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Abstract. We are concerned in this work with simulations of the localization of a finite number
of small electromagnetic inhomogeneities contained in a three-dimensional bounded domain. Typ-
ically, the underlying inverse problem considers the time-harmonic Maxwell equations formulated
in electric field in this domain and attempts, from a finite number of boundary measurements,
to localize these inhomogeneities. Our simulations are based on an approach that combines an
asymptotic formula for perturbations in the electromagnetic fields, a suited inversion process, and
finite element meshes derived from a non-standard discretization process of the domain. As op-
posed to a recent work, where the usual discretization process of the domain was employed in the
computations, here we localize inhomogeneities that are one order of magnitude smaller.

Key words. inverse problems, Maxwell equations, electric fields, inhomogeneities, Current Pro-
jection method, MUSIC method, FFT, edge elements, numerical measurements, composite nu-
merical integrations.

1. Introduction

This work falls directly in the field of Electrical Impedance Tomography. We
seek to recover unknown inhomogeneities contained in a bounded domain from a
finite number of measurements evaluated on its boundary. From a practical point of
view, such measurements are experimental (or physical) whereas from a simulation
point of view, they are numerically evaluated. Usually in this simulation context,
we solve the underlying inverse problem with the help of a localization procedure
that considers, as data, numerical boundary measurements. Typically, each one
of these measurements results from a numerical computation of the physical field
present in the domain, due to a current applied on its boundary.

In simulations of the localization of small electromagnetic inhomogeneities con-
tained in a three-dimensional bounded domain, we must for instance compute by a
finite element method the electric (or magnetic) field, induced by each prescribed
boundary current, in order to evaluate numerically the corresponding boundary
measurement of “voltage” type. When the required finite element method is based
on the usual triangulation process of the domain, we are concerned, for each pre-
scribed boundary current, with a discrete formulation in electric (or magnetic) field
which is numerically expensive to solve. In fact, the usual triangulation process
generates a “full” conforming mesh of the domain that implicitly takes into ac-
count the discretization of each inhomogeneity and leads to a very large number
of degrees of freedom caused by the smallness of the inhomogeneities — especially
as this is a three-dimensional domain and as mixed finite elements are considered.
The discrete system deriving from the afore-mentioned formulation then has a very
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large number of unknowns and even by solving this system with preconditioning
techniques, we observe, as in [6], that the CPU time needed to evaluate numerically
each boundary measurement remains important. In the presence of a large number
of small inhomogeneities, the number of degrees of freedom associated with the
discrete formulation is excessive and can forbid numerical simulations due now to
the exorbitant requirements in memory storage. Considering then a full conforming
mesh of the domain when it contains multiple small inhomogeneities leads to some
drastic drawbacks regarding the numerical localization as far as memory storage
and CPU time are concerned.

Here we are interested in simulations of the localization of small electromagnetic
inhomogeneities in a three-dimensional bounded domain, based on finite element
meshes that derive from a non-standard discretization process of the domain. This
process is aimed at overcoming the drawbacks inherent in full meshes.

As opposed to [6], where full meshes were considered for the localization of
inhomogeneities and where we were limited in simulations by the smallness of the
inhomogeneities, we expect here to be able to perform localization of much smaller
inhomogeneities.

Our approach will also be based on the framework recently proposed by H. Am-
mari, M.S. Vogelius & D. Volkov [4]. Typically, this framework considers the time-
harmonic Maxwell equations in a three-dimensional bounded domain Ω containing
a finite number m of unknown inhomogeneities of small volume, and proposes to
localize these inhomogeneities from an asymptotic expansion of the perturbation in
the (tangential) boundary magnetic field. In the presence of well-separated inhomo-
geneities, and also distant from ∂Ω, the boundary of Ω, the asymptotic expansion
states that, for any z ∈ ∂Ω,
(1)

(Hα −H0)(z)× ν(z) − 2
∫

∂Ω

curlz(Φk(x, z)(Hα −H0)(x)× ν(x))× ν(z) dσx

= 2α3ω2

m∑

j=1

µ0
µj

(µ0 − µj)G(zj , z)× ν(z)M j(µ0
µj

)H0(zj)

+ 2α3

m∑

j=1

( 1
εj
− 1

ε0
)((curlx G)(zj , z))T × ν(z)M j(ε0

εj
)(curlx H0)(zj) + O(α4) .

In (1), α is the common order of magnitude of the diameters of the inhomogeneities,
and the points zj , 1 ≤ j ≤ m, represent the ’centers’ of the inhomogeneities. The
magnetic field is denoted by Hα in the presence of the inhomogeneities and by H0

in the absence of inhomogeneities. The outward unit normal to Ω is represented
by ν, and ω is a given frequency. The (constant) background magnetic permeabil-
ity and complex permittivity are µ0 and ε0 respectively. Also, µj and εj are the
(constant) magnetic permeability and the complex permittivity of the jth inhomo-
geneity, k2 = ω2ε0µ0, Φk is the “free space” Green’s function for the Helmholtz
operator ∆+k2. The operators applied to the matrix valued function G act column-
by-column, and G(x, z) is the “free space” Green’s function for the “background”
magnetic problem: curlx ( 1

ε0
curlxG(x, z))−ω2µ0G(x, z) = −δzI3, with I3 the 3×3

identity matrix, δz the Dirac delta at z. Also in (1), the superscript “T” denotes
the transpose, M j(µ0

µj
) and M j(ε0

εj
) are the polarization tensors associated with

the jth inhomogeneity (symmetric 3 × 3 matrices). Finally, the notation O(α4)
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means a term that goes to zero like α4, uniformly in z.

We will consider an analogous asymptotic expansion to (1), devoted to the study
of perturbations in the tangential boundary trace of the curl of the electric field
due to the presence of inhomogeneities in Ω. Then a reformulation will lead to
an asymptotic formula that will allow us to evaluate boundary measurements of
“voltage” type from prescribed boundary currents. This framework is well adapted
to the kinds of applications where it is not necessary to reconstruct the precise
values of the electromagnetic parameters of the inhomogeneities or their shapes, but
where we are primarily interested in their positions in Ω. Our localization approach
will mainly consist of locating the ’centers’ of the inhomogeneities and in some
situations, when m = 1, of estimating moreover the diameter of the inhomogeneity,
all this at a fixed frequency ω. For other numerical methods aimed at solving
the reconstruction problem of inhomogeneities in different settings (conductivity
context, dielectric context, ...), we refer to [3], [7], [9], [11], [15], [17], [20], [21], [22].

This work is subdivided into six sections. In Section 2, we introduce, with the
help of the time-harmonic Maxwell equations, the weak formulation in electric field
in the presence of inhomogeneities in Ω. In Section 3, we consider the asymptotic
formula for generating boundary measurements of “voltage” type. We start by de-
scribing in Section 4 a non-standard discretization process of Ω aimed at generating
meshes, called the reduced meshes, allowing us to overcome the drawbacks inherent
in the use of full finite element meshes. Typically, a reduced mesh represents a
conforming mesh of Ω whose size is bigger than the largest of the diameters of the
inhomogeneities present in Ω, and which is (explicitly) combined with integration
meshes for taking into account the characteristics of these inhomogeneities. Namely,
a reduced mesh is (uniquely) made up of tetrahedra of two types: the inhomoge-
neous tetrahedra and the others. An inhomogeneous tetrahedron corresponds to a
tetrahedron which surrounds a single inhomogeneity, and with which an integration
mesh is explicitly associated. Since we are concerned with inhomogeneities of very
small diameters, the size of a reduced mesh of Ω can be taken as small as the size of
a “fine” mesh of Ω that could be considered in the absence of the inhomogeneities.
By using a reduced mesh of Ω in association with edge elements, we also describe
in this section the discrete formulation that allows us to compute the electric field
from each prescribed boundary current for evaluating numerically the correspond-
ing boundary measurement. Section 5 presents numerical results obtained from
extensive simulations by distinctly considering three localization procedures: the
procedure based on the Current Projection method, the procedure deriving from
the MUSIC (MUltiple SIgnal Classification) approach, and the one based on an
Inverse Fourier method. Each one of these procedures, defined in association with
the asymptotic formula that allows us to generate boundary measurements, was al-
ready presented in the numerical localization context considering full finite element
meshes [6]. Using then reduced meshes here, we first describe numerical results that
derive from the procedure based on the Current Projection method, namely in the
single inhomogeneity configuration. We next present results obtained from the pro-
cedures based on the MUSIC approach and on an Inverse Fourier method, both in
the configuration of a single inhomogeneity and in that of multiple inhomogeneities.
Finally, we report in Section 6 some conclusions and perspectives.
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2. Some Notation and the Formulation in Electric Field

Let Ω be a bounded open subset of IR3, with a smooth boundary ∂Ω. For
simplicity we take ∂Ω to be C∞, but this regularity condition could be considerably
weakened. The domain Ω contains here a finite number m of inhomogeneities, each
one of the form zj + αBj , where Bj ⊂ IR3 is a bounded, smooth (C∞) domain
containing the origin. The total collection of inhomogeneities thus takes the form

Iα =
m⋃

j=1

(zj + αBj). The points zj ∈ Ω, 1 ≤ j ≤ m, that determine the locations

of the inhomogeneities are assumed to satisfy:

(2)





d0 ≤ |zj − zk| ∀ j 6= k,

d0 ≤ dist(zj , ∂Ω) ∀ j ,

where d0 ∈ IR?
+ is fixed. The parameter α > 0, the common order of magnitude of

the diameters of the inhomogeneities, is sufficiently small in such a way that these
inhomogeneities are disjoint and their distance to IR3 \ Ω is larger than d0/2. As
a consequence of the assumption (2), it follows that: m ≤ 6|Ω|/πd3

0. Hereafter, we
call each one of these small inhomogeneities, an imperfection.

z3+ αB3

z2+ αB2

z1+ αB1

Ω

Figure 1. An example of a domain containing imperfections.

When we study the time-harmonic solutions of linear Maxwell equations in the
domain Ω containing different materials, we consider IC3-valued fields E, H such
that: ∀ x ∈ Ω,

(3) curl E(x) = iωµ(x)H(x) , curl H(x) = −iωε(x)E(x) ,

where ω > 0 denotes the given frequency, µ is the magnetic permeability, ε(x) =
εre(x) + iσ(x)

ω represents the complex permittivity, with εre the (real) electric per-
mittivity and σ the conductivity of the medium. By dividing the first equation of
(3) by µ and taking the curl, we obtain the following equation for E:

(4) curl(
1
µ

curl E) − ω2εE = 0 in Ω .

