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NUMERICAL ANALYSIS FOR A NONLOCAL ALLEN-CAHN
EQUATION

PETER W. BATES, SARAH BROWN, AND JIANLONG HAN

(Communicated by Gang Bao)

Abstract. We propose a stable, convergent finite difference scheme to solve
numerically a nonlocal Allen-Cahn equation which may model a variety of
physical and biological phenomena involving long-range spatial interaction. We
also prove that the scheme is uniquely solvable and the numerical solution will

approach the true solution in the L norm.
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1. Introduction

Consider the following problem

&) w = [ e =ty = [ I = p)dyata) - 1w

in (0,7) x €, with initial condition

(2) u<0’x) = UO(.%‘),

where T" > 0 and 2 C R” is a bounded domain. The unknown u is a real-valued

order parameter, the interaction kernel satisfies J(—xz) = J(x), and f is bistable.
The equation (1) can be derived as an L? gradient flow for the free energy

3) E= [ 16w @) - uy)dedy+ [ Fu(e) de,

where F' is a double well function.
The L? gradient flow for the classical Ginzberg-Landau energy functional

1
(4) E = §/|Vu|2dm+/F(u(x))dm,
is the Allen-Cahn equation:
(5) w = Du() - f(u)

As mentioned in [3], the equations (1) and (5) are important for modelling a va-
riety of physical and biological phenomena involving media with properties varying
in space. There is by now a lot of work on equation (1) and (5) (see for example
(1], 12], [5], [7], [8], [9], [11], [12], [13], [15], [16], [17], and the references therein).

To the best of our knowledge, there are very few results on the numerical solutions

to (1). In this paper, we develop a finite difference scheme for equation (1) forn =1
and n = 2. We also prove that the difference scheme is stable and that the numerical
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approximation converges to the solution of (1) as the spatial and temporal mesh

size approaches zero. Our numerical results coincide with the theoretical results in
[12].

2. Analysis of the proposed scheme

In this section, we consider finite difference approximations of equation (1) for
n =1 and n = 2. For the sake of exposition, we take f(u) = u® — u, but the
analysis applies to the general smooth bistable function if care is taken in the
choice of linearization.
We use the following notation:
For n =1 with Q = (- L, L),
Qp ={z;|zi=—-L+ilx,0<i< M},
Q= {ti|ty = kAL, 0 <k < K},
where Az = 2L/M and At = T/K. Our difference scheme for equation (1) for
n =1 is as follows:

(6) u? = ug(x;), for 0 <i < M,

(7)  Seul = (T*u®); — (T * D)ulf + b uf ™) for0<i< M, 0<k<K -1,

where
k+1 k
) — un
) k _ i 7
tuz At )
1 N 1
(J = Uk)z =Azx §J(:Eo — T;)ug + mzzl J(xm — :162)1%’3I + §J($M —xz)uyy|
and

2
wluf uf ™) = uf = (uf) i

For a rectangular domain (—L, L) x (=W, W) C R?, we have
Doy = {(wiyy)lwi = —L+ilz, y; = =W+ jAy, 0<i <M, 0<j < N},
Qp = {ty|ty = kAL, 0 <t < K},

where Az = 2L/M and Ay = 2W/N.
Our difference scheme in this case is

(8) u?yj:uo(x,-,yj) for 0<i<M,0<j<N,
(9) 5tuﬁj = (Jxuk); ;- (J* 1)¢,juf’j + w(uﬁj,uﬁ'gl)

for 0<i<M,0<j<N,0<k<K-—1,

where
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M—-1N-1
(Jxub); ; =Dzly Z Z J(Tm — TiyYn —yj)ufn,n
m=1 n=1
| M-t
+§ (J(xm_xiyyo_yj)uﬁq,o‘FJ(a:m_xiayN_yj)ulnc@,N)
m=1
LNt
+§ (J(Jfo—xz‘yyn—yj)ul&n-l-J(xM —ﬂﬁi,yn—yj)u?w,n)
n=1
1 k k
+ 1 (J(xo — T Yo — yj)UO,O + J(xar — 2,90 — yj)UM,o

+J(xo — i Yyn — yj)U’S,N +J(xpm — mi,yn — yj)ulfw,N)] )
and
ko k+1 k E A2 k41
Dug g5 ) =ug ;= (ug ) gy
Remark 2.1. The choice ofw(uf,j, uftl) implies that our method is semi-implicit,
which gives us better stability properties.

Theorem 2.2. Ifu(0,z,y) € C(Q) and J € C ([-2L,2L] x [-2W,2W]), then there
exists a unique solution to the difference equations (8)-(9), and we have

(10) Irlla;X|uf]| <C

for some constant C' which is independent of k, i.e., the scheme is stable under the
Mazimum norm.

