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A COMPUTATIONAL SCHEME FOR OPTIONS UNDER JUMP
DIFFUSION PROCESSES

KAI ZHANG AND SONG WANG

Abstract. In this paper we develop two novel numerical methods for the
partial integral differential equation arising from the valuation of an option
whose underlying asset is governed by a jump diffusion process. These methods
are based on a fitted finite volume method for the spatial discretization, an
implicit-explicit time stepping scheme and the Crank-Nicolson time stepping
method. We show that the discretization methods are unconditionally stable
in time and the system matrices of the resulting linear systems are M-matrices.
The resulting linear systems involve products of a dense matrix and vectors and
an Fast Fourier Transformation (FFT) technique is used for the evaluation of
these products. Furthermore, a splitting technique is proposed for the solution
of the discretized system arising from the Crank-Nicolson scheme. Numerical
results are presented to show the rates of convergence and the robustness of
the numerical method.

Key Words. Jump diffusion processes, Option pricing, Finite volume method,
Integral partial differential equation, FFT.

1. Introduction

It is well known that the assumption of log-normal stock diffusion with constant
volatility in the standard Black-Scholes model of option pricing is not consistent
with that of the market price movement. This phenomenon is often referred to as
the volatility skew or smile [10] and exists in all the major stock index markets today.
In order to capture the existence of volatility smiles, extensions of the Black-Scholes
model have been proposed. Generally speaking, three approaches have been studied
in the finance literature: the stochastic volatility approach [9, 11], the deterministic
volatility function approach [8] and the jump diffusion model [14, 23, 5, 7]. Among
them, jump diffusion , first introduced by Merton in [14], is more attractive than
the other two. Contrary to the Black-Scholes model [4], the stock price in the jump
diffusion model is not a continuous function of time. This allows to account for
large changes in market prices due to rare events. More importantly, the jump
diffusion model yields implied volatility curves similar to volatility smiles observed
on markets.

Unlike the standard Black-Scholes model, the valuation of options under jump
diffusion processes requires solving a partial integral differential equation. This is
challenging to handle numerically since a non-local integration term is involved.
There are several existing numerical methods based on the finite difference method
for this problem. In [2], a method based on the multinomial trees is proposed,
which is actually an explicit type finite difference approach. Hence, it is first-order
accurate and conditionally stable. In [23] the author developed a method for the
equation which treats the integral term explicitly and the other terms implicitly.

Received by the editors August 30, 2007 and, in revised form, December 3, 2007.
2000 Mathematics Subject Classification. 65M12, 65M60, 91B28.

110



COMPUTATIONAL SCHEME FOR PIDE 111

This method is only first-order accurate and conditionally stable. In [3], an operator
splitting method coupled with an FFT for the evaluation of the integral term is
proposed, producing an unconditionally stable and 2nd-order accurate scheme. In
[1], a second order backward difference scheme in time is developed, where the
FFT technique is also used to evaluate the integral term and two operator splitting
methods are proposed to solve the resulting system iteratively.

It is well known that in the case that the volatility or underlying asset price
goes to zero, the Black-Scholes partial differential equation becomes convection-
dominant so that solutions to the equation may display boundary or interior layers.
Standard methods such as the central finite difference and piecewise linear finite
element methods cannot handle this difficulty [19]. The same problem also appear
in the partial integral differential equation resulting from the jump diffusion model.
To overcome this difficulty, a fitted finite volume method is designed in [18, 20]
to price the European and American options. The method is based on a popular
exponentially fitting technique widely used for problems with boundary and interior
layers (cf. [15, 16]).

In this paper, we present two discretization methods for the partial integral dif-
ferential equation arising from the valuation of European vanilla options. Although
the methods are presented for this particular option, they can easily be extended to
other option pricing problems. The methods are based on the fitted finite volume
method for spatial discretization [18], an implicit-explicit time stepping method and
Crank-Nicolson time discretization scheme, coupled with FFT for the evaluation of
the integral term. The Crank-Nicolson method results in a dense system matrix.
To avoid the inversion of the dense matrix, we develop an iterative algorithm to
solve the resulting system, based on a regular operator splitting. We prove that
both of the numerical methods are unconditionally stable and their system matrices
are both M-matrices. Numerical experiments are performed using Merton’s model
[14] and Kou’s model [12]. Numerical results show that the methods are of 1st- and
2nd-order accuracy, respectively, and are robust.