The outward unit normal to Ω, defined on ∂Ω, will be denoted by ν. We shall
prescribe non-trivial boundary conditions for E × ν, on ∂Ω, in order to arrive at
particular non-trivial solutions to (4).
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Let µ0 > 0, εre
0 > 0, and σ0 ≥ 0 denote the permeability, the (real) permittivity,

and the conductivity of the background medium, with ε0 = εre
0 +iσ0

ω the background
complex permittivity. Let also µj > 0, εre

j > 0, σj ≥ 0 and εj = εre
j +iσj

ω denote the
permeability, the (real) permittivity, the conductivity, and the complex permittivity
of the jth imperfection zj + αBj . For simplicity, we shall assume here that all
these parameters are constants. Introduce thus the piecewise constant magnetic
permeability µα and the piecewise constant complex permittivity εα: ∀ x ∈ Ω,

µα(x) =





µ0, if x ∈ Ω \ Iα ,

µj , if x ∈ zj + αBj ,
εα(x) =





ε0, if x ∈ Ω \ Iα ,

εj , if x ∈ zj + αBj ,

with 1 ≤ j ≤ m. If we allow the degenerate case α = 0, then the function µα equals
the constant µ0 and the function εα equals the constant ε0.

The electric field denoted Eα, in the presence of imperfections, satisfies:

(5)





curl( 1
µα

curlEα)− ω2εαEα = 0 in Ω ,

Eα × ν = g on ∂Ω ,

with g a given datum on ∂Ω.
The electric field denoted E0, in the absence of all the imperfections, is such

that:

(6)





curl( 1
µ0

curl E0)− ω2ε0E0 = 0 in Ω ,

E0 × ν = g on ∂Ω .

Let
H(curl ; Ω) = {u ∈ (L2(Ω))3 ; curl u ∈ (L2(Ω))3 }

be endowed with its usual Hermitian product denoted here by ( . , . )H(curl; Ω); the
corresponding norm is denoted by ‖ . ‖H(curl; Ω). By representing the surface diver-
gence by div∂Ω, let us consider the space

TH− 1
2 (div ; ∂Ω) = {q ∈ (H− 1

2 (∂Ω))3 ; div∂Ω q ∈ H− 1
2 (∂Ω), q · ν = 0 on ∂Ω},

with its usual norm denoted here by ‖ . ‖
TH− 1

2 (div ; ∂Ω)
. The vector fields Eα and E0,

satisfying (5) and (6) respectively, will be sought in H(curl; Ω), and the datum g

will be taken in TH− 1
2 (div ; ∂Ω). For such a datum, let us consider ug ∈ H(curl; Ω)

such that (see e.g. [5]):

(7)





ug × ν = g on ∂Ω ,

‖ug‖H(curl; Ω) ≤ CΩ‖g‖
TH− 1

2 (div ; ∂Ω)
,

where CΩ > 0 is a constant depending only on Ω. By setting

H = {u ∈ H(curl; Ω) ; u× ν = 0 on ∂Ω } ,

a subspace endowed with ( . , . )H(curl; Ω), and using the extension field ug, the de-
termination of Eα satisfying (5) is reduced to the problem that consists of finding
Eα ∈ H such that:

(8)

∫
Ω

1
µα

curl Eα · curl v dx− ω2
∫
Ω

εαEα · v dx =

− ∫
Ω

1
µα

curl ug · curl v dx + ω2
∫
Ω

εαug · v dx ∀ v ∈ H .
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Also with the same extension field, the determination of E0 satisfying (6) is reduced
to the one that consists of finding E0 ∈ H such that:

(9)

∫
Ω

1
µ0

curl E0 · curl v dx− ω2
∫
Ω

ε0E0 · v dx =

− ∫
Ω

1
µ0

curl ug · curl v dx + ω2
∫
Ω

ε0ug · v dx ∀ v ∈ H .

Of course, knowing ug, while Eα and E0 are in accordance with (8) and (9) respec-
tively, we determine the physical fields:

(10) Eα := Eα + ug , E0 := E0 + ug .

Remark 2.1. In the present framework, the essential hypothesis is that: k2 =
ω2µ0ε0 is taken such that (9) has a unique solution.

The existence and uniqueness of the solution of (8) will be specified in the next
section (see Theorem 3.1).

3. Asymptotic Formula for Perturbations

For measuring perturbations in the electric field due to the presence of imperfec-
tions, we consider here an analogous asymptotic expansion to the formula proposed
by H. Ammari, M.S. Vogelius & D. Volkov [4]. Let us first introduce some additional
notation and definitions. Let us consider, for x 6= z ∈ IR3, the scalar function

Φk(x, z) =
eik|x−z|

4π|x− z| ,

with the constant k defined as in Remark 2.1. Of course, Φk is a “free space”
Green’s function for the Helmholtz operator ∆ + k2, i.e., it satisfies:

(∆ + k2)Φk(·, z) = −δz in IR3 .

Let us now define the matrix valued function G(x, z), for x 6= z ∈ IR3, as

G(x, z) = −µ0(Φk(x, z) I3 +
1
k2

D2
xΦk(x, z)) ,

where D2
x denotes the Hessian, and G(x, z) is a “free space” Green’s function for

the “background” electric problem:

curlx (
1
µ0

curlx G(x, z))− ω2ε0G(x, z) = −δzI3 .

The operator curlx applies here to matrices, column-by-column.
Let {γn}0≤n≤m be a set of complex constants with Re(γn) > 0, for 0 ≤ n ≤

m. Typically, {γn}0≤n≤m will be related to either the set {µn}0≤n≤m or the set
{εn}0≤n≤m. For any fixed 1 ≤ j0 ≤ m, let γ denote the function defined as:
∀ x ∈ IR3,

γ(x) =





γ0, if x ∈ IR3 \Bj0 ,

γj0 , if x ∈ Bj0 .

Let 1 ≤ l ≤ 3. We denote by φl the solution to the problem such that:

(11)





div (γ0 grad φl) = 0 in IR3 \Bj0 ,

div (γj0 grad φl) = 0 in Bj0 ,

φ+
l − φ−l = 0 on ∂Bj0 ,

γ0
γj0

(∂φl
∂ν

)+ − (∂φl
∂ν

)− = 0 on ∂Bj0 ,

φl(x)− xl → 0 as |x| → ∞ .
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In (11), the outward unit normal to Bj0 , defined on the boundary ∂Bj0 of Bj0 , is
also denoted by ν, and the superscripts +, − indicate the limiting values as ∂Bj0

is approached from outside Bj0 , and from inside Bj0 respectively. As mentioned
in [4], the existence and uniqueness of φl can be established (in the real as well as
in the complex case) by using single layer potentials with suitably chosen densities
([10], [12]). The function φl depends only on γ0 and γj0 through the ratio c = γ0

γj0
.

Here, the essential assumption is that the constant c cannot be zero or a negative
real number. With this aspect ratio, we define (as in [4]) the polarization tensor,
M j0(c), of the inhomogeneity Bj0 as follows: ∀ 1 ≤ i, l ≤ 3,

(12) M j0
il (c) = c−1

∫

Bj0

∂φl

∂xi
dx .

Following [4], the tensor M j0(c) is symmetric, and is furthermore positive definite
if c ∈ IR?

+.

Let us now reconsider the vector fields Eα, E0 introduced from (8) - (9). Although
these vector fields, as well as ug given in (7), have been defined only in a weak
sense on ∂Ω, elliptic regularity results ensure that ug, Eα, E0 are infinitely smooth
vector fields (when g is infinitely smooth) and therefore the term ( 1

µα
curl Eα −

1
µ0

curlE0)|∂Ω is infinitely smooth.
The framework of this paper is the main result proposed in [4]. We recall be-

low this result reformulated now for measuring the perturbation ( 1
µα

curl Eα −
1
µ0

curlE0)× ν|∂Ω, in the tangential boundary trace of the curl of the electric field
due to the presence of imperfections.

Theorem 3.1. Let (2) be satisfied, and k2 = ω2µ0ε0 be taken such that (9) has a
unique solution. There exists α0 > 0 such that, for a given g ∈ TH− 1

2 (div ; ∂Ω)
and any 0 < α < α0, the boundary value problem (5) has a unique (weak) solution.
The constant α0 depends on {Bj}1≤j≤m, Ω, {µj}0≤j≤m, {εj}0≤j≤m, ω, and d0,
but is otherwise independent of the points zj, 1 ≤ j ≤ m. Let Eα denote the unique
(weak) solution to (5), and let E0 be the unique (weak) solution to the boundary
value problem (6) corresponding to the same g ∈ TH− 1

2 (div ; ∂Ω). For any z ∈ ∂Ω,
we then have:

(13)

( 1
µα

curl Eα − 1
µ0

curl E0)(z)× ν(z)

− 2
∫

∂Ω

curlz(Φk(x, z)( 1
µα

curlEα − 1
µ0

curlE0)(x)× ν(x))× ν(z) dσx =

2α3ω2

m∑

j=1

(µ0
µj
− 1)G(zj , z)× ν(z)M j(µ0

µj
)(curl E0)(zj) +

2α3ω2ε0

m∑

j=1

( 1
εj
− 1

ε0
)((curlx G)(zj , z))T × ν(z)M j(ε0

εj
)E0(zj) + O(α4) .

The term O(α4) is bounded by C α4, uniformly in z. The positive constant C
depends on {Bj}1≤j≤m, Ω, {µj}0≤j≤m, {εj}0≤j≤m, ω, ‖g‖

TH− 1
2 (div ; ∂Ω)

, and d0,
but is otherwise independent of the points zj, 1 ≤ j ≤ m.

It can now be specified in particular that the consideration of k2 such that the
weak formulation (9) has a unique solution is also a hypothesis leading to the
existence and uniqueness of the solution of the weak formulation (8).
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In (13), and hereafter, the superscript “T” denotes the transpose. The following
result is a consequence of Theorem 3.1 and is presented in [4] as a basis for some
approximate inversion techniques.

Corollary 3.1. Let us consider the assumptions of Theorem 3.1, and denote by w
any smooth vector-valued function such that:

(14) curl(curlw)− k2w = 0 in W ,

where W is an open neighborhood of Ω. There exists a constant α0 > 0 depending
on {Bj}1≤j≤m, Ω, {µj}0≤j≤m, {εj}0≤j≤m, ω, and d0, but independent of w, of
the points zj, 1 ≤ j ≤ m, and such that for a given g ∈ TH− 1

2 (div ; ∂Ω) and any
0 < α < α0, the physical fields Eα and E0 satisfy:

(15)

∫

∂Ω

curl Eα × ν · w dσ −
∫

∂Ω

curl w × ν · (ν × (Eα × ν)) dσ =

α3

m∑

j=1

ω2ε0µ0(ε0
εj
− 1)

[
M j(ε0

εj
)E0(zj)

]
· w(zj) +

α3

m∑

j=1

(µ0
µj
− 1)

[
M j(µ0

µj
) curl E0(zj)

]
· curl w(zj) + O(α4) .

