2−

z2
1+z2

2
2v Kν

(z1z2

v

) dv

v
.

Lemma 2.3. For any ν ∈ R and z ∈ C such that Re (z) > 0, we have

|Kν(z)|2 =
1
2

∫ ∞

0

e
− |z|22w − z2+z̄2

2|z|2 w
Kν(w)

dw

w
.

Proof. Since Kν(z̄) = Kν(z) for real ν, we have

|Kν(z)|2 = Kν(z)Kν(z) = Kν(z)Kν(z̄).

Since Re (z) > 0, we have | arg(z + z̄)| = 0 < π
4 and thus we can use Lemma 2.2 to

obtain

|Kν(z)|2 =
1
2

∫ ∞

0

e−
v
2− z2+z̄2

2v Kν

( |z|2
v

)
dv

v
.

This proves the lemma after the change of variable w = |z|2/v. ¤

An important consequence of this lemma is that for real ν, Kν(z) has no zeros
if | arg z| ≤ 1

2π [28, P.511], which implies that Kn(sR) 6= 0 for any n ∈ Z, R > 0,
s ∈ C with Re (s) > 0. This justifies the writing of Kn(sR) in the denominator in
(2.3).

The following integral representation of Kν(z) is useful in our analysis [28, P.181].
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Lemma 2.4 (Schläfli integral representation). For any ν ∈ R and z ∈ C such that
| arg(z)| < π

2 , we have

Kν(z) =
∫ ∞

0

e−z cosh(t) cosh(νt)dt.

Lemma 2.5. For any ν ∈ R and z ∈ C such that | arg(z)| < π
2 , we have

Kν(|z|) ≤ |Kν(z)| ≤ Kν(Re (z)).

Proof. First by Lemma 2.4 we have

|Kν(z)| =
∣∣∣∣
∫ ∞

0

e−z cosh(t) cosh(νt)dt

∣∣∣∣

≤
∫ ∞

0

e−Re (z) cosh(t) cosh(νt)dt

= Kν(Re (z)).

Next, if z = z1 + iz2, z1, z2 ∈ R, then

z2 + z̄2

2|z|2 =
z2
1 − z2

2

z2
1 + z2

2

= 1− 2z2
2

z2
1 + z2

2

,

which, by Lemma 2.3, yields

|Kν(z)|2 =
1
2

∫ ∞

0

e−
|z|2
2w −w · e

2z2
2

z2
1+z2

2
w
Kν(w)

dw

w

≥ 1
2

∫ ∞

0

e−
|z|2
2w −wKν(w)

dw

w

= Kν(|z|)2.
This completes the proof. ¤

Lemma 2.6. For any ν ∈ R and ρ1 > ρ2 > 0, we have

Kν(ρ1) ≤ e−(ρ1−ρ2)Kν(ρ2).

Proof. This is a direct consequence of the Schläfli integral representation in Lemma
2.3 and the fact that cosh(t) ≥ 1 for t ≥ 0. ¤

2.2. The proof of Theorem 2.1. We start with the following lemma which can
be proved by the standard energy argument.

Lemma 2.7. Let the assumptions (H1)-(H4) be satisfied. Let U(x, t) be the solution
of the following problem

∂ttU −∆U = 0 in ΩR × (0, T ),
∇U · nD = 0 on ΓD, U = 0 on ΓR,

U |t=0 = u0, ∂tU |t=0 = −divp0 in ΩR.

Then

‖ ∂tU ‖2L2(ΩR) + ‖∇U ‖2L2(ΩR) = ‖∇u0 ‖2L2(ΩR) + ‖divp0 ‖2L2(ΩR),

‖ ∂ttU ‖2L2(ΩR) + ‖∇(∂tU) ‖2L2(ΩR) = ‖∆u0 ‖2L2(ΩR) + ‖divp0 ‖2L2(ΩR),

‖ ∂tttU ‖2L2(ΩR) + ‖∇(∂ttU) ‖2L2(ΩR) = ‖∆u0 ‖2L2(ΩR) + ‖∆divp0 ‖2L2(ΩR).
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Denote by P = p0 −
∫ t

0

∇U . Let u′ = u−U and p′ = p−P. Then by (1.1) we

know that

∂u′

∂t
= −divp′ + f,

∂p′

∂t
= −∇u′.(2.14)

By (H4), the boundary condition (1.2) becomes

p′ · nD = 0 on ΓD.(2.15)

By (2.4) we have

p′ · x̂ + T (u′) = −P · x̂ on ΓR.(2.16)

It is obvious that

u′|t=0 = 0, p′|t=0 = 0.(2.17)

Let u′
L

= L (u′),p′
L

= L (p′), and PL = L (P). Then by taking the Laplace
transform of (2.14)-(2.16) we obtain

su′
L

= −divp′
L

+ fL , sp′
L

= −∇u′
L

in ΩR,(2.18)

p′
L
· nD = 0 on ΓD, p′

L
· x̂ = −Gu′

L
−PL · x̂ on ΓR.(2.19)

Notice that (2.18)-(2.19) is the standard scattering problem of the Helmholtz equa-
tion for u′

L
whose well-posedness is guaranteed. Our strategy to show the well-

posedness of (2.14)-(2.17) and thus (2.6)-(2.9) is to show the inverse Laplace trans-
form of the solution (u′

L
,p′

L
) of (2.18)-(2.19) is existent.

We first recall the following theorem in Treves [26, Theorem 43.1] which is the
analog of the Paley-Wiener-Schwarz theorem for the Fourier transform of the dis-
tributions with compact support in the case of Laplace transform .

Lemma 2.8. Let h(s) denote a holomorphic function in the half-plane Re (s) > σ0,
valued in the Banach space E. The following conditions are equivalent:
(i) there is a distribution T ∈ D′+(E) whose Laplace transform is equal to h(s);
(ii) there is a σ1 real, σ0 ≤ σ1 < ∞, a constant C > 0, and an integer k ≥ 0 such
that, for all complex numbers s, Re (s) > σ1,

‖h(s) ‖E ≤ C(1 + |s|)k.

Here D′+ is the space of distributions on the real line which vanish identically in the
open negative half-line.

The following lemma on the Helmholtz scattering problems is of independent
interest.