The paper is organized as follows. In the next section, the mathematical model
for pricing options with jump diffusion processes is presented. In Section 3, the
fitted finite volume method is developed for the equation. A full discretization is
proposed in Section 4 in which a stability and convergence theory for the method
is also established. Also in this section, an algorithm for the numerical solution of
the discretized system is proposed. Finally, in Section 5 we present some numer-
ical results to demonstrate the convergence rates and robustness of the numerical
schemes.

2. The pricing model

Let S denote the price of an asset and assume its movement follows the jump
diffusion dynamics described by follow the following stochastic differential equation

(1) %:(y_,\n)dwadzﬂn—l)d%

where dZ is an increment of the standard Gauss-Wiener process and dg is the
independent Poisson process with a deterministic jump intensity A. Also in (1), o
is the volatility, v is the drift rate; and n — 1 is an impulse function producing a
jump from S to Sn, and k = E(n—1), where E(-) denotes the expectation operator.

Let V(S,t) denote the value of a European contingent claim with striking price
K on the underlying asset S and time ¢t. By a standard argument (cf., for example,
[21]), it is easy to show that V' (S, 7) satisfies the following backward partial integral
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differential equation (PIDE):
1 oo
(2) V; = 50252‘/55 +(r—=Ak)Vs—(r+ NV + )\/ V(Sn)g(n)dn,
0

for (S, 7) € [0,400) x [0,T), where r is the risk free interest rate, T is the maturity
date, 7 = T —t, and g(n) is the probability density function of the jump amplitude
7 satisfying fooo g(n)dn = 1. In this paper, we consider two specific models of g(-):
Merton’s model and Kou’s model.

In Merton’s model, g(n) is given by the log-normal density:

( ) 1 (_(IHW—M)2>
frd ex .
= Vamom U\ 203
In this case, k = E(n — 1) = exp(u + 03/2) — 1, where p and o, determine the

mean and variance of the jumps in return.
In Kou’s model, g(n) is the following log-double-exponential density:

g () = pm exp(=mn)H(n) + qnz exp(n2n)H(-n),
where 71 > 1, n2,p,q > 0, p+ g =1, and H(n) is the Heaviside function. It can be

shown that, in this case, k = E(n — 1) = 21y + 12y — 1.

There are various types of boundary and initial conditions depending on the
types of the contingent contracts. In the case of a call option, they are given by

V(0,7) =0, S — 0,

(3) V(oo,7) =S —Ke™ ", S — +oo,
V(S,7=0) =V*(S) = max(S — K,0),

where V* is the payoff function of the option. For a put option, we have
V(0,7)=Ke 7, S —0,

(4) V(oo,7) =0, S — 400
V(S,7=0)=V"(S) = max(K — S,0).

Other types of boundary conditions and payoff function V* can also be imposed.

Introducing the logarithmic price = In(S), the pricing equation (2) is trans-
formed as

1 oo
(5) v, = 5021)1;30 +(r= X&) vy — (r+Nov+ A/_ v(z +y)f(y)dy
for (z,7) € (—o0,+00) x [0,T), where
(6) v(z,7) =V(e",T), y=e", [f(y)=g(e’)e".

The boundary and initial conditions under this transformation are
v(z,0) = v*(x) = V*(e),
(7) v(—o0,7) = V(0,7),
v(400,7) = V(+00,7).