This statement presents of course a version of the boundary perturbation in the
curl of the electric field and appears well suited to applications since, as shown in
[6], it allows us, with the help of inversion processes, to localize the imperfections
by employing special test fields w.

4. Numerical Discretizations

In numerical experiments of the localization of the imperfections, we will use the
asymptotic formula (15) and therefore a discrete field associated with the solution
of the weak formulation (8). In this part, we first describe a non-standard trian-
gulation process of the domain Ω. Then, with the help of a finite element method
based on a mesh obtained from this process, we introduce the discrete formulation
associated with (8).

4.1. Preliminaries. In order to simplify the presentation, we assume, in this sec-
tion and in the following ones, that each imperfection present in the domain is
a polyhedron. Usually, when we are concerned with the discretization of a non-
homogeneous weak formulation, such as (8), we consider a mesh which implicitly
takes into account the inhomogeneities of the domain. Typically, the conforming
mesh of Ω is made up of tetrahedra in such a way that the collection of tetrahedra
associated with each imperfection covers entirely the geometry of the imperfection
and constitutes in particular a conforming mesh of this imperfection. In general,
this conforming mesh of Ω results from a triangulation Tα of Ω which is regular in
the sense that there exists a constant c > 0 such that supK∈Tα

hK
%K

≤ c, where hK

denotes the diameter of the tetrahedron K and %K is the diameter of the largest
sphere included in K. By combining this conforming mesh of Ω with edge elements
(see Nédélec [18]), we can introduce (as in [6]) a discrete formulation associated
with (8). Such a mesh will be called hereafter the full finite element mesh of Ω.
Since this mesh is as “fine” both inside and outside the smallest imperfection, we
obtain, in the presence of a large number of small imperfections in Ω, a far too large
number of degrees of freedom associated with the above-mentioned discrete formu-
lation — especially as this is a three-dimensional mesh and as mixed finite elements
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are considered. As noticed in [6], this excessive number of degrees of freedom leads
to some drawbacks in investigations regarding the numerical localization, as far as
memory storage and CPU time are concerned.

Our attention in this paper being oriented towards the numerical simulations
of the localization of very small imperfections, we will henceforth not consider full
finite element meshes in our experiments.

4.2. Discretization Process of the Domain. We are interested in this sub-
section in a discretization process of the domain Ω aimed at generating meshes
that allow us to overcome the drawbacks inherent in the use of full finite element
meshes. For the sake of simplicity in the presentation, let us assume here that Ω
contains only one imperfection, that is very small. Also, Ω as well as the imper-
fection are polyhedral. The process starts by the construction of one tetrahedron
(in Ω) surrounding the imperfection, and performs next a conforming discretization
of the rest of the domain Ω with tetrahedra as geometric elements. The tetrahe-
dron surrounding the imperfection, called the inhomogeneous tetrahedron, is also a
geometric element in this process. Typically, the collection T formed by the inho-
mogeneous tetrahedron and by the tetrahedra of the rest of the domain constitutes
a conforming mesh of Ω, and must derive from a regular discretization in the sense
that there exists a constant c > 0 such that supK∈T

hK
%K

≤ c, where hK denotes
the diameter of the tetrahedron K and %K is the diameter of the largest sphere
included in K. The mesh size h of Ω, h = supK∈T hK , depends in particular on
the diameter of the inhomogeneous tetrahedron and therefore on α? the diameter
of the imperfection. It is already important to mention that this mesh size can be
reduced until a limiting value dependent on α?. Hereafter, such a conforming mesh
of Ω is called the reduced mesh of Ω. This discretization process prohibits mesh
sizes smaller than α? and accordingly any mesh which is too fine. Nevertheless,
since we are concerned with an imperfection of very small diameter, the mesh size
of Ω can be taken as small as the size of a “fine” mesh of Ω that could be considered
in the absence of the imperfection.

By combining the reduced mesh of Ω with edge elements, and with a composite
integration method for taking into account the characteristics of the imperfection,
we can introduce a discrete formulation associated with (8). Typically, the integra-
tion method is based on an integration mesh of the inhomogeneous tetrahedron and
on the use of a composite numerical integration formula, for the calculation of any
integral term (of the formulation) supported by this inhomogeneous tetrahedron.
For suppleness of the implementation, the integration mesh is also constructed with
tetrahedra. More precisely, this mesh is composed of two collections of tetrahedra
covering in a conforming way the inhomogeneous tetrahedron: the set of tetrahedra
covering in a conforming way the imperfection itself and the collection of tetrahe-
dra outside the imperfection. It is already important to specify that there can exist
large disproportions here between the volumes of tetrahedra inside and/or outside
the imperfection.

Different reduced mesh “levels” can be built. In fact, from a homothetic trans-
formation applied to the inhomogeneous tetrahedron of the initial reduced mesh, we
obtain a new inhomogeneous tetrahedron with which we build a new reduced mesh
of Ω by performing the discretization process described previously. Typically, an
isotropic shrinking of the inhomogeneous tetrahedron allows us to derive a reduced
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mesh having a larger number of geometric elements in contrast with a reduced mesh
based on a same balancing and deriving from an isotropic dilation of this inhomo-
geneous tetrahedron. A recursive construction of reduced meshes of Ω can then
be achieved by defining different reduced mesh levels in such a way that each level
corresponds to a specific homothetic transformation of the initial inhomogeneous
tetrahedron, and is hence associated with a specific reduced mesh. Three reduced
mesh levels are illustrated in Figure 2 (with two-dimensional representations, where
Ω has the shape of the unit disk and contains one disk-like shaped imperfection of
center (0.5, 0)T and of ’radius’ 0.02).

The stages of our approach are summarized as follows:
1. construct (in Ω) an inhomogeneous tetrahedron of diameter hK0 > α?,
2. perform the discretization of the rest of the domain Ω, in order to obtain a

reduced mesh of Ω,
3. construct an integration mesh of the inhomogeneous tetrahedron,
4. combine the reduced mesh with edge elements, and with the integration

mesh, to introduce the discrete formulation associated with (8).
Of course, in the presence of multiple (polyhedral) imperfections, the same dis-
cretization process is also performed; an inhomogeneous tetrahedron is constructed
for each imperfection and an integration mesh is associated with each inhomoge-
neous tetrahedron.

In Figure 2, illustrating both stages 1 and 2, the edges of each inhomogeneous
geometric element are represented in bold. The reduced mesh of the lth level
contains more geometric elements than the reduced mesh of the (l + 1)th level,
from a same balancing.
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Figure 2. An illustration of three reduced mesh levels; l = 1 (first
level) on the left, l = 2 in the middle, and l = 3 on the right.

Figure 3 illustrates stage 3 and presents three integration meshes associated re-
spectively with the three inhomogeneous geometric elements of the reduced meshes
of Figure 2.

4.3. Discrete Formulation. For a reduced mesh of Ω, of level l, we denote by
hl the corresponding mesh size and by Thl

the associated collection of tetrahedra.
Let us assume that an integration mesh is systematically associated with each
inhomogeneous tetrahedron of this reduced mesh, and is combined with a second-
order accurate numerical integration formula. We use first order edge elements (see
Nédélec [18]) for discretizing the formulation in electric field. By denoting by K a
tetrahedron of Thl

, let us consider

R1(K) = {u : K −→ IC3 ; ∃ a, b ∈ IC3, u(x) = a + b× x, x = (x1, x2, x3)T ∈ K} .
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Figure 3. Representations of the integration meshes associated
with the inhomogeneous geometric elements of the previous re-
duced meshes.

The discrete space associated with H is given by

Hhl
= {uhl

∈ H(curl; Ω) ; uhl
|K ∈ R1(K) ∀K ∈ Thl

, uhl
× ν = 0 on ∂Ω},

and is also endowed, as was H, with ( . , . )H(curl; Ω). The expression of any vector
field of Hhl

in each tetrahedron K ∈ Thl
can be written similarly as was done in

[16] for IR3-valued fields, in view of a practical implementation.
The discrete formulation associated with (8), and based on this reduced mesh,

consists of finding Ehl
∈ Hhl

such that:

(16)

∫
Ω

1
µα

curl Ehl
· curl vhl

dx− ω2
∫
Ω

εαEhl
· vhl

dx =

− ∫
Ω

1
µα

curlug · curl vhl
dx + ω2

∫
Ω

εαug · vhl
dx ∀ vhl

∈ Hhl
.

We mention that, due to the conforming finite element method used here, the proof
of the existence and uniqueness of the solution of (8), given in [4], implies also
(under the same hypotheses) the existence and uniqueness of the solution of the
associated discrete formulation (16).

The matrix of the discrete system resulting from (16) is of a drastically reduced
size, in contrast with the matrix of the system that would result from a discrete
formulation based on a full finite element mesh of Ω (built with a similar balanc-
ing), and is inverted with the help of a GMRES algorithm preconditioned by an
incomplete LU factorization. We expect that the formulation (16) will allow us
to achieve numerical simulations of the localization of imperfections with a saving
of memory storage and reasonable CPU times, contrary to a discrete formulation
based on a full finite element mesh.

5. Numerical Localization

This section is subdivided into four parts and deals with the effective localization
of the imperfections in various contexts. We start by describing some computational
configurations and are next concerned with numerical experiments based on three
localization procedures. Each one of these procedures combines the asymptotic
formula (15) with one of the following inversion processes: the Current Projection
method, the MUSIC approach, or an Inverse Fourier method. Typically, four stages
define each procedure. The first stage is that of the illumination of the domain
from a well-chosen setting with incident waves. The second stage concerns the
computation of the discrete electric field, through the formulation (16), and for
each applied boundary current. The third stage makes use of both the asymptotic
formula (15) and the discrete electric field, as well as particular test fields, for the
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numerical evaluation of boundary measurements. The last stage is the application
of the relevant inversion process.

In the second part of this section, we present the numerical results obtained
from the procedure based on the Current Projection method, namely when the
domain contains a single imperfection. The results of the localization of multiple
imperfections are described in the third part of the section from the procedure based
on the MUSIC approach, and in the last part of the section from the procedure now
based on an Inverse Fourier method. As opposed to [6] where these procedures are
introduced for achieving numerical localizations using full finite element meshes,
we specify that only reduced meshes will be required here.

We already mention that the integration method that we use (in the computation
of the discrete electric field or in the evaluation of boundary measurements) does not
deteriorate the order of accuracy of the finite element discretization associated with
each considered reduced mesh. Thus, the localization accuracy will only depend on
this discretization order, besides the error inherent in the inversion procedure that
is used.