Lemma 2.9. Let s = s1 + is2, s1 > 0, s2 ∈ R. For any g ∈ L2(ΩR) and µ ∈
H−1/2(ΓR), let w be the weak solution of the following scattering problem

−∆w + s2w = g in ΩR,(2.20)
∂w

∂nD
= 0 on ΓD,

∂w

∂r
= sGw + µ on ΓR.(2.21)

Then there exists a constant C independent of s such that

‖∇w ‖L2(ΩR) + ‖ sw ‖L2(ΩR) ≤
C

s1

(
‖ g ‖L2(ΩR) + ‖µ ‖H−1/2(ΓR) + ‖ s̄µ ‖H−1/2(ΓR)

)
.
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Proof. By testing (2.20) with any v ∈ H1(ΩR) and using the boundary conditions
(2.21) we know that

∫

ΩR

(
∇w · ∇v̄ + s2wv̄

)
dx− 〈sGw, v〉ΓR

= (g, v) + 〈µ, v〉ΓR
,(2.22)

where (·, ·) stands for the inner product in L2(ΩR), and 〈·, ·〉ΓR
is the duality pairing

between H−1/2(ΓR) and H1/2(ΓR). Since s2 = s2
1−s2

2+i(2s1s2), by choosing v = w
in (2.22) and taking respectively the real and imaginary part of the equation we
get

∫

ΩR

[
|∇w|2 + (s2

1 − s2
2)|w|2

]
− Re 〈sGw,w〉ΓR = Re

[
(g, w) + 〈µ,w〉ΓR

]
,(2.23)

2s1s2

∫

ΩR

|w|2 − Im 〈sGw,w〉ΓR
= Im

[
(g, w) + 〈µ,w〉ΓR

]
.(2.24)

In the domain R2\B̄R, we let

w(r, θ) =
∞∑

n=−∞

Kn(sr)
Kn(sR)

wneinθ, wn =
1
2π

∫ 2π

0

w(R, θ)e−inθdθ.(2.25)

It is clear that w satisfies the Helmholtz equation

−∆w + s2w = 0 in R2\B̄R,(2.26)

and the Sommerfeld radiation condition
√

r

(
∂w

∂r
+ sw

)
→ 0 as r = |x| → ∞.(2.27)

Multiplying (2.26) by w̄ and integrating over Bρ\B̄R, where ρ > R, we have

2s1s2

∫

Bρ\B̄R

|w|2dx− Im
∫

ΓR∪Γρ

∂w

∂n
w̄ds = 0.

Thus

2s1s
2
2

∫

Bρ\B̄R

|w|2 − Im

(
s2

∫

Γρ

∂w

∂r
w̄

)
+ Im

(
s2

∫

ΓR

∂w

∂r
w̄

)
= 0,

which yields, since s1 > 0,

−Im
(

s2

∫

ΓR

∂w

∂r
w̄

)
≥ −Im

(
s2

∫

Γρ

∂w

∂r
w̄

)
.

By Lemmas 2.5-2.6 we have, for ρ > |s|
s1

R,
∫

Γρ

|w|2 = 2π

∞∑
n=−∞

ρ
|Kn(sρ)|2
|Kn(sR)|2 |wn|2 ≤ 2π

∞∑
n=−∞

ρ
|Kn(s1ρ)|2
|Kn(|s|R)|2 |wn|2

≤ ρ

R
e−(s1ρ−|s|R)‖w ‖2L2(ΓR)

→ 0, as ρ →∞.

On the other hand, by (2.27),
∥∥∥∥

∂w

∂r
+ sw

∥∥∥∥
L2(Γρ)

→ 0, as ρ →∞.
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Thus we conclude that

−Im
(

s2

∫

ΓR

∂w

∂r
w̄

)
≥ − lim

ρ→∞
Im

(
s2

∫

Γρ

∂w

∂r
w̄

)
= 0,(2.28)

which, together with (2.24), implies

2s1s
2
2

∫

ΩR

|w|2dx ≤ s2Im
[
(g, w) + 〈µ, w〉ΓR

]
.(2.29)

Next, by Lemma 2.4,

|Kn(sr)|2 =
1
2

∫ ∞

0

e
− |s|2r2

2τ − s2+s̄2

2|s|2 τ
Kn(τ)

dτ

τ
,

which is monotonely decreasing in r, thus
d

dr
|Kn(sr)|2 ≤ 0 and consequently

−Re
(∫

ΓR

∂w

∂r
w̄

)
= −1

2

∫

ΓR

∂

∂r
|w|2 = −πR

∞∑
n=−∞

d

dr

[ |Kn(sr)|2
|Kn(sR)|2

]

r=R

|wn|2 ≥ 0.

Therefore, by (2.23) and (2.29) we obtain
∫

ΩR

[|∇w|2 + (s2
1 + s2

2)|w|2
]
dx

≤ 2s2
2

∫

ΩR

|w|2dx + Re
[
(g, w) + 〈µ,w〉ΓR

]

≤ s2

s1
Im

[
(g, w) + 〈µ,w〉ΓR

]
+ Re

[
(g, w) + 〈µ,w〉ΓR

]

=
1
s1

Re
[
(s̄g, w) + 〈s̄µ, w〉ΓR

]

≤ C

s1
‖ g ‖L2(ΩR)‖ sw ‖L2(ΩR)

+
C

s1

(‖ s̄µ ‖H−1/2(ΓR)‖∇w ‖L2(ΩR) + ‖µ ‖H−1/2(ΓR)‖ sw ‖L2(ΩR)

)
.

The lemma now follows from the Cauchy-Schwarz inequality. ¤

Lemma 2.10. Let s = s1 + is2 with s1 > 0, s2 ∈ R. We have

−Re
(

K ′
n(sR)

Kn(sR)

)
≥ 0.

Proof. Since w = Kn(sr)einθ satisfies the Helmholtz equation (2.26) with the radi-
ation condition. The argument to derive (2.28) implies that

−Im
(

s2s
K ′

n(sR)
Kn(sR)

)
≥ 0.

Moreover, since
d

dr
|Kn(sr)|2 ≤ 0 as noted in the proof of last lemma, we have

−Re
(
s

K′
n(sR)

Kn(sR)

)
≥ 0. Now denote s

K′
n(sR)

Kn(sR) = γ1 + iγ2 for γ1, γ2 ∈ R, then we know
that γ1 ≤ 0, s2γ2 ≤ 0. Therefore, since s = s1 + is2, s1 > 0, we obtain

Re
(

K ′
n(sR)

Kn(sR)

)
= Re

(
γ1 + iγ2

s

)
=

1
|s|2 Re (s̄γ) =

1
|s|2 (s1γ1 + s2γ2) ≤ 0.

This completes the proof. ¤
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Lemma 2.11. For any ξ ∈ L2(0, T ;H1/2(ΓR)), we have

−Re
∫ T

0

e−2s1t〈T (ξ), ξ〉ΓR
dt ≥ 0.

Proof. Let

ξ(θ, t) =
∞∑

n=−∞
ξn(t)einθ, ξn(t) =

1
2π

∫ 2π

0

ξ(θ, t)e−inθdt.

By (2.5) we know that

〈T (ξ), ξ〉ΓR
= 2πR

∞∑
n=−∞

[
L −1

(
K ′

n(sR)
Kn(sR)

)
∗ ξn

]
ξ̄n.

Denote ξ̃n = ξnχ[0,T ], where χ[0,T ] is the characteristic function of the interval
(0, T ). Then

−
∫ T

0

e−2s1t〈T (ξ), ξ〉ΓR
dt

= −2πR

∞∑
n=−∞

∫ T

0

e−2s1t

[
L −1

(
K ′

n(sR)
Kn(sR)

)
∗ ξn

]
ξ̄ndt

= −2πR

∞∑
n=−∞

∫ ∞

−∞
e−2s1t

[
L −1

(
K ′

n(sR)
Kn(sR)

)
∗ ξ̃n

]
¯̃
ξndt.