3. The fitted finite volume method

In this section, we construct a fitted finite volume method for (5), based on the
work in [16]. Since (5) is defined on the whole real line R, we first need to restrict
it to a finite region I = (—a*,2*) for * > 0. It is obvious that for Merton’s
and Kou’s models the probability density functions g(z) decay exponentially as
x — Z£oo. In fact, it is easy to check that the problem (5)—(7) satisfies all the
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conditions required by Propositions 4.1 and 4.2 of [6]. Hence, by these propositions
the following uniform truncation estimate can be established

[v(z,7) —vr (z,7)] <6, as * — 00

for a given tolerance § > 0, where vy (x, 7) is the solution to the truncated problem
(8)—(10). In other words, as «* grows to infinity, the solution to the truncated
problem converges to that of the original problem. Thus, in this paper we choose

x* is sufficiently large to ensure the truncation error is negligible.
Let

Q) = / oz + ) f(y)dy.

(5) can be then expressed as

1 2
(8) vy = 50252%1 + (r — Ak — 2) vy — (r+ A) v+ AQ(x),
with the boundary conditions
) v(+x*,7) =€ — Ke ', w(—z*,7)=0, fora call,
v(—z*,7)=Ke " —e *, w(+x*,7)=0, fora put,

and the initial condition
(10) v(z,0) = v*(x) = V*(e").

Since z* is sufficiently large, it is reasonable that v(x, 7) is replaced by the payoff
function v*(z) over R\I. Now, the localized problem can be solved by the fitted
finite volume method.

To discuss the fitted finite volume method, we first transform (8) in to the
following form:

0 ov
(11) vr = 5o <aax+bv> — v+ AQ (z),
where
(12) a=02/2, b=r—Ak—02%/2, c=1+A\

Now, we define two space partitions of I. Let I = (—z*,2*) be divided into N
sub-intervals
I = (v, 2i41), i=1,...N,
where, for ¢ = 1,2,...,.N + 1, ; = —2* + (i — 1)h with h = 22*/N. Setting
9 = z1 and N2 = Tn41, we define another mesh of I as follows. For each
1= 1,2, ,N + 1, let xi—1/2 = (xi—l + IZ)/Q and $i+1/2 = (JCZ + xi+1)/2. These
intervals J; = (7,12, %i11/2) form a second partition of I.
For each ¢ = 2,... N, integrating (11) over J;, we have

ov
(13) /J vedr = (aax + bv>

Applying the mid-point quadrature rule to all the terms in (13) except the first on
the right hand side, we obtain

ov;
ar
for i = 2,... N, where l; = x;;1/2 — ®;_1/2 = h is the length of interval J;, v;
denotes the nodal approximation to v(x;,t) to be determined and p(v) is the flux
associated with v defined by

Tit1/2

—/ cvdx + X | Q(z)dz.
J i

Ti—1/2 i

(14)

li = P(U> Titi/2 p(v)‘mi—1/2 — cliv; + AllQ(ml)

p(v) = av’ + bv.
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We now need to derive approximations to the continuous flux p(v) defined above
at the mid-point, z;,/2, of the interval I; for all i = 1,... N. Classically, we may
use conventional finite difference schemes which normally yields a piecewise linear
approximation to the potential function, v. However, when the magnitude of a is
very smaller that that of b, the v may varies very rapidly in a small subregion of
the domain, which called a layer. In this case, a piecewise linear approximation
to v normally fails to capture the layer. A better approach is to approximate the
flux be a constant, which normally yields an exponential approximation to v. To
achieve this, let us consider the following two-point boundary value problem:

(av’ 4+ bv) =0, x € I,

(15)

U(%) = Vi, U($i+1) = Vjy1-
Solving this equation analytically, we obtain

(16) pl(’l)) = %B (—%) Vi+1 — %B (%) Vi,

where B(z) is the Bernoulli function defined by

X
E—— 0
, z =0.

It is easy to see that
(17) B(z) >0, VzeR.
Using p;(v), we define a global piecewise constant approximation to p(v) by pp(v)
satisfying
pn(v) =p;(v), ifzel;

for i =1,...N. We comment that it is to see that the solution of (15) also defines
a piecewise exponential approximation to the solution of (8) on I;.