5.1. Computational Configurations. Two distinct configurations of the (poly-
hedral) domain Ω, having the diameter and the shape of the unit ball, are taken
into account: the case where Ω contains a single imperfection and when it con-
tains multiple imperfections. For the first configuration, the single imperfection is
a polyhedron having the shape of a ball of center (p1, p2, p3)T = (0.23,−0.31, 0.15)T

and of radius α = 0.02. We perform, as described in Subsection 4.2, the discretiza-
tion process of Ω and retain for this configuration three reduced meshes obtained
recursively. Namely, we denote by

• Th1 the collection of tetrahedra corresponding to the initial reduced mesh
of Ω. This is a mesh built from an inhomogeneous tetrahedron of small di-
ameter (approximately equal to 5α), and identified hereafter as the reduced
mesh of Ω of first level (l = 1);

• Th2 the collection of tetrahedra associated with the reduced mesh of Ω of
second level (l = 2), built from a dilation of the initial inhomogeneous
tetrahedron with a homothetic parameter equal to 1.05;

• Th3 the collection of tetrahedra corresponding to the reduced mesh of Ω of
third level (l = 3), also obtained from a dilation of the initial inhomogeneous
tetrahedron but with a homothetic parameter now equal to (1.05)2.

We have used more or less the same balancing (of the order of 5
2) in the construction

of these reduced meshes and their sizes hl, 1 ≤ l ≤ 3, are such that: h1 < h2 < h3.
In the following table, we give some characteristics of these meshes — denoting
by NK, NIE, NIV the number of tetrahedra, internal edges and internal vertices
respectively, as well by nf , ne the number of boundary faces and boundary edges
respectively.

NK NIE NIV nf ne hl

Th1 46402 51734 6969 3276 4914 0.17152

Th2 31081 34252 4545 2750 4125 0.19100

Th3 16021 17538 2309 1586 2379 0.22639

The discretization approach of Subsection 4.2 leads us to consider moreover, for each
inhomogeneous tetrahedron present, a corresponding integration mesh. This is of
course a conforming mesh for which large disproportions exist between the volumes
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of tetrahedra inside and outside the imperfection. The collection of tetrahedra
associated with the integration mesh of the inhomogeneous tetrahedron of Thl

(1 ≤
l ≤ 3) is then not necessarily very large (about 1500 elements constitute each one
of the three integration meshes considered here).

In the second configuration, Ω contains more than one imperfection and each
imperfection is a ball-like or ellipsoid-like shaped polyhedron. The collections of
tetrahedra associated with the reduced meshes of Ω are represented by

• T 4
h when Ω contains three imperfections one of which has the shape of

a ball of radius 0.016 and of center (0.23,−0.31, 0.15)T . The second one
is ellipsoid-shaped, centered at (−0.17,−0.43,−0.11)T with ’semi-axes’ of
lengths 0.016, 0.016, 0.018 in the directions Ox, Oy, Oz respectively. The
last imperfection is also ellipsoid-shaped, but centered at (−0.5, 0.25, 0.1)T

with the ’semi-axes’ (on Oxy) rotated about Oz by an angle of π
4 . The

lengths of the ’semi-axes’ of this imperfection are 0.016, 0.017 and 0.019.
We denote in this case by α (α = 0.019) the maximal value of the semi-axes
lengths and the ’radius’ of the first imperfection;

• T 5
h when Ω contains five imperfections, where each one has the shape

of a ball of radius 0.01. We set here: α = 0.01. These imperfections
are respectively centered at (0, 0, 0)T , (0.25, 0.25, 0.25)T , (0.5, 0.5, 0.5)T ,
(−0.25,−0.25,−0.25)T , and (−0.5,−0.5,−0.5)T .

For this multiple imperfections context, we retain thus two reduced meshes of Ω,
where each mesh corresponds to a specific physical setting. The mesh size, denoted
here by h, differs of course depending on whether we are concerned with T 4

h or
T 5

h . We also mention that neither of these meshes is linked to any of the previous
meshes of the single imperfection configuration, in the sense that any inhomoge-
neous tetrahedron of T 4

h or of T 5
h is not built from that of Th1 . Using the same

notation as above, we give in the following table some characteristics of the two
reduced meshes with multiple imperfections.

NK NIE NIV nf ne h

T 4
h 66347 74349 10085 4168 6252 0.14546

T 5
h 77263 86614 11753 4806 7209 0.13951

Of course, as previously for the single imperfection configuration, an integration
mesh is systematically associated here with each inhomogeneous tetrahedron of T 4

h

and T 5
h . We distinguish thus three integration meshes associated with the three

inhomogeneous tetrahedra of T 4
h , whereas we retain a unique integration mesh in

the case of the inhomogeneous tetrahedra of T 5
h (all the imperfections having here

both the same shape and size, and the same type of tetrahedron being used to
surround each imperfection — the inhomogeneous tetrahedra have a unique shape
and identical diameters).

As opposed to the context of full finite element meshes, the mesh size hl or h
resulting from each reduced mesh is systematically larger than the largest of the
diameters and ’axes lengths’ of the imperfections: hl, h > 2α.

In the construction of the reduced meshes associated with T 4
h and T 5

h , we have
used more or less the same balancing (of the order of 5

2 as before). With such
a balancing, the usual discretization process of the domain results in a full mesh
having an exorbitant number of tetrahedra, in each one of the previous settings (for
example, more than 1 140 000 tetrahedra result from the full mesh of the domain,
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with approximately 0.0619 as mesh size, when it contains a single imperfection
of ’radius’ 0.08 only!). Let us mention also that, by using similar balancings in
the constructions of meshes, a reduced mesh of the domain containing multiple
imperfections (with α the common order of magnitude of their diameters) does not
necessarily have a larger number of tetrahedra than a reduced mesh of the same
domain with a single imperfection (with an order of magnitude of its diameter close
to α).

Let us specify that in comparison with the imperfections considered in [6], those
present in the above configurations are one order of magnitude smaller.

5.2. From a Procedure based on a Current Projection Method. We de-
scribe in this subsection the results obtained from a localization procedure uniquely
devoted to the case where the domain contains a single imperfection. This proce-
dure, combining the asymptotic formula (15) and a Current Projection method,
is presented in [6] and is aimed at determining the center of the imperfection.
To begin, let us recall briefly how the formula (15) is used. We denote by p =
(p1, p2, p3)T the center of the imperfection, by M its “rescaled” polarization tensor
(µ0
µ1
−1)M1(µ0

µ1
), and by N its other “rescaled” polarization tensor (ε0

ε1
−1)M1(ε0

ε1
).

When we neglect the asymptotically small remainder term in (15), it follows that:

(17)
Γ :=

∫

∂Ω

curl Eα × ν · w dσ −
∫

∂Ω

curl w × ν · (ν × g) dσ ≈

α3k2 (N E0(p)) · w(p) + α3 (M curl E0(p)) · curl w(p) ,

with w any smooth vector-valued function satisfying

curl(curl w)− k2w = 0 in W ,

where W is an open neighborhood of Ω.
According to (10), we recall that Eα = Eα + ug, where Eα is the solution to

(8). The datum g in (7), that defines ug, is considered from a physical point of
view as a current applied on ∂Ω. The discrete field Eh associated with Eα is the
solution of the discrete formulation (16), and the discrete electric field associated
with Eα is defined as: Eh

α := Eh + ug. The inversion process is established by
using in (17) particular currents as well as special test fields, and by evaluating the
corresponding numerical measurements from the left-hand side of (17).

We apply different currents for g that correspond to the following background
vector potentials

E
(1)
0 (x) =




0

0

eikx2


 , E

(2)
0 (x) =




eikx3

0

0


 , E

(3)
0 (x) =




0

eikx1

0


 ,

x = (x1, x2, x3), and evaluate from the left-hand side of (17) the terms Γ(j,i),
1 ≤ i, j ≤ 3, defined as:

(18) Γ(j,i) :=
∫

∂Ω

curl Eh
α,(i) × ν · w(j,i) dσ −

∫

∂Ω

curl w(j,i) × ν · (ν × g(i)) dσ .

Namely, for each current g(i) = E
(i)
0 ×ν, we put g := g(i) in (7) in order to compute

by (16) the corresponding discrete electric field denoted here by Eh
α,(i), and consider
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the test vector fields

w(1,1)(x) =




0

0

e−ikx2


 , w(2,1)(x) =




e−ikx2

0

0


 , w(3,1)(x) =




0

0

eikx2


 ,

w(1,2)(x) =




e−ikx3

0

0


 , w(2,2)(x) =




0

e−ikx3

0


 , w(3,2)(x) =




eikx3

0

0


 ,

w(1,3)(x) =




0

e−ikx1

0


 , w(2,3)(x) =




0

0

e−ikx1


 , w(3,3)(x) =




0

eikx1

0


 .

Each Γ(j,i), 1 ≤ i, j ≤ 3, is called the numerical boundary measurement. It follows
from the formula (17) and with these considerations that:

(19)





Γ(1,1) ≈ α3k2N33 + α3k2M11 ,

Γ(2,1) ≈ α3k2N13 − α3k2M31 ,

Γ(3,1) ≈ (α3k2N33 − α3k2M11)e2ikp2 ,

Γ(1,2) ≈ α3k2N11 + α3k2M22 ,

Γ(2,2) ≈ α3k2N21 − α3k2M12 ,

Γ(3,2) ≈ (α3k2N11 − α3k2M22)e2ikp3 ,

Γ(1,3) ≈ α3k2N22 + α3k2M33 ,

Γ(2,3) ≈ α3k2N32 − α3k2M23 ,

Γ(3,3) ≈ (α3k2N22 − α3k2M33)e2ikp1 ,

where the terms Mij and Nij , 1 ≤ i, j ≤ 3, are respectively the coefficients of M
and N . As specified in [6], the measurements Γ(1,i), Γ(2,i), 1 ≤ i ≤ 3, in (19), allow
us to provide an approximation of the rescaled tensor α3k2M or α3k2N depending
on whether ε1 = ε0 or µ1 = µ0. Once an approximation of the tensor α3k2M
or α3k2N is determined, we can localize the center of the imperfection from the
measurements Γ(3,i), 1 ≤ i ≤ 3, in (19), for certain values of k and when µ0 > 0,
µ1 > 0, ε0 > 0, ε1 > 0.

We mention that the measurements in (19) are not however sufficient to deter-
mine the approximations of α3k2M and α3k2N in the general case, where both
µ1 6= µ0 and ε1 6= ε0.