By the formula for the inverse Laplace transform g(t) = F−1(es1tL (g)(s1 + is2)),
where F−1 denotes the inverse Fourier transform with respect to s2, we know from
the Plancherel identity that

−
∫ T

0

e−2s1t〈T (ξ), ξ〉ΓR
dt = −R

∞∑
n=−∞

∫ ∞

−∞

K ′
n(sR)

Kn(sR)
|L (ξ̃n)|2ds2.

This completes the proof by Lemma 2.10. ¤
Now we are in the position to prove the main result of this section.

Proof of Theorem 2.1. Our starting point is the scattering problem of the Helmholtz
equation (2.18)-(2.19) which has a unique solution u′

L
∈ H1(ΩR) and p′

L
∈ H(div; ΩR).

It is obvious that u′
L

satisfies

−∆u′
L

+ s2u′
L

= sfL in ΩR,

∂u′
L

∂nD
= 0 on ΓD,

∂u′
L

∂r
= sGu′

L
+ sPL · x̂ on ΓR.

By Lemma 2.9, there exists a constant C > 0 independent of s such that

‖∇u′
L
‖L2(ΩR) + ‖ su′

L
‖L2(ΩR)

≤ C

s1

(‖ sfL ‖L2(ΩR) + ‖ sPL · x̂ ‖H−1/2(ΓR) + ‖ |s|2PL · x̂ ‖H−1/2(ΓR)

)
.

Moreover, by (2.18),

‖divp′
L
‖L2(ΩR) + ‖ sp′

L
‖L2(ΩR)(2.30)

≤ C

s1

(‖ fL ‖L2(ΩR) + ‖ sfL ‖L2(ΩR)

)

+
C

s1

(‖ sPL · x̂ ‖H−1/2(ΓR) + ‖ |s|2PL · x̂ ‖H−1/2(ΓR)

)
.
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By [26, Lemma 44.1], u′
L
,p′

L
are holomorphic functions of s on the half plane

Re (s) > γ > 0, where γ is any positive constant. By Lemma 2.8 the inverse Laplace
transform of u′

L
,p′

L
are existent and supported in [0,∞]. Denote by u′ = L −1(u′

L
),

p′ = L −1(p′
L
). Then, since u′

L
= L (u′) = F (e−s1tu′), where F is the Fourier

transform in s2, by the Parseval identity and (2.30), we have
∫ ∞

0

e−2s1t
(
‖∇u′ ‖2L2(ΩR) + ‖ ∂tu

′ ‖2L2(ΩR)

)
dt

= 2π

∫ ∞

−∞

(
‖∇u′

L
‖2L2(ΩR) + ‖ su′

L
‖2L2(ΩR)

)
ds2

≤ C

s2
1

∫ ∞

−∞
‖ sfL ‖2L2(ΩR)ds2

+
C

s2
1

∫ ∞

−∞

(
‖ sPL · x̂ ‖2H−1/2(ΓR) + ‖ |s|2PL · x̂ ‖2H−1/2(ΓR)

)
ds2.

Since f |t=0 = 0 in ΩR, P · x̂|t=0 = ∂tP · x̂|t=0 = 0 on ΓR, we have L (∂tf) = sfL in
ΩR and L (∂tP · x̂) = sPL · x̂ on ΓR. Moreover, notice that

|s|2PL · x̂ = (2s1 − s)sPL · x̂ = 2s1L (∂tP · x̂)−L (∂2
t P · x̂) on ΓR,

we have∫ ∞

0

e−2s1t
(
‖∇u′ ‖2L2(ΩR) + ‖ ∂tu

′ ‖2L2(ΩR)

)
dt

≤ C

s2
1

∫ ∞

−∞
‖L (∂tf) ‖2L2(ΩR)ds2

+ C

(
1 +

1
s2
1

) ∫ ∞

−∞

(
‖L (∂tP · x̂) ‖2H−1/2(ΓR) + ‖L (∂2

t P · x̂) ‖2H−1/2(ΓR)

)
ds2.

Again by Parseval identity
∫ ∞

0

e−2s1t
(
‖∇u′ ‖2L2(ΩR) + ‖ ∂tu

′ ‖2L2(ΩR)

)
dt(2.31)

=
C

s2
1

∫ ∞

0

e−2s1t‖ ∂tf ‖2L2(ΩR)ds2

+ C

(
1 +

1
s2
1

) ∫ ∞

0

e−2s1t
(
‖ ∂tP · x̂ ‖2H−1/2(ΓR) + ‖ ∂2

t P · x̂ ‖2H−1/2(ΓR)

)
dt < ∞.

This proves u′ ∈ L2(0, T ;H1(ΩR)) ∩ H1(0, T ; L2(ΩR)). Similarly, by (2.30), we
have p′ ∈ L2(0, T ;H(div; ΩR)) ∩ H1(0, T ;L2(ΩR)). Moreover, by Gu′

L
= −p′

L
· x̂

on ΓR and p′ ∈ L2(0, T ; H(div; ΩR)), we deduce that T (u′) ∈ L2(0, T ; H−1/2(ΓR)).
By taking the inverse Laplace transform in (2.18)-(2.19) and using the definition of
u′ = u− U , p′ = p−P, one can easily show that (u,p) satisfies (2.10)-(2.11).

It remains to prove the stability estimate (2.12). By (1.1) we know that u satisfies
the wave equation

∂2u

∂t2
−∆u =

∂f

∂t
in ΩR × (0, T ).

We multiply the equation by ∂tū, integrate over ΩR, and use the boundary condi-
tions (1.2), (2.4) to get

1
2

d

dt

(
‖ ∂tu ‖2L2(ΩR) + ‖∇u ‖2L2(ΩR)

)
− 〈∂t(T (u)), ∂tu〉ΓR

= (∂tf, ∂tu).
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By (2.5) we know that

〈∂t(T (u)), ∂tu〉ΓR
= 2πR

+∞∑
n=−∞

d

dt

[
L −1

(
K ′

n(sR)
Kn(sR)

)
∗ un(R, t)

]
· dūn

dt
(R, t),

where un(R, t) = 1
2π

∫ 2π

0
u(R, θ, t)e−inθdθ. Since u0 has compact support inside

ΩR, un(R, 0) = 0, we have

d

dt

[
L −1

(
K ′

n(sR)
Kn(sR)

)
∗ un(R, t)

]
= L −1

(
K ′

n(sR)
Kn(sR)

)
∗ dun(R, t)

dt
.

Thus, by Lemma 2.11, we then get

−Re
∫ T

0

e−2s1t〈∂t(T (u)), ∂tu〉ΓRdt = −Re
∫ T

0

e−2s1t〈T (∂tu), ∂tu〉ΓRdt ≥ 0.