Substituting (16) into (14) and approximating the integral Q(x;) by the mid-
point quadrature rule, we have

ov; a a a
5 li= 7B (%) vie1 — 7 {B(=%) +B (%) }vi+ 7B (—5) v
(18) — clyv; + A;h Zj vi—i—jfja

for i =2,... N, where f; = f(z;). Clearly, this mid-point quadrature rule has the
following estimate

(19) Q) = [ v+ f Wy =hY viasfy + O0)

4. Time discretization

The fitted finite volume method in the previous section yields a linear ordinary
differential equation system (18). In this section we present the #-scheme for the
time discretization of (18)

ntl _gmn
% = Qoo + Qﬂiv?jll — (i +Bi+c)+ (1 —0)yvi | + (1 —0)5v,
N4+1—14 N+1—1i
(20) —(1=0) (i +Bi+ )+ 0, M Y v+ (=0 > vl S,

j=1—i j=1—i
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fori=2,...,Nand n=1,2,..., L, where

_ % p(bn

Q@ lihB(a)7

_ Y (b
(21) ﬂl_llhB( a))

and 0 < 0,0; < 1. Note that v and UN 11 for all admissible n are determined
by the boundary conditions in (9) and v) is determined by the initial condition in
(10). In (20), 6 =0, =0,0 =0; =1/2 and § = §; = 1 correspond to the usual
explicit, Crank-Nicolson and full implicit scheme. In this paper, we present two
schemes: an implicit-explicit scheme (§ = 1,6; = 0) and Crank-Nicolson scheme
(0 = 6; =1/2). For the implicit-explicit scheme, we show that it is unconditional
stable. An iterative method is developed for solving the system resulting from the

Crank-Nicolson scheme. Also, a mild convergence result of this iterative method
will be established.

4.1. Implicit-explicit scheme. Clearly, the integral term in (18) results in a
dense matrix. A full implicit scheme requires the inversion of the density matrix,
which is computationally expensive. To avoid this inversion, an implicit-explicit
scheme is proposed by several authors in [23]. The idea behind the implicit-explicit
scheme is to use a full implicit method for the derivative terms, and use an explicit
method for the jump integral term.

For a positive integer L, let the time interval (0,7) be partitioned into a uniform
mesh with mesh points 7, = nA7 for n = 0,1,..., L, where A7 = T/L. Let v}
denote the approximation of v (x;,7,) fori=1,....,N+1,n=1,..., L. Then, the
implicit-explicit scheme for (18) can be obtained by setting § = 1,0; = 0 in (20),
ie.

(22) oI 14+ AT (o + B + ¢)] - ATa T — At = o + ATAR Zj ol i fi

fori=2,..., Nandn=1,2,..., L.
For the implicit-explicit scheme (22), we have the following stability result.

Theorem 4.1. The implicit-explicit scheme (22) is unconditionally stable, provided
that r, A > 0.

Proof. From (12),(17) and (21), it is obvious that

(23) a; >0, 3; >0, 1+ (a;+Bi+c)AT >0,
provided that 7, A > 0. On the other hand, since
“+o0

f(y)dy = / gmdn =1, f(y) = g(eV)ev >0,
it follows from (19) that
(24) / fdy ~hS, f; <1+0(02), f;>0.

Let v = (v}, ---vl, ;)" be the solution to (22). For any n =0,1,...,L, let E" =
(Ep,---E%,,)" denote the perturbation in the nth time step with E} = ER_, =0
due to the Dirichlet boundary conditions. Then, from (22) we have that {E"}§
satisfies the following equation for the perturbation propagation:

(25)

EM L+ AT (i + B; + ¢)] — ATo B — A3 EMN = EP + ATAR Zj Bl f5.

Define a discrete maximum norm by

1B [l = max; [E7].
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Then, from (25) and (24) we have

|EMTH 1+ AT (05 + Bi + ©)]

1E" | + ATAR YD, £ 1B |, + ATay [ B | + Arg; B

|E" o + ATA 1+ O(h)] Bl o + (ATa; + ATB;) | B
[1+ ATA + ATAO(R2)] | B + (ATay + ATB) || B+

foralli=1,2,...,N+1land n=1,2,...,L — 1. This implies
IE" oo (14 ATc) < [1 + ATA+ AT)\O(]’LQ)] |E™| -
Since ¢ = r + A, it follows from the above that, for all n =1,2,..., L — 1,
1+ ATA + ATAO(h?) ATAO(h?) — TAT]