When the rescaled polarization tensors (µ0
µ1

− 1)M1(µ0
µ1

) and (ε0
ε1
− 1)M1(ε0

ε1
)

are known, an approximation of the order of magnitude of the diameter of the
imperfection can be determined from one of the measurements Γ(1,i), 1 ≤ i ≤ 3,
even if µ1 6= µ0 and ε1 6= ε0, with of course µ0 > 0, µ1 > 0, ε0 > 0, ε1 > 0.
Following [6], we determine the approximations of M1(µ0

µ1
) and M1(ε0

ε1
) without

any relation to reduced meshes. In fact, the evaluation of M1(µ0
µ1

), or M1(ε0
ε1

),
is done by calculating numerically the coefficients of the tensor from (12), with
Bj0 ≡ B1 identified then with a polyhedral domain having here the shape and the
diameter of the unit ball, and after discretizing the scalar potential, solution of (11),
from the combination of a standard finite element mesh with interior nodal finite
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elements and boundary finite elements of first-order (see also e.g. [16] for such a
combination). Another approach, entirely based on integral equation techniques,
for computing numerically the solution of (11), is the one resulting from [19].

In what follows, we fix µ0 = ε0 = 1, and present the numerical results of the
localization of a single imperfection contained in Ω. We make use of (19) by dis-
tinguishing the cases: µ1 = µ0 with ε1 6= ε0, as well as µ1 6= µ0 with ε1 = ε0. Here
and in the following subsections, all our numerical results will be described with
respect to the parameter

(20) τ := α ω .

Let us mention that this parameter would be defined as τ := αω/r if Ω was a ball
(or ball-like) of radius r. Based on the numerical study of the asymptotic formula
(13) done in [6], each considered frequency must be such that k is in accordance
with Remark 2.1, and must not lead to a too small or a large value of τ (τ < 1).
Consequently, we will not use here frequencies that are too high and each considered
frequency will be such that k < π

2 for example, in the case of the reconstruction
of the center of the imperfection in Ω (domain having here the diameter and the
shape of the unit ball).

We respectively denote by |α− αh|
|α| , |p− ph|IR3

|p|IR3
, where | . |IR3 is the infinity norm

on IR3, the relative errors on the ’radius’ α and the center p of the imperfection,
when αh, ph are the ’radius’ and the center of the localized imperfection.

Figures 4 - 5 present results obtained from Thl
, 1 ≤ l ≤ 3, with µ1 = 1, ε1 =

3, 5, 10. We observe an asymptotic behaviour of the relative error on the ’radius’ of
the imperfection with respect to τ .
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Figure 4. Semi-log representation of the relative error on the ra-
dius with respect to some values of τ , for µ1 = 1 with ε1 = 3 (at
left) and ε1 = 5 (at right), from Thl

, 1 ≤ l ≤ 3.

We observe in the case where µ1 = 1 that the relative error on the radius in-
creases with respect to τ , independently of the considered reduced mesh. On the
other hand, for a large range of values of τ , this relative error increases with respect
to the contrast of the domain. Figures 4 - 5 show moreover that this relative error
becomes more important when we augment the reduced mesh level and that, for
the low contrasts, the two first reduced mesh levels lead to errors on the radius that
are not very different for a large range of values of τ .
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Figure 5. Semi-log representation of the relative error on the ra-
dius with respect to some values of τ , for µ1 = 1 with ε1 = 10 from
Thl

, 1 ≤ l ≤ 3.

We mention that an asymptotic behaviour of the relative error on the radius,
with respect to τ , is also observed from simulations in the case where µ1 = 3, 5, 10
with ε1 = 1. For a range of values of τ (τ ¿ 10−1), this relative error increases
slightly when the contrast becomes important. We observe from experiments, for
ε1 = 1 and for such values of τ , that the relative error on the radius is asymptoti-
cally slightly more accurate than the one obtained by taking µ1 = 1, independently
of the considered reduced mesh.

In the case of low contrasts, we represent in Figures 6 - 7 the cross-sections at
x = p1, y = p2 and z = p3, of the original imperfection (with center (p1, p2, p3)T )
and of the reconstructed imperfection resulting from the first level of the reduced
mesh.
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Figure 6. Respective cross-sections at x = p1, y = p2 and z = p3,
from Th1 and with µ1 = 1, ε1 = 3, τ = 1.7 10−2. Superposition of
the original imperfection (−−−) whose center is marked by “+”, and
of the reconstructed imperfection (−− −) with its center marked
by “×”.

As indicated in Figure 8, we observe from simulations an asymptotic behaviour of
the relative error on the center of the imperfection with respect to τ , independently
of the considered reduced mesh and when µ1 = 1. On the other hand, this relative
error varies with respect to the contrast of the domain and it appears, contrary to
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Figure 7. Respective cross-sections at x = p1, y = p2 and z = p3,
from Th1 and with µ1 = 1, ε1 = 5, τ = 2.6 10−2. Superposition of
the original imperfection (−−−) whose center is marked by “+”, and
of the reconstructed imperfection (−− −) with its center marked
by “×”.

the error on the radius, that it does not systematically increase significantly (for
a large range of values of τ) when we augment the reduced mesh level or when
the contrast of the domain increases. Also, from experiments we observe that the
relative error on the center, when ε1 = 1, is not systematically more accurate than
the one obtained by taking µ1 = 1, independently of the considered reduced mesh.
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Figure 8. Semi-log representation of the relative error on the cen-
ter with respect to some values of τ , from Th2 (−−.−−) and Th3

(−−o−−), for µ1 = 1 with ε1 = 10.

The behaviours of the relative errors on the radius and the center, with respect
to τ , indicate to us that accurate reconstructions of the imperfection cannot be
expected in the case of too small or large values of τ . Moreover, it appears more
efficient to consider, in simulations, the second level of the reduced mesh instead
of the first level due to a more reasonable CPU time and the fact that the relative
errors obtained from Th2 are not numerically very different from those resulting
from Th1 , for a large range of values of τ . On the other hand, since the relative
errors on the radius from Th2 are significantly better than those obtained from Th3 ,
we present below the results of experiments based mainly on Th2 .
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Figure 9. Respective cross-sections at x = p1, y = p2 and z = p3,
from Th2 and with µ1 = 1, ε1 = 5, τ = 2.6 10−2. Superposition of
the original imperfection (−−−) whose center is marked by “+”, and
of the reconstructed imperfection (−− −) with its center marked
by “×”.

Figure 9 allows us to notice that the imperfection reconstructed from Th2 is of
similar size to the one of the imperfection reconstructed from Th1 (see Figure 7), at
the same frequency and for the same contrast, but has a slightly different center.

The results represented in Figure 10 are obtained for a stronger contrast and
at a lower frequency. As opposed to this case where µ1 = 1 with ε1 = 10, the
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Figure 10. Respective cross-sections at x = p1, y = p2 and
z = p3, from Th2 and with µ1 = 1, ε1 = 10, τ = 1.17 10−2. Super-
position of the original imperfection (−−−) whose center is marked
by “+”, and of the reconstructed imperfection (− − −) with its
center marked by “×”.

reconstructed imperfection at the same frequency and when µ1 = 10 with ε1 = 1 is
of smaller size.

In comparison with the results of Figure 9, the reconstructed imperfection in
Figure 10 is of larger size and its center is less accurate. We also notice from
simulations with Th2 that the localization of the imperfection becomes in fact less
accurate, when using the same contrast as before in Figure 9, but in the case where
τ = 1.17 10−2.

By reducing (again) the frequency, we obtain the results represented in Figure
11 - 12, from the same reduced mesh level and with different contrasts.
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Figure 11. Respective cross-sections at x = p1, y = p2 and
z = p3, from Th2 and with µ1 = 1, ε1 = 10, τ = 8.2 10−3. Super-
position of the original imperfection (−−−) whose center is marked
by “+”, and of the reconstructed imperfection (− − −) with its
center marked by “×”.
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Figure 12. Respective cross-sections at x = p1, y = p2 and
z = p3, from Th2 and with µ1 = 10, ε1 = 1, τ = 8.2 10−3. Super-
position of the original imperfection (−−−) whose center is marked
by “+”, and of the reconstructed imperfection (− − −) with its
center marked by “×”.

Similar results have been obtained from simulations with the same frequency,
but for µ1 = 5 with ε1 = 1, and when µ1 = 1 with ε1 = 5. It appears that
the localization of the imperfection becomes more and more inaccurate when the
frequency decreases, and that following the case where µ1 = 1 or ε1 = 1, the
reconstructed imperfection is of larger or smaller size respectively.

5.3. From a Procedure based on the MUSIC Approach. We describe in
this subsection the numerical results obtained from a procedure aimed at localizing
a single imperfection as well as multiple imperfections. This procedure, presented
in [6], also makes use of the asymptotic formula (15), but now in combination
with the MUltiple SIgnal Classification (MUSIC) approach [1]. Before describing
the numerical results, let us recall briefly how the MUSIC approach is applied, for
simplicity, when Ω represents the unit ball. Let (θ1, ..., θn) ∈ (S2)n be n directions
of incidence, and denote by (x̂1, ..., x̂n), n directions of observation, where x̂l = θ⊥l
for l = 1, ..., n. Here, the essential assumption is that n is bigger than m, the
number of imperfections. By neglecting the asymptotically small remainder term



70 M. ASCH AND S.M. MEFIRE

in (15), we get:

(21)

∫

∂Ω

curl Eα × ν · w dσ −
∫

∂Ω

curl w × ν · (ν × g) dσ ≈

α3

m∑

j=1

k2(ε0
εj
− 1)

[
M j(ε0

εj
)E0(zj)

]
· w(zj) +

α3

m∑

j=1

(µ0
µj
− 1)

[
M j(µ0

µj
) curl E0(zj)

]
· curl w(zj) ,

where g is defined as in (7), and Eα is determined through the solution Eα of (8).
Let us apply different currents for g that correspond to the background vector

potentials E0,(l)(x) = θ⊥l eikθl·x, 1 ≤ l ≤ n. From each applied current g(l) =
E0,(l) × ν, 1 ≤ l ≤ n, we take g := g(l) in (7) and compute through (16) the
corresponding discrete electric field denoted by Eh

α,(l). Now with the test vector

field w(l′)(x) = θ⊥l′ e
ikθl′ ·x, 1 ≤ l′ ≤ n, we evaluate from the left-hand side of (21)

the term defined as follows,

All′ :=
∫

∂Ω

curl Eh
α,(l) × ν · w(l′) dσ −

∫

∂Ω

curl w(l′) × ν · (ν × g(l)) dσ ,

that denotes a numerical boundary measurement. In this way we build numerically
the matrix A := (All′)1≤l,l′≤n. With these particular choices of background vector
potentials and test vector fields, we get from the right-hand side of (21):

α3

m∑

j=1

[
k2(ε0

εj
− 1)

(
M j(ε0

εj
) θ⊥l

)
· θ⊥l′ −

k2(µ0
µj
− 1)

(
M j(µ0

µj
)(θl × θ⊥l )

)
· (θl′ × θ⊥l′ )

]
eik(θl+θl′ )·zj .