Proof. From equations (8)-(9) and the form of 4, it is clear that the scheme is
uniquely solvable.

Set A = max |ug(z, y)|.

For k =0,

(11) II}E}X|U?7j| = max |ug(z,y)| = A

For 0 < k < K, denote a;, = max \uﬁj . Equation (9) implies

(12) Ak+1 § ar + (2C1 + 1)At Qg

where C; = max |(J * 1); ;|. From equation (12), we have

arp1 < (14 (201 + D)At)ay < (14 (201 + 1)At)?ap_y

(13) < (14 (201 + DAYFag < eCr+D2k g
< 2Ty < C(T)A.

Therefore,

(14) max |uf ;| < C(T)A,

i,k
where C(T) is independent of k£ and of the spatial mesh size. This completes the
proof.
O
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Remark 2.3. A similar result holds for all values of n.

Next we consider error estimates for the proposed scheme. In order to show
that the numerical solution converges to the solution of (1), we have the following
lemma.

Lemma 2.4. Suppose that J and f satisfy the following assumptions:
(Ay) J € W2HR"™) and (L; = max{sup fQ |J(z — y)|dy, sup fQ |J (z — y)|dx,
sup [o, |[J"(x — y)|dy} < oo.
(A3) f € C?(R™) and there exist ¢y, ca, c3, ¢4 > 0 and v > 2 such that
fwu > eilu]” = ealul, and |f(u)] < eslul""" + ca.

If ug € C*(Q), then there exists a unique solution u € C*2([0,T] x Q) to (1)-(2).

Furthermore, u € C12([0,00) x Q) and
sup [|ul|cq) < C(A),
>0

where C(A) depends only on A = ||ug||so-

Proof. The proof of the lemma is similar to that of Theorem 2.3 in [6], and so we
omit it here. O

Theorem 2.5. Take n = 2 and let Q = (—L,L) x (=W, W). If (1)-(2) has a
solution such that u(t,z,y) € CY2([0,T] x Q), then the solution of the difference
scheme converges to the solution of (1) uniformly, as (At, Ax,Ay) — 0 and the
convergence rate is O(At + Ax? + Ay?).

Proof. Let u(t, z,y) be the solution of equation (1). We use the following notation:
For0<k<K,0<i<M,and 0<j<N,let

(15) Uikj :u(tk,xi,yj).

From the Taylor expansion of u, we also have the following approximations:

k+1 k
Ui Ui

16 ) —
( ) ut(tkyxzayj) At

+O(A)

for k> 0. Also,

(17) /QJ(mi = 2,y; = Yult, z,y)dedy = (J = U*)i; + O(Az® + Ay?)

and

(18) J(z; —z,y; —y)drdy = (J * 1);; + O(Az® + Ay?).

S~

Equations (1), (16)-(18) imply the following estimate holds:

Ukl _ Uk,
(19) B CALR R CADILY
+UF = (Uf)? + O(At + A + AyP).
We define the error as
(20)

VE =Ul -y, fork=0,1,--- K, i=0,1---,M, andj=0,1,---
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From (8) and (15), we have

(21) VO =0fori=0,1---,M, andj=0,1,---,N.
For k > 0, (9) and (19) imply that

Vzk;rl = At [(J * Vk)i,j —(J* 1)ijVilfj + ij - ((Uikj)g - (Ul‘C ‘)QU“-I)]

(W) 3]

(22) k 2 2
+ V7 4+ 28t0 (At + Ax® + Ay®).
Since
k\3 kN2, k+1 _ 7k \2/77k k+1
(23) (Uij) - (U”) U 5 = (Uij) (Uij _Uij )

F VU +ud YUST + (uf )PV,
equation (22) implies
(1 2 )7
(24) = At [(J * Vk)i,j —(J = 1)ij‘/i’,€j + Vzkg - (Uikj)z(Uikj - Uzkfl)
—VF U +uf DUST] + V4 20t0(A8 + Ax® + AyP).

Equation (24) and the boundedness of |Uf;| and |uf ;| imply that

(25)  max [V < C(Ar, A, As) At max [ VE | + max [VE| + | AtRy],
i,j 1, i, 3 J i, 3 J

where C'(A1, Aa, A3) depends only on Ay = max; ; |ufj|, Ay = max; j k Ui’fj| and

As =sup [, |J(z — y)|dy, and Ry = O(At 4+ Az? + Ay?).
Let

Vi = max V5.
3J

From (25), we have

Viet1 < (1 + C(A1, Ao, As)At) Vi + AtRo
< (14 C(A1, Ao, A3)AL) [(1 + C(Ar, Ay, A3)AL) Vi_y + AtRy] + AtRy
< (14 C(Ay, Ao, T)A? Vit + [(1 + C(Ay, Ay, A3)At) + 1] AtRy

< (14 C(A1, A2, A3) A0 Vi + [(1+ C(A1, As, Ag) A1)
(26) k2
F (14 C(Ar, Agy A) A2 4 1 1} AtR,

< (OO A2 A Bty [1+ C(A1, Ag, Ag)At]F — 1

- C(A1, A2, A3)
C(Al,Az,Ag)T _ 1

e R,
C(A17A27A3)

= O(At+ Aa® + Ay?).