By (2.32) we then obtain after integration by parts

e−2s1t
(
‖ ∂tu ‖2L2(ΩR) + ‖∇u ‖2L2(ΩR)

)
−

(
‖divp0 ‖2L2(ΩR) + ‖∇u0 ‖2L2(ΩR)

)

≤ 2‖ e−s1t∂tf ‖L1(0,T ;L2(ΩR))‖e−s1t∂tu‖L∞(0,T ;L2(ΩR), ∀t ∈ (0, T ).

Now the desired stability estimate follows by the standard argument and letting
s1 → 0. ¤

3. The PML equation and the well-posedness

Now we turn to the introduction of the absorbing PML layer. We surround the
domain ΩR with a PML layer ΩPML = {x ∈ R2 : R < |x| < ρ}. In the rest of this
paper we assume ρ ≤ CR for some generic fixed constant C > 0.

Figure 1. Setting of the scattering problem with the PML layer.

Let α(r) = 1 + s−1σ(r) be the artificial medium property, where σ ≥ 0 for
r ∈ R and σ = 0 for r ≤ R. We remark that here we allow the function σ can be
discontinuous. In particular, we will assume σ is a positive constant for r > R in
Sections 4 and 5. Denote r̃ the complex radius

r̃ = r̃(r) =
{

r if r ≤ R,∫ r

0
α(τ)dτ = rβ(r) if r ≥ R.
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It is easy to see that for r ≥ R, β(r) = 1 + s−1σ̂(r), where

σ̂(r) =
1
r

∫ r

0

σ(τ)dτ.

We follow the development in [22] to introduce the PML equations. The starting
point is the series representation of uL = L (u) outside BR in (2.2)

uL =
∞∑

n=−∞

Kn(sr)
Kn(sR)

un
L
(R, s)einθ, un

L
(R, s) =

1
2π

∫ 2π

0

uL(R, θ, s)e−inθdθ.

Based on the observation that Kn(z) ∼ (
π
2z

)1/2
e−z as |z| → ∞, we define the PML

extension ũL as

ũL(r, θ, s) =
∞∑

n=−∞

Kn(sr̃)
Kn(sR)

un
L
(R, s)einθ, ∀r > R.(3.1)

Heuristically ũL(r̃, θ, s) will decay exponentially for large r. It is obvious that ũL

satisfies −∆̃ũL +s2ũL = 0 outside BR, where ∆̃ = 1
r̃

∂
∂r̃

(
r̃ ∂

∂r̃

)
+ 1

r̃2
∂2

∂2θ is the Laplace

operator with respect to (r̃, θ). Since r̃ = rβ and
dr̃

dr
= α, we know by using the

chain rule that
1
r

∂

∂r

(
βr

α

∂ũL

∂r

)
+

1
r

∂

∂θ

(
α

βr

∂ũL

∂θ

)
+ s2αβũL = 0.(3.2)

The desired time-domain PML system will be obtained by taking the inverse
Laplace transform of (3.2). To that purpose, we define

sp̃∗
L,r = −∂ũL

∂r
, sp̃∗

L,θ = −1
r

∂ũL

∂θ
, sũ∗

L
= ũL ,(3.3)

and

p̃L,r =
β

α
p̃∗

L,r, p̃L,θ =
α

β
p̃∗

L,θ,(3.4)

Thus (3.2) becomes, since sαβ = s + σ + σ̂ + s−1σσ̂,

sũL + (σ + σ̂)ũL + σσ̂ũ∗
L

+ divp̃L = 0.(3.5)

Let, for r > R,

ũ = L −1(ũL), p̃ = L −1(p̃L), ũ∗ = L −1(ũ∗
L
), p̃∗ = L −1(p̃∗

L
)(3.6)

with ũ|t=0 = 0, p̃|t=0 = 0, ũ∗|t=0 = 0, and p̃∗|t=0 = 0.
Notice that sα = s + σ, sβ = s + σ̂, by taking the inverse Laplace transform in

(3.3)-(3.5), we get

∂p̃∗

∂t
= −∇ũ,

∂ũ∗

∂t
= ũ,(3.7)

∂p̃r

∂t
+ σp̃r =

∂p̃∗r
∂t

+ σ̂p̃∗r ,
∂p̃θ

∂t
+ σ̂p̃θ =

∂p̃∗θ
∂t

+ σp̃∗θ,(3.8)

∂ũ

∂t
+ (σ + σ̂)ũ + divp̃ + σσ̂ũ∗ = 0.(3.9)

We rewrite (3.8) as

∂p
∂t

+ Λ1p̃ =
∂p∗

∂t
+ Λ2p̃∗,(3.10)



CONVERGENCE OF THE TIME-DOMAIN PML METHOD 137

where

Λ1 = QT

(
σ 0
0 σ̂

)
Q, Λ2 = QT

(
σ̂ 0
0 σ

)
Q, Q =

(
cos θ sin θ

− sin θ cos θ

)
.

The first order partial differential equations (3.7),(3.9),(3.10) for (ũ, p̃, ũ∗, p̃∗) con-
sist of the time-domain PML system for the acoustic scattering problem outside
BR. Since ũ = u, p̃ = p on ΓR, ũ, p̃ can be viewed as the extension of the solution
(u,p) of the problem (1.1)-(1.3). Moreover, since σ = σ̂ = 0 inside the circle BR,
if we set ũ = ũ∗ = u, p̃ = p̃∗ = p in (BR\D̄) × (0, T ), then (ũ, p̃, ũ∗, p̃∗) satisfies
(3.7), (3.10), and, instead of (3.9),

∂ũ

∂t
+ divp̃ + (σ̂ + σ)ũ + σσ̂ũ∗ = f.(3.11)

We summarize the above consideration in the following lemma.

Lemma 3.1. Let (u,p) be the solution of the problem (2.6)-(2.9) which is extended
to be (ũ, p̃) outside BR according to (3.6). Let (ũ∗, p̃∗) be defined in (3.6) for
r ≥ R and (ũ∗, p̃∗) = (u,p) for r < R. Then (ũ, p̃, ũ∗, p̃∗) satisfies the PML sys-
tem (3.7),(3.10),(3.11) outside D̄ and satisfies the initial and boundary conditions
ũ|t=0 = u0, p̃|t=0 = p0, ũ

∗|t=0 = u0, p̃∗|t=0 = p0 in R2\D̄ and p̃ · nD = 0 on
ΓD × (0, T ).

We define the following initial-boundary value problem for (û, p̂, û∗, p̂∗) which
is referred as the PML problem in the rest of this paper, where Ωρ = Bρ\D̄,

∂û

∂t
+ divp̂ + (σ + σ̂)û + σσ̂û∗ = f,

∂û∗

∂t
= û in Ωρ × (0, T ),(3.12)

∂p̂∗

∂t
+∇û = 0,

∂p̂
∂t

+ Λ1p̂ =
∂p∗

∂t
+ Λ2p̂∗ in Ωρ × (0, T ),(3.13)

p̂ · nD = 0 on ΓD × (0, T ), û = 0 on Γρ × (0, T ),(3.14)
û|t=0 = u0, p̂|t=0 = p0, û∗|t=0 = u0, p̂∗|t=0 = p0 in Ωρ.(3.15)

By the construction of the PML problem, (û, p̂) is designed to approximate the
solution (u,p) of the original scattering problem in the domain ΩR × (0, T ). The
rigorous mathematical justification of this fact will be established in section 5.