(26)

I IAIA

1B < 1B B [1 n

1+AT(r+A) 1+ AT (r+ )
< lev). [+ SRR <l i R '
= 115 oo L+Ar () | 1 flee L+ I (r+2)
o AO(h2) —r ¢ 0 c 1
<||E HOO{HL/TJFM <|E° YT

< [|B e

for a constant C, independent of h and A7, since r, A\ > 0. This implies that the
scheme (22) is stable in time for any choices of h and Ar. O

Remark 4.1. We comment that when h is sufficiently small and r > 0, it is easy
to derive from the last inequality in the proof of Theorem 4.1 that

IE™ oo < 1B || -
We now write (22) in the following matrix form
(27) [I + M]v"* =[I — D]v",

where M is a tridiagonal matrix, D is the density matrix resulting from the last
term on the left-hand side of (18), and I denotes the identity matrix. For the matrix
I+ M , we have the following conclusion.

Theorem 4.2. The matriz I + M is an M-matriz.

Proof. From (12), (17) and (21), we see that «y, 5;,¢ > 0. Hence I+ M has positive
diagonals, non-positive off diagonals and is diagonally dominant. Hence I + M is
an M-matrix. (]

The above theorem shows that the fully discretized system (29) satisfies the
discrete maximum principle and thus the above discretization is monotone. This
guarantees that the discrete arbitrage inequality holds, which is an important prop-
erty in option pricing theory.

4.2. Crank-Nicolson scheme. Although the implicit-explicit scheme used in the
previous subsection is unconditionally stable, it is only first order accurate in A7.
To improve the accuracy, we apply Crank-Nicolson scheme to (18). By setting
0 =0; =1/2in (20), we obtain the following Crank-Nicolson scheme

(28)
n AT AT AT Ar  Nfl-io
it [1 + 5 (@i + i+ c)} - Tawiff - Tﬁivzﬂl -3 o
J=1—1
A A A Ar  N+1-i
=P [1 — 77— (o + Bi + c)} + 770%17?71 + %ﬂivzﬁl + ar
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or in the matrix form

M D M D
n+1 — _ _ n
(29) {I+2 —1—2}1) [I 5 2]1; ,

where M and D are the same as that in (27).

Theorem 4.3. The matriz I + % + % in (29) is an M-matriz when h and At are
sufficiently small.

Proof. Note that the entries in D are of order O(hA7). When h and A7 are
sufficiently small, we have that I + % + % has positive diagonal elements, non-
positive off diagonal elements, and is diagonally dominant. Therefore, it is an M
matrix, and so is I + % + %. [l

Similar to the implicit-explicit scheme, we have the following result.

Theorem 4.4. If . A > 0 and AT is sufficiently small, then the Crank-Nicolson
scheme (28) is unconditionally stable.

The proof of this theorem is similar to that of Theorem 4.1, and thus we omit
this discussion.

Note that D arising from discretization of correlation product term is a dense
matrix. Therefore, the solution of (29) is computationally expensive because of the
inversion of D. To remedy this, we present an iterative method for (29). To achieve
this, we use the regular splitting technique used in [22]. Let

M M D} "

D
+2+2 and b [ 5 5 |V

We split A into

(30) A:<I+A24>—<—§> — PR

Before further discussion, we first introduce the following definition.

Definition 4.1. A splitting A = P — R is said to be a regular splitting if P~1 >0
and R >0 (cf. [1]).

Since we have proved in Theorem 4.3 that I + % is an M matrix, it follows that
P~1 > 0. Also from (28) and (29), we see that D < 0 and thus R > 0. Therefore,
from the above definition, we see that the splitting (30) is a regular splitting. Using
this splitting, we define an iterative scheme for (30) as follows:

(31) POt = RO + b,
where

ot = (@t - .qﬂ]\ﬁl)T
is an approximation to v" 1 after [ iterations. Substituting (30) into (31), we finally
obtain

M D M D
32 I+ — | =3 4 T - — — = | o™,
(32) [—1—2}1) 50 T 53|V

The following lemma establishes the convergence of the iterative method.

b

Lemma 4.1. The iteration scheme (81) associated with the regular splitting (30)
18 convergent.