If we replace the approximation in (21) by an equality, we may respectively write
the coefficients of A as below, when all the imperfections are uniquely electric or
uniquely magnetic: for 1 ≤ l, l′ ≤ n,

All′ = α3
m∑

j=1

k2(
ε0

εj
− 1)

(
M j(

ε0

εj
) θ⊥l

)
· θ⊥l′ eik(θl+θl′ )·zj ,

or

All′ = −α3
m∑

j=1

k2(
µ0

µj
− 1)

(
M j(

µ0

µj
)(θl × θ⊥l )

)
· (θl′ × θ⊥l′ )e

ik(θl+θl′ )·zj .

Let us consider some constant vector c ∈ IR3, and set A? = A
T
. Depending on

whether all the imperfections are electric or magnetic, let us define, respectively for
z ∈ Ω,

gz,c := (c · θ⊥1 eikθ1·z, ..., c · θ⊥n eikθn·z)T ,

where c is such that c · θ⊥l 6= 0, for all l = 1, ..., n, or

gz,c := (c · (θ1 × θ⊥1 )eikθ1·z, ..., c · (θn × θ⊥n )eikθn·z)T ,

with here c such that c · (θ⊥l × θl) 6= 0, for all l = 1, ..., n.
Referring now to [1], it can be shown that there exists n0 ∈ IN such that for any

n ≥ n0,
gz,c ∈ Range(AA?) if and only if z ∈ {z1, ..., zm}.

An application of the singular-value decomposition of A is the determination of the
number of imperfections, since the number of significant singular-values of A yields



LOCATING SMALL ELECTROMAGNETIC INHOMOGENEITIES IN A 3D DOMAIN 71

the number of detectable imperfections (see [1], [2]). Typically, if there exist 3m
significant singular-values of A, then there are m detectable imperfections. If all the
singular-values of A are zero or close to zero (when A does not have any significant
singular-value), then there are no detectable imperfections in the domain.

In the case where there are detectable imperfections in the domain, we can make
use of the singular-vectors of A to locate them. If we call VS = [u1, u2, ..., un? ]
the matrix block built with significant left singular-vectors of A, where n? is the
number of these vectors, then VSVS

T
defines the projection onto the signal space

of A and we consider P = In− VSVS
T
, where In is the n×n identity matrix, with

n > 3m. For any point z ∈ Ω, let us define: Wc(z) := 1
‖Pgz,c‖2 , where the 2-norm

‖ . ‖2 is applied here to a vector of n components. The point z coincides with the
location of an imperfection if and only if Pgz,c = 0. In this way, we can form an
image of detected imperfections by plotting Wc at each point z of Ω; the resulting
plot will have large peaks at the locations of the imperfections.

The process is similar in the case where all the imperfections are electromagnetic.
For 1 ≤ l, l′ ≤ n fixed, and replacing the approximation in (21) by the equality, the
terms of the matrix A are in this case:

All′ = α3

m∑

j=1

[
k2(ε0

εj
− 1)

(
M j(ε0

εj
) θ⊥l

)
· θ⊥l′

− k2(µ0
µj
− 1)

(
M j(µ0

µj
)(θl × θ⊥l )

)
· (θl′ × θ⊥l′ )

]
eik(θl+θl′ )·zj .

Now, gz,c is defined as follows:

gz,c :=





 c · θ⊥1

c · (θ1 × θ⊥1 )


 eikθ1·z, ...,


 c · θ⊥n

c · (θn × θ⊥n )


 eikθn·z




T

,

where c ∈ IR3 is some constant vector such that c · θ⊥l 6= 0, and c · (θ⊥l × θl) 6= 0, for
all l = 1, ..., n.

Referring again to [1], [2], if there exist 5m significant singular-values of A, then
there are m detectable imperfections, and if all the singular-values of A are zero
or close to zero, then there are no detectable imperfections. An image of detected
imperfections is also formed by plotting Wc(z) = 1

‖Pgz,c‖2 at each point z of Ω,

where P is built as previously from significant left singular-vectors of A, n > 5m
now, and the 2-norm ‖ . ‖2 is applied to an n× 2 matrix.

Hereafter, we present numerical results obtained from extensive simulations that
make use of the procedure (cf. [6]) based on this approach. Since the visual
representation of the functional Wc depending in particular on the parameter c
is required, all our results will be described with respect to c in addition to the
parameters µα, εα and τ (see (20)). From the numerical inspection of the as-
ymptotic formula (13) done in [6] as well as from other investigations of [6], the
choices of τ will be here such that τ < 1. As the present procedure enforces
an illumination of the domain Ω, the results should be described also with re-
spect to the number n of incident waves used to illuminate Ω. These waves
are defined from certain points uniformly distributed on the full boundary, θl =
(cos(2π l − 1

n− 1) sin(π l − 1
n− 1), sin(2π l − 1

n− 1) sin(π l − 1
n− 1), cos(π l − 1

n− 1))T , 1 ≤ l ≤ n. In
a general way, we will consider n = 3m + 2 incident waves in the case of electric
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or magnetic imperfections, and n = 5m + 3 in the case of the localization of elec-
tromagnetic imperfections. In our presentation of results, we will then specify the
choice of n only when it differs from 3m + 2 or 5m + 3 following the case.

We fix here µ0 = ε0 = 1. In order to compare the numerical results of the previ-
ous subsection with those that will be obtained here in the case of the localization
of a single imperfection (m = 1), we first consider most of the previous values of
τ , µ1 and ε1, as well as Th1 , Th2 . Let us recall that the same notation as above,
p = (p1, p2, p3)T , is used to indicate the center of this imperfection.

Figures 13 - 16 present results obtained from the first level of the reduced mesh
by considering µ1 = 1, ε1 = 3, 5, τ = 1.7 10−2, 2.6 10−2 and c = (1.0,−2.0, 1.0)T .

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

25

30

35

40

45

yz y

z

 

 

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

12

14

16

18

20

22

24

26

28

30

Figure 13. Cross-section of Wc at x = p1 (at left) and corre-
sponding contour-plot (at right), from Th1 and with µ1 = 1, ε1 = 3,
τ = 1.7 10−2, c = (1.0,−2.0, 1.0)T .
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Figure 14. Cross-section of Wc at y = p2 (at left) and corre-
sponding contour-plot (at right), from Th1 and with µ1 = 1, ε1 = 3,
τ = 1.7 10−2, c = (1.0,−2.0, 1.0)T .

These results concerning the location of the single imperfection seem more accurate
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Figure 15. Cross-section of Wc at z = p3 (at left) and corre-
sponding contour-plot (at right), from Th1 and with µ1 = 1, ε1 = 3,
τ = 1.7 10−2, c = (1.0,−2.0, 1.0)T .

than those of Figures 6 and 7 obtained in the previous subsection.
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Figure 16. Respective contour-plots of cross-sections of Wc at
x = p1, y = p2 and z = p3, from Th1 and with µ1 = 1, ε1 = 5,
τ = 2.6 10−2, c = (1.0,−2.0, 1.0)T .

By using now the second level of the reduced mesh in the latter case (µ1 = 1
with ε1 = 5), we obtain the results of Figure 17.

Though slightly less accurate, these results are similar to those of Figure 16
obtained at the same frequency and with the same value of the parameter c. Similar
conclusions are also reached when we compare the results of Figures 13 - 15 with
those obtained with the same values of parameters but from Th2 . From this point
on, we treat only experiments based on Th2 , due to the efficiency in CPU time
for simulations with this second level of the reduced mesh and the fact that the
difference of the localization results, between Th1 and Th2 , is not numerically very
significant.

Let us also mention in a general way that the choice of values of c will always
be done as described at the beginning of this subsection and that other admissible
values for this parameter led to the same kind of results as here.

As already observed in Figure 12, when the procedure based on the Current
Projection was used, the results of Figure 18 indicate, in the case of the present
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Figure 17. Respective contour-plots of cross-sections of Wc at
x = p1, y = p2 and z = p3, from Th2 and with µ1 = 1, ε1 = 5,
τ = 2.6 10−2, c = (1.0,−2.0, 1.0)T .

procedure, that the location of the imperfection becomes less accurate when smaller
frequencies are considered.
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Figure 18. Respective contour-plots of cross-sections of Wc at
x = p1, y = p2 and z = p3, from Th2 and with µ1 = 10, ε1 = 1,
τ = 8.2 10−3, c = (−1.0, 1.0, 1.0)T .

Contrary to the localization procedure of the previous subsection, where a re-
striction was enforced on the choice of frequencies for reconstructions, the present
procedure allows us to achieve localizations in a less restrictive context, namely
with ’high’ frequencies. The results obtained by considering larger values of τ are
represented in Figures 19 - 20, for weak and strong contrasts.

Contrary also to the previous subsection, we can achieve here simulations of the
localization of an electromagnetic imperfection. Figures 21 - 22 show results of such
a localization obtained at different frequencies.

Let us mention that independently of the contrast of the domain, the localization
of the center of the imperfection becomes less and less accurate when τ takes larger
values. With τ ≥ 3.5 10−1 for example, we obtain disastrous results from the
simulations.

We now treat the localization of multiple imperfections from the settings based
on T 4

h and T 5
h . The presentation of our results will consist here of showing contour-

plot views of the functional Wc from each one of the three coordinate directions.
In this postprocessing, when the z−direction, for example, will be concerned, the
used software will draw, besides contour-plot obtained on the plane Oxy, horizon-
tal and vertical segments whose intersections correspond to centers of the original
imperfections viewed on Oxy.
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Figure 19. Respective contour-plots of cross-sections of Wc at
x = p1, y = p2 and z = p3, from Th2 and with µ1 = 1, ε1 = 3,
τ = 6.6 10−2, c = (1.0,−2.0, 1.0)T .
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Figure 20. Respective contour-plots of cross-sections of Wc at
x = p1, y = p2 and z = p3, from Th2 and with µ1 = 1, ε1 = 10,
τ = 1.06 10−1, c = (1.0,−2.0, 1.0)T .
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Figure 21. Respective contour-plots of cross-sections of Wc at
x = p1, y = p2 and z = p3, from Th2 and with µ1 = 5, ε1 = 10,
τ = 1.06 10−1, c = (−1.0,−0.5, 0.5)T .

The results represented in Figures 23 - 25 are obtained at a same frequency but
with different contrasts of the domain.

Figure 26 presents the results obtained by keeping the same values of µα, εα as
in Figure 23 and the same frequency, but by considering T 5

h with a larger number
of incident waves.