Notice that (3.12)-(3.15) is a first order symmetric hyperbolic system whose well-
posedness follows from the standard theory (see e.g. Chen [6]). Here we state the
well-posedness of the PML problem (3.12)-(3.15) and omit the proof.

Theorem 3.2. Let f ∈ L∞(0, T ;L2(ΩR)). Assume that u0 ∈ H1(Ωρ), p0 ∈
H(div; Ωρ) are supported in BR and satisfy the compatibility conditions p0 ·nD = 0,
∇u0 · nD = 0 on ΓD. Then the PML problem (3.12)-(3.15) has a unique strong
solution (û, p̂, û∗, p̂∗) satisfying

û ∈ L∞(0, T ;H1(Ωρ)) ∩W 1,∞(0, T ; L2(Ωρ)), û∗ ∈ W 1,∞(0, T ; L2(Ωρ)),

p̂ ∈ L∞(0, T ; H(div; Ωρ)) ∩W 1,∞(0, T ;L2(Ωρ)), p̂∗ ∈ W 1,∞(0, T ; L2(Ωρ)).

4. The stability of the PML system

In this section we consider the stability of the initial boundary value problem of
the PML system in the layer under the condition that the medium property σ is
constant. In [3] and [4], the stability of the Cauchy problem of the PML system
for the constant medium property is proved by using the energy estimate. Our
argument is based on the method of the Laplace transform and the analysis in the
frequency domain. In the rest of this paper we assume σ is a positive constant.
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We consider the following initial boundary value problem of the PML system in
the PML layer ΩPML = Bρ\B̄R

∂φ

∂t
+ divΦ + (σ + σ̂)φ + σσ̂φ∗ = 0,

∂φ∗

∂t
= φ in ΩPML × (0, T ),(4.1)

∂Φ∗

∂t
+∇φ = 0,

∂Φ
∂t

+ Λ1Φ =
∂Φ∗

∂t
+ Λ2Φ∗ in ΩPML × (0, T ),(4.2)

φ = 0 on ΓD × (0, T ), φ = ξ on Γρ × (0, T ),(4.3)

φ|t=0 = 0,Φ|t=0 = 0, φ∗|t=0 = 0,Φ∗|t=0 = 0 in ΩPML.(4.4)

Let φL = L (φ),ΦL = L (Φ), φ∗
L

= L (φ∗), and Φ∗
L

= L (Φ∗), then we know
that φL satisfies the Helmholtz equation

−∇ · (A∇φL) + s2αβφL = 0 in ΩPML,(4.5)

where A∇φL = β
α

∂φL
∂r er + α

βr

∂φL
∂θ eθ, er, eθ are the unit vectors of the polar coordi-

nates, and

sΦL = −A∇φL , divΦL = −sαβφL .(4.6)

Let a(·, ·) : H1(ΩPML)×H1(ΩPML) → C be the sesqulinear form

a(φ, ψ) =
∫ ρ

R

∫ 2π

0

(
βr

α

∂φ

∂r

∂ψ̄

∂r
+

α

βr

∂φ

∂θ

∂ψ̄

∂θ
+ s2αβrφψ̄

)
drdθ.

Lemma 4.1. For any φ ∈ H1(ΩPML) we have

Re [a(φ, φ)] +
s2

s1 + σ
Im [a(φ, φ)] ≥ s2

1

(s1 + σ)2
‖φ‖2∗,ΩPML ,(4.7)

where

‖φ‖2∗,ΩPML = ‖A∇φ‖2L2(ΩPML) + ‖ sαβφ ‖2L2(ΩPML).

Proof. Simple calculation shows that

Re [a(φ, φ)] =
∫ ρ

R

∫ 2π

0

(s1 + σ̂)(s1 + σ) + s2
2

|s1 + σ|2 r

∣∣∣∣
∂φ

∂r

∣∣∣∣
2

drdθ

+
∫ ρ

R

∫ 2π

0

(s1 + σ̂)(s1 + σ) + s2
2

|s1 + σ̂|2
1
r

∣∣∣∣
∂φ

∂θ

∣∣∣∣
2

drdθ

+
∫ ρ

R

∫ 2π

0

[
(s1 + σ)(s1 + σ̂)− s2

2

]
r|φ|2drdθ,

and

Im [a(φ, φ)] = s2

∫ ρ

R

∫ 2π

0

σ − σ̂

|s1 + σ|2 r

∣∣∣∣
∂φ

∂r

∣∣∣∣
2

drdθ

+ s2

∫ ρ

R

∫ 2π

0

σ̂ − σ

|s1 + σ̂|2
1
r

∣∣∣∣
∂φ

∂θ

∣∣∣∣
2

drdθ

+ s2

∫ ρ

R

∫ 2π

0

(2s1 + σ + σ̂)r|φ|2drdθ.
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Notice that σ ≥ σ̂, we have

Re [a(φ, φ)] +
s2

s1 + σ
Im [a(φ, φ)]

≥
∫ ρ

R

∫ 2π

0

(s1 + σ̂)(s1 + σ) + s2
2

|s1 + σ|2 r

∣∣∣∣
∂φ

∂r

∣∣∣∣
2

drdθ

+
∫ ρ

R

∫ 2π

0

(s1 + σ̂)(s1 + σ) + s1(s1 + σ)−1s2
2

|s1 + σ̂|2
1
r

∣∣∣∣
∂φ

∂θ

∣∣∣∣
2

drdθ

+
∫ ρ

R

∫ 2π

0

[
(s1 + σ)(s1 + σ̂) +

s1 + σ̂

s1 + σ
s2
2

]
r|φ|2drdθ

The proof now follows easily by noticing that

‖φ‖2∗,ΩPML =
∫ ρ

R

∫ 2π

0

(
|β|2
|α|2 r

∣∣∣∣
∂φ

∂r

∣∣∣∣
2

+
|α|2
|β|2

1
r

∣∣∣∣
∂φ

∂θ

∣∣∣∣
2

+ |sαβ|2r|φ|2
)

drdθ.

¤

Lemma 4.2. Let ξ ∈ H1(0, T ; H1/2(Γρ))∩H2(0, T ; H−1/2(Γρ)). Then there exists
a function ζ ∈ H1(0, T ; H1(ΩPML))∩H2(0, T ; L2(ΩPML)) such that ζ = 0 on ΓR×
(0, T ), ζ = ξ on Γρ × (0, T ), and

‖ ∂2
t ζ ‖L2(0,T ;L2(ΩPML)) ≤ Cρ1/2‖ ∂2

t ξ ‖L2(0,T ;H−1/2(Γρ)),(4.8)

‖∇∂tζ ‖L2(0,T ;L2(ΩPML)) ≤ Cρ−1/2‖ ∂tξ ‖L2(0,T ;H1/2(Γρ)).(4.9)

Proof. Let

ξ(θ, t) =
∞∑

n=−∞
ξn(t)einθ, ξn(t) =

1
2π

∫ 2π

0

ξ(θ, t)e−inθdθ.