Proof. From Theorem 4.3, we know that A = I + % + % is an M matrix. Hence
we have A= > 0. By the result in [1], we have that (31) is convergent. O
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Now, we give a brief description of the numerical implementation for the dis-
cretized equation systems (29). Note that the discretized equation systems (29)
involve the products of the dense matrix D with the vectors. It is computationally
expensive to evaluate this multiplication directly, because the computational cost
is O(N?). Here, we present a fast algorithm for the evaluation of these matrix
products. This algorithm, based on Fast Fourier Transform (FFT), has a computa-
tional cost of order O(N In N). For brevity, we take the iteration scheme (32) and
consider the product of R and ' for each iteration step.

From (19) and (30) we see that R is a Toeplitz matrix. Applying the FFT to
R?! will produce undesirable wrap-round pollution. To avoid this, a commonly
used technique is to embed the Toeplitz matrix R into a circulant matrix C' (cf.
[13]). If we define

I+1 _ ~l+1 ~l+1 T
_[Ul a"'UN+170a"'70] )

N

u

then the matrix-vector product R%' is then realized as the first N + 1 entries in
Cuttt.

Remark 4.2. The first and (N + 1)th entries should be set to the corresponding
boundary conditions (9), since the Dirichlet boundary conditions are used in the
first and (N + 1)th nodes.

Following the ideas stated above, we can compute the product R?' in the fol-
lowing two FFT operations. Let FFT(w) denote the FFT of w and define the
vector

F:(fO’fla"’vaa f—Nvfl—N,"'af—l)a

which generates the row vectors of C' by permutation. First, we compute FFT(F)
and FFT(u). Then, we compute the inverse FFT of the product of FFT(f) and
FFT(u).

Summarizing the numerical implementation details for the system (29), we have
the numerical algorithm as follow:

Algorithm 4.1.

1: Let n=0.
2: Compute FFT(F).
3: Setl=0 and ?° = v".
4: Compute FFT(u').
5: Compute the inverse FFT of the product of FFT(f) and FFT(u) which
gives Rv'.
6: Solve
Pyt = Ry +b.
41 A~
7: If max; % < tolerance, then stop. Otherwise, letl =1+1 and go
to Step 4.

8: Set v" 1 =73 and n =n+1; go to Step 3.

5. Numerical experiments

In this section, we present some numerical results to illustrate the performance
and convergence of the implicit-explicit scheme and Crank-Nicolson scheme. Two
models, those of Merton and Kou with parameter values of of practical significance,
are chosen as our test examples. In the numerical experiments, we investigate
the convergence property of the iterative method for solving the discrete algebraic
equations at each time step and rates of convergence of the discretization schemes.
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Parameter values

r 0.00 o 0.00 K 1.00
o 0.20 oy 0.50 T 1 and 2
A 0.10

TABLE 1. Data used to value European options under Merton’s model

Parameter values

r 0.00 2 3.0
o 0.20 m 2.0 K 1.0
A 0.20 P 0.5 T 0.2
o 0.00 q 0.5

TABLE 2. Data used to value European options under Kou’s model

Because of the non-smoothness of the payoff function, the usual second order con-
vergence rate of the Crank-Nicolson scheme may not be sustained. To remedy this,
we use the technique proposed in [17].

For Merton’s and Kou’s models, analytic solutions are available. Thus, to verify
the accuracy of our numerical schemes, we simply compare our numerical solutions
with the exact ones. The parameters used in Merton’s and Kou’s models are listed
respectively in Table 1 and Table 2.

For Merton’s model with the parameters in Table 1, we choose x* = 4. The
coarsest grid is defined as h = 22*/25 and A7 = 0.2. Note that the number of
sub-intervals N has to be a multiple of 2 because of the FFT algorithm.

For Kou’s model with the parameters in Table 2, we set x* = 6. The coarsest
grid is defined as h = 22*/2% and A7 = 0.02.