We can already summarize this subsection by reporting that the localization of
the imperfections from the procedure based on the MUSIC approach is efficiently
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Figure 22. Respective contour-plots of cross-sections of Wc at
x = p1, y = p2 and z = p3, from Th2 and with µ1 = 5, ε1 = 10,
τ = 2.26 10−1, c = (−0.5, 2,−0.5)T .
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Figure 23. Contour-plot views of Wc from the x−direction, the
y−direction and the z−direction respectively, when T 4

h is used,
µj = 1, εj = 3 (1 ≤ j ≤ 3), τ = 1.007 10−1 and c =
(1.5,−0.5, 2.5)T .
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Figure 24. Contour-plot views of Wc from the x−direction, the
y−direction and the z−direction respectively, when T 4

h is used,
µj = 5, εj = 3 (1 ≤ j ≤ 3), τ = 1.007 10−1 and c =
(2.0,−2.5, 1.5)T .

achieved as long as too small or large values of τ are not considered. As was
observed in [6], where full meshes were used, it appears here that the accuracy of
the localization of the imperfections varies also with respect to the contrast of the
domain. The results seem slightly more accurate in the case of electric imperfections
than in other cases, independently of the considered reduced meshes.
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Figure 25. Contour-plot views of Wc when T 4
h is used, τ =

1.007 10−1, c = (2.0,−2.5, 1.5)T , with µj = 5, ε1 = ε2 = 3,
ε3 = 3 + 0.1i at left, and µj = 3, εj = 10 at right, 1 ≤ j ≤ 3.
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Figure 26. Contour-plot views of Wc from the x−direction, the
y−direction and the z−direction respectively, when T 5

h is used,
µj = 1, εj = 3 (1 ≤ j ≤ 5), τ = 1.06 10−1, c = (1.0, 2.5, 1.0)T and
n = 30.

5.4. From a Procedure based on an Inverse Fourier Method. In this last
subsection, we describe the numerical results obtained from, also, a procedure aimed
both at localizing a single imperfection as well as multiple imperfections. As pre-
sented in [6], this procedure makes use of the asymptotic formula (15) and of the
original idea of Calderón [8] which was to reduce the localization problem to the
calculation of an inverse Fourier transform. Let us first of all recall briefly the
principle of this procedure by reconsidering the formula (15) as follows:

(22)

Γ :=
∫

∂Ω

curl Eα × ν · w dσ −
∫

∂Ω

curl w × ν · (ν × g) dσ =

α3

m∑

j=1

k2(ε0
εj
− 1)

[
M j(ε0

εj
)E0(zj)

]
· w(zj) +

α3

m∑

j=1

(µ0
µj
− 1)

[
M j(µ0

µj
) curl E0(zj)

]
· curl w(zj) + O(α4) ,

where g = Eα × ν.



78 M. ASCH AND S.M. MEFIRE

For an arbitrary η ∈ IR3, let us define β and ζ in IR3 such that:


‖β‖2 = 1, β · η = 0,

‖ζ‖2 = 1, ζ · η = ζ · β = 0 ,

with ‖ . ‖ denoting the usual norm associated with the Hermitian product on IC3.
Let p = η + γβ such that p · p = k2, i.e., γ is a complex number such that:
γ2 = k2 − ‖η‖2. In accordance with (14), we consider w(x) = eiq·xζ as the test
vector field, where q = η − γβ. By taking g(x) = (eip·xζ)× ν(x) as the boundary
current, then associated with the background potential E0(x) = eip·xζ, it follows
from (22) that:

(23)
Γ = α3

m∑

j=1

(
k2(ε0

εj
− 1)

[
M j(ε0

εj
)eip·zj ζ

]
· eiq·zj ζ +

(µ0
µj
− 1)

[
M j(µ0

µj
)(ieip·zj p× ζ)

]
· (ieiq·zj q × ζ)

)
+ O(α4) .

By viewing the measurement as a function of η now,

Γ(η) ≈ α3

m∑

j=1

(
k2(ε0

εj
− 1)

[
M j(ε0

εj
)ζ

]
· ζ −

(µ0
µj
− 1)

[
M j(µ0

µj
)((η + γβ)× ζ)

]
· ((η − γβ)× ζ)

)
ei2η·zj ,

and by inspecting the context where all the imperfections are balls — the tensors
M j(c) being accordingly of the form mj(c)I3 with mj(c) a scalar depending on c
(cf. e.g. [6]), it follows that

(24) Γ(η) ≈ α3
m∑

j=1

[
k2(

ε0

εj
− 1)mj(

ε0

εj
) − (

µ0

µj
− 1)mj(

µ0

µj
)(2‖η‖2 − k2)

]
ei2η·zj .

Since ‖η‖2 is a polynomial in the coordinates ηi, 1 ≤ i ≤ 3, of η, the expression in the
right-hand side of (24) is therefore, in this particular case, the Fourier transform
of a linear combination of derivatives of order less than or equal to 2 of delta
functions centered at the points −2zj , 1 ≤ j ≤ m. More precisely, the inverse
Fourier transform of Γ(η) is expressed as:

Γ̌(x) ≈ α3
m∑

j=1

Lj(δ−2zj )(x) ,

where Lj is a second order differential operator with constant coefficients depending
on mj(ε0

εj
) and mj(µ0

µj
). In this approach, a numerical Fourier inversion of a sample

of measurements should efficiently pin down the zj ’s.
When some of the imperfections are not balls, we may rewrite (23) as below,

where the measurement Γ is viewed again as a function of η:

(25) Γ(η) ≈ α3
m∑

j=1

(
k2(

ε0

εj
− 1)Tε0,εj (η) − (

µ0

µj
− 1)Tµ0,µj (η)

)
ei2η·zj ,

with Tε0,εj (η) = (M j(ε0
εj

)ζ)·ζ and Tµ0,µj (η) = (M j(µ0
µj

)((η+γβ)×ζ))·((η−γβ)×
ζ). The expression in the right-hand side of (25) is in fact the Fourier transform of
an operator of a more complicated kind acting on delta functions centered at the
points −2zj , 1 ≤ j ≤ m. The present localization principle consists of sampling
Γ(η) at some discrete set of points and then evaluating the discrete inverse Fourier
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transform of the corresponding sample. After a rescaling (by − 1
2 ), the support of

this inverse Fourier transform will provide the locations of the imperfections.
Typically, for each point η (of the mentioned discrete set), we consider g(x) =

(ei(η+γβ)·xζ)× ν(x) as the boundary current in (7) and compute through (16) the
corresponding discrete electric field, denoted here by Eh

α. After determining the
discrete field, curlEh

α × ν, we evaluate numerically the measurement Γ(η) by using
of course w(x) = ei(η−γβ)·xζ as the test field in

∫
∂Ω

curlEα×ν ·w dσ−∫
∂Ω

curl w×
ν · (ν × g) dσ, and by replacing Eα by Eh

α in this difference of terms.
Let us now specify, following [22], a possible way to choose a step size for sampling

with respect to η in the numerical simulations. First of all, let us assume that all the
centers zj = (z1

j , z2
j , z3

j )T of the imperfections (1 ≤ j ≤ m) lie in a domain [−K, K]3,
where the bound K is known. To simplify the presentation, let us consider the
formula (24) and rewrite simply its right-hand side as:

(26)
m∑

j=1

Cj e2i(η1z1
j +η2z2

j +η3z3
j ) ,

where the complex constants Cj are unknown. As previously mentioned, for each
η = (η1, η2, η3)T , we are able to evaluate the measurement Γ(η) and therefore we
assume that (26) is known for (η1, η2, η3)T ∈ [−ηmax, ηmax]3, on a regular grid made
up of n3 points. We are then in possession of the sequence of data:

m∑

j=1

Cj e2i((−ηmax+(l1−1)ρ)z1
j +(−ηmax+(l2−1)ρ)z2

j +(−ηmax+(l3−1)ρ)z3
j ) , 1 ≤ l1, l2, l3 ≤ n ,

where ρ = 2ηmax
n . After applying the inverse Fourier transform to this sequence,

we get
(27)

1
n3

m∑

j=1

Cj

∑

1≤l1,l2,l3≤n

e2i((−ηmax+(l1−1)ρ)z1
j +(−ηmax+(l2−1)ρ)z2

j +(−ηmax+(l3−1)ρ)z3
j )

×e2iπ(
(l1−1)

n (s1−1)+
(l2−1)

n (s2−1)+
(l3−1)

n (s3−1)) ,

with 1 ≤ s1, s2, s3 ≤ n. Let us now consider the module of the term in (27), reduced
as follows:

(28)

∣∣∣∣∣∣

m∑

j=1

1
n3

8Cj

sin(2ηmaxz
1
j ) sin(2ηmaxz

2
j ) sin(2ηmaxz

3
j )

(e2π(
ρz1

j
π +

s1−1
n )i − 1)(e2π(

ρz2
j

π +
s2−1

n )i − 1)(e2π(
ρz3

j
π +

s3−1
n )i − 1)

∣∣∣∣∣∣
.

Then, as n becomes large, the quantity in (28) is small unless one of the terms
ρz1

j
π + s1 − 1

n ,
ρz2

j
π + s2 − 1

n , and
ρz3

j
π + s3 − 1

n is close to an integer. By enforcing

(for example) Kρ
π <∼

1
3 , each one of the previous terms shall only approach the

integers 0 or 1, in the case where n becomes large (n ≥ 3). This relation provides
a practical way to choose the step size ρ and also indicates a link between ηmax, K

and n. In fact, we have ρ = 2ηmax
n and take

(29) ρ ≈ 1
K

.

We shall fix ρ according to (29) and consider simultaneously increasing values of
n and of ηmax for more accuracy. This is a resolution method whose centers zj ,



80 M. ASCH AND S.M. MEFIRE

1 ≤ j ≤ m, are localized from the sequence of the modules of the terms in (27),
with at best (theoretically) a resolution of order π

2ηmax
.

As presented in [6], the procedure based on this approach incorporates addition-
ally a cutoff process aimed at overcoming numerical instabilities that could occur
in the presence of a large disproportion between the magnitude of the remainder
term of (23) for large values of ‖η‖, and the magnitude of the right-hand side of
(25), or then the magnitude of (26), for ‖η‖ near 0. In this cutoff process, initially
summarized in a two-dimensional situation by D. Volkov in [22], a threshold η?

(independent of the centers and shapes of imperfections as well as of µα, εα) is
introduced such that for ‖η‖ > ‖(η?, η?, η?)T ‖, the quantity in (26) is set equal to
0. Consequently, “fine” grids for η are recommended, in order to “compensate” the
induced loss of accuracy.

The presentation of our results will consist here of representing, after a rescaling
by −1

2 , contour-plots based on the sequence of modules of the terms that approxi-
mate those of (27), following the asymptotic formula for measurements, furthermore
enriched by a usual linear interpolation process. In addition to the physical param-
eters µα, εα and τ , all our results will be then described with respect to ηmax,
n and η?. Of course, as in the previous localization approaches, each experiment
considered here will make use of computations in double precision.