Let χn ∈ C∞[R, ρ] such that χn(ρ) = 1, 0 ≤ χ(r) ≤ 1, |χ′n(r)| ≤ Cδ−1
n for r ∈ [R, ρ],

and supp(χn) ⊂ (ρ− δn, ρ), where δn = (ρ−R)/
√

1 + n2, n ∈ Z. Define

ζ(r, θ, t) =
∞∑

n=−∞
ξn(t)χn(r)einθ.

Then it is clear that ζ = 0 on ΓR × (0, T ), ζ = ξ on Γρ × (0, T ). Next it is easy to
see that

‖ ∂2
t ζ ‖2L2(ΩPML) = 2π

∞∑
−∞

∫ ρ

R

|ξ′′n(t)|2|χn(r)|2rdr

≤ 2π

∞∑
−∞

∫ ρ

ρ−δn

|ξ′′n(t)|2rdr

≤ 2πρ

∞∑
−∞

δn|ξ′′n(t)|2

≤ (ρ−R)‖ ∂2
t ξ ‖2H−1/2(Γρ).

This shows (4.8). Similarly we can prove (4.9). ¤

The following theorem is the main result of this section.
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Theorem 4.3. Let ξ ∈ H1(0, T ; H1/2(Γρ)) ∩H2(0, T ; H−1/2(Γρ)). Then the solu-
tion of the PML system (4.1)-(4.4) satisfies the following estimate

‖ ∂tΦ ‖L2(0,T ;L2(ΩPML)) + ‖divΦ ‖L2(0,T ;L2(ΩPML))

≤ C(1 + σT )2ρT (‖ ∂2
t ξ ‖L2(0,T ;H−1/2(Γρ)) + ρ−1‖ ∂tξ ‖L2(0,T ;H1/2(Γρ))).

Proof. Let ζ be the function defined in Lemma 4.2 which we extend to be a function
in H1(0,+∞; H1(ΩPML)) ∩H2(0, +∞;L2(ΩPML)) such that

‖∇∂tζ‖L2(0,+∞;L2(ΩPML)) ≤ C‖∇∂tζ‖L2(0,T ;L2(ΩPML)),

‖∂2
t ζ‖L2(0,+∞;L2(ΩPML)) ≤ C‖∂2

t ζ‖L2(0,T ;L2(ΩPML)).

By testing (4.5) with φL − ζL ∈ H1
0 (ΩPML), where ζL = L (ζ), and integrating by

parts we easily obtain

a(φL , φL) = a(φL , ζL).

By Lemma 4.1 we then have

‖φL‖2∗,ΩPML ≤ C

(
1 +

σ

s1

)2 |s|
s1
|a(φL , φL)| = C

(
1 +

σ

s1

)2 |s|
s1
|a(φL , ζL)|.

Since

|a(φL , ζL)| ≤
(
‖∇ζL ‖2L2(ΩPML) + ‖ sζL ‖2L2(ΩPML)

)1/2

‖φL‖∗,ΩPML ,

we have

‖φL‖∗,ΩPML ≤ C

(
1 +

σ

s1

)2 |s|
s1

(
‖∇ζL ‖2L2(ΩPML) + ‖ sζL ‖2L2(ΩPML)

)1/2

.

On the other hand, by (4.6) we know that

‖φL‖2∗,ΩPML = ‖divΦL ‖2L2(ΩPML) + ‖ sΦL ‖2L2(ΩPML).

Notice the formula for the inverse Laplace transform

f(t) = F−1(es1tL (f)(s1 + is2)),

where F−1 denotes the inverse Fourier transform with respect to s2, by the Parseval
identity we have then∫ ∞

0

e−2s1t
(
‖ ∂tΦ ‖2L2(ΩPML) + ‖divΦ ‖2L2(ΩPML)

)
dt

= 2π

∫ ∞

−∞

(
‖divΦL ‖2L2(ΩPML) + ‖ sΦL ‖2L2(ΩPML)

)
ds2

≤ C

(
1 +

σ

s1

)4 1
s2
1

∫ ∞

−∞

(
‖ s∇ζL ‖2L2(ΩPML) + ‖ s2ζL ‖2L2(ΩPML)

)
ds2

= C

(
1 +

σ

s1

)4 1
s2
1

∫ ∞

0

e−2s1t
(
‖∇∂tζ ‖2L2(ΩPML) + ‖ ∂2

t ζ ‖2L2(ΩPML)

)2

dt,

where we have used the Parseval identity again in the last identity. This implies
∫ T

0

(
‖ ∂tΦ ‖2L2(ΩPML) + ‖divΦ ‖2L2(ΩPML)

)
dt

≤ C

(
1 +

σ

s1

)4 1
s2
1

e2s1T

∫ T

0

(
‖∇∂tζ ‖2L2(ΩPML) + ‖ ∂2

t ζ ‖2L2(ΩPML)

)
dt.

This completes the proof by taking s1 = T−1 and using Lemma 4.2. ¤
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5. Convergence analysis

Let (u,p) be the solution of the problem (2.6)-(2.9) and (û, p̂, û∗, p̂∗) be the
solution of the PML problem (3.12)-(3.15). The purpose of this section is to prove
that (û, p̂) converges to (u,p) exponentially in the domain ΩR × (0, T ). We start
with the following fundamental estimate for the modified Bessel function Kν(z).

Lemma 5.1. For any ν ∈ R, s ∈ C with Re (s) > 0, ρ1 > ρ2 > 0, and τ > 0, we
have

|Kν(sρ1 + τ)|
|Kν(sρ2)| ≤ e

−τ

�
1− ρ2

2
ρ2
1

�
.(5.1)

Proof. Let s = s1 + is2 with s1 > 0, s2 ∈ R. We consider two cases. First assume
s1ρ1 ≥ |s|ρ2. Then by lemmas 2.5-2.6,

|Kν(sρ1 + τ)|
|Kν(sρ2)| ≤ Kν(s1ρ1 + τ)

Kν(|s|ρ2)
≤ e−τ ≤ e

−τ

�
1− ρ2

2
ρ2
1

�
,

which is exactly the estimate (5.1).
Next we assume s1ρ1 ≤ |s|ρ2. Denote by z1 = sρ1 + τ and z2 = sρ2. Then by

Lemma 2.4

|Kν(z1)|2(5.2)

=
1
2

∫ ∞

0

e
− |z1|2

2w − z2
1+z̄2

1
2|z1|2

w
Kν(w)

dw

w

=
1
2

∫ ∞

0

e
− |z1|2−|z2|2

2w −
�

z2
1+z̄2

1
2|z1|2

− z2
2+z̄2

2
2|z2|2

�
w · e−

|z2|2
2w − z2

2+z̄2
2

2|z2|2
w
Kν(w)

dw

w
.