To determine the numerical rates of convergence, we choose a sequence of meshes
by successively halving the mesh parameters. At 7 = 0, we compute the following
ratios of the numerical solutions of the consecutive meshes :

. VA V|
(33) Ratio(|[llo) = 7~ 1=
vz vl

in the solution domain, where VO;B denotes the computed solution on the mesh with
spatial mesh « and time mesh size 3, V is the exact solution,
h — = .0 — . =
VA, =V : 1;2&?\)](71“/2 V(S;,T=0)|.
The numerical order of convergence is then defined by
Rate = log, Ratio.

All the numerical experiments were carried out on a dual 1.86GHz Pentium IV
PC.

Example 5.1. Numerical tests for the fitted finite volume method combined with
the implicit-explicit scheme

The numerical results for Merton’s and Kou’s models are listed respectively in
Tables 3 and 4. From these tables we see that the computed rates of convergence are
at least of first-order, which coincides with the theoretical first-order convergence
rate of the backward Euler time discretization used in the implicit-explicit scheme.
Note that the rate of convergence of the spatial discretization is of a 2nd-order,
as can be seen below. However, since the time discretization is only first-order
accurate, we only get the first-order numerical convergent rates in this case.
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r-steps AT T=1 T=2
V(K,0) ., Ratio CPU V(K,O0) ., Ratio CPU
64 1/5 0.0868691 0.2519 0.01s 0.1316979 0.3103 0.01s

128 1/10 0.0917697 0.1166 2.2 0.01s 0.1350245 0.1481 2.1 0.01s
256 1/20  0.0931992 0.0559 2.1 0.02s 0.1361496 0.0714 2.1 0.02s
512 1/40 0.0937251 0.0273 2.0 0.04s 0.1365939 0.0350 2.0 0.07s
1024 1/80 0.0939444 0.0134 2.0 0.15s 0.1367876 0.0173 2.0 0.27s
2048 1/160 0.0940434 0.0067 2.0 0.59s 0.1368774 0.0086 2.0 1.17s
4096 1/320 0.0940903 0.0033 2.0 2.24s 0.1369206 0.0045 2.0 4.53s
8192 1/640 0.0941131 0.0017 1.9 9.19s
Exact solution 0.09413553 0.13696311

TABLE 3. Results for European call options under Merton’s model us-

ing the fitted finite volume method combined with the implicit-explicit

scheme, data as in Table 1. || - || stands for ||VAhT — V||Oo. CPU repre-

sents the CPU time

z-steps AT V(K,0) -]« Ratio CPU
64 0.2/10 0.0264343 1.2696 0.01s
128 0.2/20 0.0364626 0.8612 1.5 0.01s
256 0.2/40 0.0412580 0.3758 2.3 0.02s
512 0.2/80 0.0422908 0.1668 2.3 0.07s
1024 0.2/160 0.0425455 0.0775 2.2 0.27s
2048 0.2/320 0.0426155 0.0373 2.1 1.09s
4096 0.2/640 0.0426360 0.0187 2.0 4.57s
Exact solution 0.0426761

TABLE 4. Results for European call options under Kou’s model us-
ing the fitted finite volume method combined with the implicit-explicit
scheme, data as in Table 2. || - ||« stands for ||VAhT - V||Oo. CPU repre-
sents the CPU time

Example 5.2. Numerical tests for the fitted finite volume method combined with
the Crank-Nicolson scheme

The numerical experiments require the use of Algorithm 1 and we set the tolerance
in Algorithm 4.1 to 10~8. Tables 5 and 6 contain the numerical results for Merton’s
and Kou’s models, respectively.

From Table 5 and Table 6, quadratic convergence rate of the Crank-Nicolson
scheme is clearly observed. Compared with Tables 3 and 4, the Crank-Nicolson
scheme is more accurate. Both the Crank-Nicolson scheme and the implicit-explicit
scheme converge to the same solution. From Table 5 and Table 6 we see that the
computed rates of convergence approximate to 2, indicating that the discretization
error of the scheme is of order O(h? + A7?). From the tables we also see that
the average number of iterations per time step is 1 to 2. Certainly, the number
of iterations depends on the convergence tolerance. For a convergence tolerance of
1078, the fitted finite volume method combined with the Crank-Nicolson scheme is
very efficient.