We want to compare the numerical results of Subsections 5.2 and 5.3 with those
that will be described below in the case of the localization of a single imperfection
(m = 1) and on the other hand, to compare the results of Subsection 5.3 with those
that will be obtained here in the case of the localization of multiple imperfections
(m > 1). In all the cases we fix µ0 = ε0 = 1 and the choices of η? will result from
numerical tests. The choices of the parameter τ will be such that τ < 1, motivated
as in the previous subsection.

Figures 27 - 33 present the results of the localization of a single imperfection,
in each one of the settings defined from Th1 and Th2 ; most of the values of µ1,
ε1, τ considered in Subsections 5.2 and 5.3 are used here. An order of resolution

π
2ηmax

≈ 0.157 is expected for each experiment, since we fix ηmax = 10 and consider
ρ = 2 as the step size for sampling, i.e. n = 10.
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Figure 27. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, Th1 is used, µ1 = 1, ε1 = 3, τ = 1.7 10−2,
ηmax = 10, n = 10 and η? = 10.



LOCATING SMALL ELECTROMAGNETIC INHOMOGENEITIES IN A 3D DOMAIN 81

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1  

y

 

z

467.5

468

468.5

469

469.5

470

470.5

471

471.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1  

x

 

z

435

435.5

436

436.5

437

437.5

438

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1  

 

x

y

441.5

442

442.5

443

443.5

444

444.5

Figure 28. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, Th1 is used, µ1 = 1, ε1 = 5, τ = 2.6 10−2,
ηmax = 10, n = 10 and η? = 10.

The results of Figures 27 - 28 are accurate according to the expected order of
resolution. However, these results are less accurate when compared with those
of Figures 6 - 7 that derive from the procedure based on the Current Projection
method. As opposed to that procedure, we can here perform simulations with
’higher’ frequencies.

Figure 29 presents the results of the localization (of a same type of imperfection
as previously) obtained also from the first level of the reduced mesh, but at a higher
frequency.
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Figure 29. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that ap-
proximate those of (27). Here, Th1 is used, µ1 = 1, ε1 = 10,
τ = 1.06 10−1, ηmax = 10, n = 10 and η? = 5.

The results of Figure 30, that derive from the second level of the reduced mesh,
are similar to those of Figure 29 obtained with the same values of µ1, ε1, ηmax, n,
and at the same frequency.

Similar comparisons of experiments between these reduced mesh levels allow us
to notice the efficiency of the localization with the second level of the reduced mesh
with respect to the CPU time, though, apparently, slightly less accurate than the
localization from the first level of the reduced mesh. We are thus concerned with
Th2 in the experiments providing the results presented below in Figures 31 - 33. As
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Figure 30. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that ap-
proximate those of (27). Here, Th2 is used, µ1 = 1, ε1 = 10,
τ = 1.06 10−1, ηmax = 10, n = 10 and η? = 5.

with the procedure of the previous subsection, we can localize an electromagnetic
imperfection with the present approach.

The results of Figure 31 are less accurate than those of Figure 22 represented
in the previous subsection. In fact, from similar experiments, the results obtained
from the present approach, and with the considered value of ηmax, are less accurate
than those provided from the MUSIC approach. However, the accuracy of the
present approach could be improved by increasing the value of ηmax.
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Figure 31. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that ap-
proximate those of (27). Here, Th2 is used, µ1 = 5, ε1 = 10,
τ = 2.26 10−1, ηmax = 10, n = 10 and η? = 6.

Figures 32 - 33 present the localization of a single imperfection achieved at a
higher frequency and for different contrasts.

The localization of the imperfection is again successfully achieved, but we obtain
disastrous results from the simulations when larger values of the frequency are used.

Let us now inspect the localization context of multiple imperfections, in various
aspects. For this inspection, we fix ρ = 5

4 and are led to use a bigger number of
measurements than previously. The presentation of our results will consist again of
showing, from each one of the three coordinate directions, and after a rescaling by
−1

2 , contour-plot views based on the sequence (enriched by a linear interpolation
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Figure 32. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that ap-
proximate those of (27). Here, Th2 is used, µ1 = 1, ε1 = 3,
τ = 3.46 10−1, ηmax = 10, n = 10 and η? = 6.
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Figure 33. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that ap-
proximate those of (27). Here, Th2 is used, µ1 = 5, ε1 = 10,
τ = 3.46 10−1, ηmax = 10, n = 10 and η? = 6.

process) deriving from one of the modules of the terms that approximate those of
(27). Also as in the previous subsection, when the z−direction, for example, will
be concerned, the software used for the present postprocessing will draw, besides
contour-plot obtained on the plane Oxy, horizontal and vertical segments whose
intersections correspond to centers of the original imperfections viewed on Oxy.

We first consider experiments regarding the configuration based on T 4
h .

Figures 34 - 35 present the results of the localization of three imperfections
achieved at different frequencies. In comparison with the results of Figure 25,
obtained from the MUSIC approach, those of Figure 34 are less accurate.

The experiments associated with Figures 36 - 37 use the same frequency as in
the localization corresponding to Figure 35, but consider stronger contrasts.

This localization based on T 4
h is also successfully obtained, in the limit of the

resolution.
In what follows, we consider experiments regarding the configuration based on

T 5
h . Figure 38 presents the results of the localization of five electric imperfections
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Figure 34. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, T 4

h is used, µj = 3, εj = 10 (1 ≤ j ≤ 3),
τ = 1.007 10−1, ηmax = 10, n = 16 and η? = 5.
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Figure 35. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, T 4

h is used, µj = 1, εj = 3 (1 ≤ j ≤ 3),
τ = 2.147 10−1, ηmax = 10, n = 16 and η? = 5.
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Figure 36. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, T 4

h is used, µj = 3, εj = 10 (1 ≤ j ≤ 3),
τ = 2.147 10−1, ηmax = 10, n = 16 and η? = 5.
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Figure 37. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, T 4

h is used, µj = 5, εj = 3 (1 ≤ j ≤ 3),
τ = 2.147 10−1, ηmax = 10, n = 16 and η? = 5.

by considering the same number of measurements as in the previous multiple im-
perfections configuration, since we are dealing with the same region of interest in
the procedure, as for T 4

h .
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Figure 38. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, T 5

h is used, µj = 1, εj = 3 (1 ≤ j ≤ 5),
τ = 2.26 10−1, ηmax = 10, n = 16 and η? = 4.5.

Figures 39 - 40 show the results of the localization in the electromagnetic case,
also obtained from T 5

h . Similar results come from simulations achieved with other
physical contrasts (µj = 5, 3, εj = 10 + 0.1i for example), by using different fre-
quencies and the same number of measurements as here.

As observed from simulations, the localization, both of a single imperfection and
of multiple imperfections, is successfully achieved at frequencies that are not too
low or too high. However, the present procedure appears, with the chosen value for
ηmax, less efficient than the one based on the MUSIC approach, since the obtained
results are less accurate and a larger number of measurements is required here.
To improve the localization accuracy, large values for ηmax must be considered.
However, for such values, the number of measurements to evaluate becomes very
large and leads to a disadvantage of the procedure as regards the localization CPU
time, despite the cutoff process of the Fourier domain.
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Figure 39. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, T 5

h is used, µj = 5, εj = 3 (1 ≤ j ≤ 5),
τ = 2.26 10−1, ηmax = 10, n = 16 and η? = 4.5.
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Figure 40. Contour-plot views respectively from the x−direction,
the y−direction and the z−direction, based on the enriched se-
quence, deriving from one of the modules of the terms that approx-
imate those of (27). Here, T 5

h is used, µj = 3, εj = 10 (1 ≤ j ≤ 5),
τ = 2.26 10−1, ηmax = 10, n = 16 and η? = 4.5.

Since we can consider the same number of measurements to locate, at a fixed
order of resolution, both the single imperfection as well as all the imperfections, in
the same region of interest, we notice that the procedure appears more suitable for
configurations with a large number of imperfections.

6. Conclusions and Perspectives

A framework for numerical simulations of the localization of small electromag-
netic imperfections, in a three-dimensional bounded domain, has been described
here. Based on the combination of an asymptotic formula for boundary measure-
ments, a reduced mesh and a suited inversion algorithm, this framework has been
validated in various contexts. Cases of a single imperfection and of multiple imper-
fections have been considered on the one hand, and three inversion algorithms have
been used: the Current Projection method, the MUSIC algorithm, and an Inverse
Fourier method. Independently of the inversion algorithms used, we conclude from
simulations that it is not necessarily useful to consider a “very fine” reduced mesh
in order to obtain a pertinent localization. Our numerical investigations have been
done with respect to the parameter τ (linking the frequency with the common order
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of magnitude α of the diameters of the imperfections), and not with respect to the
wavelength for possibly describing a link with the distances between the imperfec-
tions, since the asymptotic formula for perturbations is developed with respect to
α and as on the other hand we take into account the numerical observations of
[6] established by reconsidering with respect to τ this formula for perturbations.
Also in the multiple imperfections context, and now with very different orders of
magnitude of the diameters, for instance when the setting associated with T 4

h is
modified in such a way that its last imperfection is now of one order of magnitude
larger, we think that the reduced mesh for such a setting should be built as the
one distinguished by T 4

h but taking into account a conforming discretization of the
imperfection whose diameter is one order of magnitude larger.

Comparisons performed in the case of a single imperfection (with the Current
Projection method) or in the settings of multiple imperfections (with the MUSIC
approach) show that the localization based on the Inverse Fourier method is numeri-
cally less efficient. This inversion method requires a larger number of measurements
in order to provide an accurate localization and leads consequently to a very expen-
sive CPU time — the evaluation of each measurement having a relatively important
cost (average CPU time of about 27.7 s. on an “IBM Multi-Processor Power4 each
one with a frequency of 1.1 GHz”, in the case of T 5

h for example, without taking
into account the CPU time for calculating the right-hand side of (16) associated
with the measurement). Nevertheless this inversion method appears more suitable
for configurations with a large number of imperfections, contrary to the MUSIC
approach.

As opposed to a recent work developed in [6], and based on the use of full
meshes, the present framework allows us: to achieve numerical simulations of the
localization of imperfections of much smaller sizes, and to consider experiments in
the configuration of a bigger number of imperfections.

A first perspective of the present work concerns the numerical localization of
imperfections as small as here, from the same inversion procedures, but where the
step of the numerical evaluation of boundary measurements will be achieved with
the help of integral equation techniques.

Another perspective would be to study the numerical localization of such small
imperfections from an approach using the same inversion procedures, but based
on a variant of the multiscale finite element method ([13], [14]) for numerically
evaluating boundary measurements. In fact, this approach could be helpful in the
context of a large number of such imperfections in the domain.
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