Now we are going to show that

e
− |z1|2−|z2|2

2w −
�

z2
1+z̄2

1
2|z1|2

− z2
2+z̄2

2
2|z2|2

�
w ≤ e

−2τ

�
1− ρ2

2
ρ2
1

�
.(5.3)

The desired estimate (5.1) follows easily from (5.3) and Lemma 2.4.
To show (5.3), we first note that by simple calculation

z2
1 + z̄2

1

2|z1|2 − z2
2 + z̄2

2

2|z2|2 =
2[(s1ρ1 + τ)2s2

2ρ
2
2 − s2

1s
2
2ρ

2
1ρ

2
2]

|z1|2|z2|2 ≥ 2τ2s2
2ρ

2
2

|z1|2|z2|2 .

Since |z1|2 ≥ |s|2ρ2
1 = ρ2

1
ρ2
2
|z2|2, we obtain

|z1|2 − |z2|2
|z1|2 = 1− |z2|2

|z1|2 ≥ 1− ρ2
2

ρ2
1

.

By Cauchy-Schwarz inequality, for any w > 0,

e
− |z1|2−|z2|2

2w −
�

z2
1+z̄2

1
2|z1|2

− z2
2+z̄2

2
2|z2|2

�
w ≤ e

−2

�
(|z1|2−|z2|2)

2w · 2τ2s22ρ2
2

|z1|2|z2|2
w

�1/2

≤ e
−2τ

�
1− ρ2

2
ρ2
1

�1/2
s2ρ2
|z2| .

Since s1ρ1 ≤ |s|ρ2, we have

s2
2ρ

2
2

|z2|2 =
s2
2

s2
1 + s2

2

≥ 1− ρ2
2

ρ2
1

.

This completes the proof. ¤
We also need the following estimate for the convolution which is widely used in

the analysis of absorbing boundary conditions, e.g. in Hagstrom [17].
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Lemma 5.2. Let f1, f2 ∈ L2(0, T ). For any s1 > 0, we have

‖ f1 ∗ f2 ‖L2(0,T ) ≤ es1T

(
max

−∞<s2<∞
|L (f1)(s1 + is2)|

)
‖ f2 ‖L2(0,T ).

Proof. For the sake of completeness we give a proof here. We first note that by the
formula for the inverse Laplace transform, we have

f(t) = F−1(es1tL (f)(s1 + is2)),

where F−1 denotes the inverse Fourier transform with respect to s2. Let f̃2 =
f2χ(0,T ), where χ(0,T ) is the characteristic function of the interval (0, T ). Then

‖ f1 ∗ f2 ‖L2(0,T ) = ‖ f1 ∗ f̃2 ‖L2(0,T )

= ‖F−1(es1tL (f1 ∗ f̃2)(s1 + is2)) ‖L2(0,T )

≤ es1T ‖F−1(L (f1 ∗ f̃2)) ‖L2(−∞,∞),

which by using the Parseval identity yields

‖ f1 ∗ f2 ‖2L2(0,T ) ≤ 1
2π

e2s1T ‖L (f1 ∗ f̃2) ‖2L2(−∞,∞)

=
1
2π

e2s1T ‖L (f1) ·L (f̃2) ‖2L2(−∞,∞)

≤ 1
2π

e2s1T max
−∞<s2<∞

|L (f1)(s1 + is2)| · ‖L (f̃2) ‖2L2(−∞,∞).

Again by using the Parseval identity

‖L (f̃2) ‖2L2(−∞,∞) = ‖F (e−s1tf̃2) ‖2L2(−∞,∞) = 2π‖ e−s1tf̃2 ‖2L2(−∞,∞)

= 2π‖ e−s1tf2 ‖2L2(0,T )

≤ 2π‖ f2 ‖2L2(0,T ).

This completes the proof. ¤

Now for r > R, let ˜̂u be the PML extension of û in the time domain

˜̂u(r, θ, t) =
∞∑

n=−∞

[
L −1

(
Kn(sr̃)
Kn(sR)

)
∗ ûn(R, t)

]
einθ,

where ûn(R, t) = 1
2π

∫ 2π

0
û(R, θ, t)e−inθdθ. Since ûn(R, 0) = 0 from the initial

condition û|t=0 = u0 and u0 is supported in BR, we have

∂t
˜̂u(r, θ, t) =

∞∑
n=−∞

[
L −1

(
Kn(sr̃)
Kn(sR)

)
∗ (∂tûn)(R, t)

]
einθ.
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Since sρ̃ = sρ + ρσ̂(ρ), by Lemmas 5.2 and 5.1 we know that, for any s1 > 0,

‖ ∂t
˜̂u ‖2L2(0,T ;H1/2(Γρ))

= 2πρ

∞∑
n=−∞

(1 + n2)1/2

∥∥∥∥L −1

(
Kn(sρ̃)
Kn(sR)

)
∗ (∂tûn)(R, t)

∥∥∥∥
2

L2(0,T )

≤ 2πρe2s1T
∞∑

n=−∞
(1 + n2)1/2 max

−∞<s2<∞

∣∣∣∣
Kn(sρ̃)
Kn(sR)

∣∣∣∣
2

‖ ∂tûn(R, t) ‖2L2(0,T )

≤ ρ

R
e2s1T max

−∞<n<∞
max

−∞<s2<∞

∣∣∣∣
Kn(sρ̃)
Kn(sR)

∣∣∣∣
2

‖ ∂tû ‖2L2(0,T ;H1/2(ΓR))

≤ ρ

R
e2s1T e

−2ρσ̂(ρ)
�
1−R2

ρ2

�
‖ ∂tû ‖2L2(0,T ;H1/2(ΓR)),

which implies, since the estimate is valid for any s1 > 0,

‖ ∂t
˜̂u ‖L2(0,T ;H1/2(Γρ)) ≤ Ce

−ρσ̂(ρ)
�
1−R2

ρ2

�
‖ ∂tû ‖L2(0,T ;H1/2(ΓR)).(5.4)

Similarly, we can show that

‖ ∂2
t
˜̂u ‖L2(0,T ;H−1/2(Γρ)) ≤ Ce

−ρσ̂(ρ)
�
1−R2

ρ2

�
‖ ∂2

t û ‖L2(0,T ;H−1/2(ΓR)).(5.5)

Now we are in the position to prove the convergence of the time-domain PML
method.

Theorem 5.3. Let (u,p) be the solution of the problem (2.6)-(2.9) and (û, p̂,
û∗, p̂∗) be the solution of the PML problem (3.12)-(3.15). Then there exists a
constant C > 0 depending only on ρ/R but independent of σ,R, ρ, and T such
that

max
0≤t≤T

(‖u− û ‖L2(ΩR) + ‖p− p̂ ‖L2(ΩR)

)

≤ C(1 + σT )2ρT 3/2e
−ρσ̂(ρ)

�
1−R2

ρ2

�
‖ ∂2

t û ‖L2(0,T ;H−1/2(ΓR))

+ C(1 + σT )2T 3/2e
−ρσ̂(ρ)

�
1−R2

ρ2

�
‖ ∂tû ‖L2(0,T ;H1/2(ΓR)).