To conclude this section, we plot, in Figure 1, the value and their first and
second derivatives (delta and gamma respectively) at the last time step of the
European option with a particular choice of parameter set . From Figure 1 we can
see that the option value, delta and gamma are qualitatively very good and contain
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x-steps AT T=1 T=2
V(K,0) ] ]loo Ratio Itns CPU V(K,0) [ ]lcc Ratio Itns CPU
64 1/5 0.0890816 0.2272 9 0.01s 0.1339778 0.2565 19 0.01s

128 1/10 0.0929685 0.1033 2.2 19 0.02s 0.1362362 0.1115 2.3 39 0.01s
256 1/20 0.0938467 0.0397 2.6 39 0.05s 0.1367818 0.0413 2.7 79 0.02s
512 1/40 0.0940633 0.0128 3.1 41 0.12s 0.1369174 0.0129 3.2 81 0.07s
1024  1/80 0.0941174 0.0036 3.6 81 0.50s 0.1369514 0.0039 3.3 161 0.27s
2048  1/160 0.0941310 0.0010 3.3 161 2.21s 0.1369598 0.0011 3.5 321 1.17s
4096  1/320 0.0941343 0.0003 3.0 321 9.39s 0.1369620 0.0003 3.7 641 4.53s
8192  1/640 0.0941352 0.0001 641 39.4s
Exact solution 0.0941355 0.1369631

TABLE 5. Results for European call options under Merton’s model us-

ing the fitted finite volume method combined with the implicit-explicit

scheme, data as in Table 1. || - ||o stands for ||VAhT — V||oo. CPU is the

CPU time. Itns is the total number of iterations required in Algorithm

4.1, for all time steps. Rannacher smoothing is used. tolerance = 1078

z-steps AT V(K,0) I'll.,  Ratio Itns CPU
64 0.2/10 0.0266393 1.0786 19 0.01s
128 0.2/20 0.0367510 0.5136 2.1 21 0.02s
256 0.2/40 0.0413999 0.2140 2.4 41 0.06s
512 0.2/80 0.0423562 0.0649 3.3 81 0.29s
1024 0.2/160 0.0425780 0.0167 3.9 161 1.04s
2048 0.2/320 0.0426315 0.0046 3.6 321 4.44s
4096 0.2/640 0.0426442 0.0014 3.3 641 17.6s
Exact solution 0.0426761

TABLE 6. Results for European call options under Kou’s model us-
ing the fitted finite volume method combined with the implicit-explicit
scheme, data as in Table 1. || - ||o stands for ||VAhT — V||OO. CPU is the
CPU time. Itns is the total number of iterations required in Algorithm
4.1, for all time steps. Rannacher smoothing is used. tolerance = 1078

no oscillations. It shows that the fitted finite volume method combined with the
Crank-Nicolson scheme is robust.

6. Conclusion

In this work we developed an exponentially fitted finite volume method for the
spatial discretization of the PIDE governing European option prices under the
jump diffusion process. The method is coupled with two different time-stepping
schemes. We have shown that the discretization schemes are unconditionally stable
and the system matrices of the fully discretized equations are M-matrices. To
handle products of the dense matrix with vectors arising from the discretization
of the integral operator in the PIDE, we propose the use of FFT. One of the fully
discretized systems involves the inversion of the dense matrix and we proposed an
iterative method for handling this difficulty. Numerical experiments were performed
using two known models to demonstrate the accuracy and efficiency of the methods.
The numerical results show that the methods are stable and the rates of convergence
are of respectively 1st and 2nd-orders.
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FIGURE 1. European option value, delta and Gamma at the last time
step, with » = 0.0, ¢ = 0.2, p = 0.0, o5 = 0.50, A = 0.1, K = 1.0,
T = 2.0. Rannacher smoothing is used. tolerance = 107%. Grid: z-
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