Proof. Since σ = 0 for r ≤ R we know that p̂∗ = p̂. From (2.6) and (3.12)-(3.13)
we know that

∂(u− û)
∂t

+ div(p− p̂) = 0 in ΩR × (0, T ),(5.6)

∂(p− p̂)
∂t

+∇(u− û) = 0 in ΩR × (0, T ).(5.7)

By testing (5.6) with v ∈ H1(ΩR) and using (2.5) we know that
(

∂(u− û)
∂t

, v

)
− (p− p̂,∇v)− 〈T (u− û), v〉ΓR

= 〈p̂ · x̂ + T (û), v〉ΓR
.(5.8)

Let w = u− û and w∗ =
∫ t

0
(u− û)dt. From (5.7) we have p− p̂ = −∇w∗. Thus by

taking v = w in (5.8) we have

1
2

d

dt

(
‖w ‖2L2(ΩR) + ‖∇w∗ ‖2L2(ΩR)

)
− 〈T (w), w〉ΓR

= 〈p̂ · x̂ + T (û), w〉ΓR
.(5.9)

Denote

X(0, T ; ΩR) = {v ∈ L∞(0, T ; L2(ΩR)), v∗ =
∫ t

0

vdt ∈ L∞(0, T ;H1(ΩR))}.
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It is clear X(0, T ; ΩR) is Banach space with the norm

‖v‖X(0,T ;Ω) = sup
0≤t≤T

(
‖ v ‖2L2(ΩR) + ‖∇v∗ ‖2L2(ΩR)

)1/2

.

Define

Y (0, T ; ΓR) = {ϕ :
∫ T

0

〈ϕ, v〉ΓR
dt < ∞, ∀v ∈ X(0, T ; ΩR)}.

It is easy to see that Y (0, T ; ΓR) is also a Banach space with the norm

‖ϕ‖Y (0,T ;ΓR) = sup
v∈X(0,T ;ΩR)

∣∣∣
∫ T

0
〈ϕ, v〉ΓR

dt
∣∣∣

‖v‖X(0,T ;ΩR)
.

Since w|t=0 = 0, w∗|t=0 = 0, from (5.9) and Lemma 2.11 we obtain

‖e−s1tw‖2X(0,T ;ΩR) ≤ C‖e−s1t(p̂ · x̂ + T (û))‖Y (0,T ;ΓR)‖e−s1tw‖X(0,T ;ΩR).

Therefore by letting s1 → 0,

sup
0≤t≤T

(‖w‖L2(ΩR) + ‖∇w∗‖L2(ΩR)

) ≤ C‖p̂ · x̂ + T (û)‖Y (0,T ;ΓR).(5.10)

For ûL = L (û) we define its PML extension as in (3.1)

˜̂uL =
∞∑

n=−∞

Kn(sr̃)
Kn(sR)

ûn
L
(R, s)einθ, ∀r > R,

where ûn
L

= 1
2π

∫ 2π

0
ûL(R, θ, s)e−inθdθ. Similar to (3.3)-(3.4) we introduce

s˜̂p∗
L

= −∇˜̂uL , s˜̂u∗
L

= ˜̂uL , ˜̂pL = −diag(β/α, α/β)∇˜̂uL ,

where diag(β/α, α/β) is the diagonal matrix with the principal elements β/α, α/β.
Define

˜̂u = L −1(˜̂uL), ˜̂p = L −1(˜̂pL), ˜̂u∗ = L −1(˜̂u∗
L
), ˜̂p∗ = L −1(˜̂p∗

L
).

Then we know that (˜̂u, ˜̂p, ˜̂u∗, ˜̂p∗) satisfies (3.7),(3.9) and (3.10) in ΩPML × (0, T )
and T (û) = −˜̂p · x̂ on ΓR × (0, T ).

To estimate ‖(p̂ − ˜̂p) · x̂‖Y (0,T ;ΓR) we notice that any function v ∈ X(0, T ; ΩR)
can be extended to ΩPML×(0, T ) (still denoted by v) such that v = 0 on Γρ×(0, T )
and ‖v‖X(0,T ;ΩPML) ≤ C‖v‖X(0,T ;ΩR). Thus

‖(p̂− ˜̂p) · x̂‖Y (0,T ;ΓR) ≤ C sup
v∈X(0,T ;ΩPML)

∣∣∣
∫ T

0
〈(p̂− ˜̂p) · x̂, v〉ΓRdt

∣∣∣
‖v‖X(0,T ;ΩPML)

.

On the other hand, since v = 0 on Γρ, we have
∫ T

0

〈(p̂− ˜̂p) · x̂, v〉ΓRdt =
∫ T

0

(div(p̂− ˜̂p), v)ΩPML + (p̂− ˜̂p,∇v)ΩPML .

Integrating by parts we obtain
∫ T

0

(p̂− ˜̂p,∇v)ΩPMLdt

= (p̂− ˜̂p(·, T ),∇v∗(·, T ))ΩPML −
∫ T

0

(∂t(p̂− ˜̂p),∇v∗)ΩPMLdt

≤ max
0≤t≤T

‖∇v∗‖L2(ΩPML) ·
∫ T

0

‖∂t(p̂− ˜̂p)‖L2(ΩPML)dt,
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where we have used the fact that (p̂− ˜̂p)|t=0 = 0. Therefore,

‖(p̂− ˜̂p) · x̂‖Y (0,T ;ΓR) ≤ C

∫ T

0

(
‖div(p̂− ˜̂p) ‖L2(ΩPML) + ‖ ∂t(p̂− ˜̂p) ‖L2(ΩPML)

)
,

and consequently, by (5.10),

sup
0≤t≤T

(‖w‖L2(ΩR) + ‖∇w∗‖L2(ΩR)

)

≤ C

∫ T

0

(
‖div(p̂− ˜̂p) ‖L2(ΩPML) + ‖ ∂t(p̂− ˜̂p) ‖L2(ΩPML)

)
dt.

Let φ = û− ˜̂u,Φ = p̂− ˜̂p, φ∗ = û∗− ˜̂u∗,Φ∗ = p̂∗− ˜̂p∗. Then (φ,Φ, φ∗,Φ∗) satisfies
(4.1)-(4.4) with ξ = −˜̂u|Γρ

. By Theorem 4.3 we have then

sup
0≤t≤T

(‖w‖L2(ΩR) + ‖∇w∗‖L2(ΩR)

)

≤ C(1 + σT )2ρT 3/2
(
‖ ∂2

t
˜̂u ‖L2(0,T ;H−1/2(Γρ)) + ρ−1‖ ∂t

˜̂u ‖L2(0,T ;H1/2(Γρ))

)
.

This completes the proof by using (5.4)-(5.5). ¤

Since σ is constant in (R, ρ), ρσ̂ = σρ(1 − R/ρ). Theorem 5.3 implies that
exponential convergence of the PML method can be achieved for any fixed thickness
of the layer by enlarging the PML absorbing parameter σ which increases as ln T
for large T .
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