2

Therefore, the error rate is O(At + Ax? + Ay?). O
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3. Applications to Allen-Cahn equation

The method for the nonlocal Allen-Cahn equation can also be applied to the
Allen-Cahn equation.
Consider the following problem:
ug = Au— f(u)in (0,7) x Q
0
(27) el )
PN
(0, 2) = up(x)
where f(u) = u® — u.
Our difference scheme for equation (27) with n =1 is as follows:

(28) Srulf = 02uk (b Y for 0<i <M 1<k<K -1

with time and spatial discretization as before. The Neumann boundary condition
is expressed by

k k k k
Uy — U, Up41 — UMt
29 =0 =0for 0<k<K-1
(29) 20z ’ 20Ax orusR= ’
where
5 uk — uf""l B uf
t Wy At )
520k — ufyy — 2uf +uf
x ™ Ax2 )
and

Y(ul ul Ty = b — (uk)Qul-“H.

Equations (28)-(29) imply

(30) (14 Atu§)?) ugt™ = 1o (2uf — 2uf) + (At + Duf for0 <k < K — 1,

(31) (14 Atuf)?) ul ™ =rp(ufy) — 2uf +uf ) + (At + )uf
for1<i<M-1,0<k<K-1,

(32) (14 At(ub)?) ul ™ = rp(2ub,_y — 2uk)) + Atuly, for0 <k < K -1,

A
where r, = A—;z,.

Similarly, the difference scheme for n = 2 is

(33) u) ;= ug(ws,y;), for 0<i < M,0<j<N,
(34) Spuf ;= oquf ; + 6pup 5 + (w5, uihh)

for0<i<M,0<j<N,1<k<K-1

with Neumann boundary condition
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k k k k
Uy — U, Unr C— UNr 1
\J »J +1,5 M-1,j .
=0, =0, for0<j <N,
35 2Ax 2Ax
(35) bk Wby — by
i, 1 i, —1 3 1 i, N—1 .
i, i, :0, i, N+ i, :07 fOI‘OﬁZSM,
2Ny 2Ny
where
k+1 ok
Sk = L —Yig
1,7 A\t ’
k k k
Sk = Mg T2 Ui
LA 2 ALEQ ’
k k k
2k i 2 U
Yo,y AyQ ’
and
E ookl _ k E \2 k+1
lug i) = iy — (i ;) ugy

Let rp, = % and ry = AA—;Q. From (33)-(35), we have

(1 + At(uﬁj)Q) uijl = rI(uﬁl’j + U?—l,j) +(1-2r, — 2ry)uﬁj

(36) oy (uf oy Fubj_y) + Ot
forl<i<M—1,1<j<N—1,

(37) (1 + At(ulg,o)Q) u{%l = 2r$u’f70 +(1-2r, — 2ry)ug70 + 2ryu’(§71 + Atul&o,

(1 + At(u§7N)2) u’(ﬁvl = 2rxulf,N +(1—2r, — 27‘y)u§7N

(38)
+ 2TyU§7N_1 + Atu’g,N’
(39) (1+ At(uﬁmo)z) u’fjé = 2rwulfw_1,0 + (1 —2r, — QTy)U?w,o
+ 2ryuﬁ/111 + Atuﬁ/lyo,
(40) (1 + At(u’fww)z) u’f\j]lv = QTZquVI_LN +(1—2r, — QTy)Ulf\LN

k k
+ QTyuM,N—l + AtuMJv,

(1+ At(ulgﬁj)Q) ugf;-l = 2r$ulf)j +(1—2r, — 2ry)u§’j
(41) oy (U g+ 06 0) + At
for 1<j<N-—1,

(1 + At(uﬁLj)Q) u’fv}"]l = QTZuﬁ/[_Lj +(1—2r, — 2ry)uﬁ17j
(42) oy (Ul g o) + Otuly
for1<j<N-1,

k k k k k
(1+ At(ui,o)z) Ui,?)rl = re(Wit1,0 + Ui_1,0) + (1= 2re — 2ry)ujy

+2ryupy + Atuf for 1<i <M —1,
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(1+ At(uny)Q) Uﬁvl = rﬂf(uf-&-l,N + Uf—LN) + (1 =27, — 27”y)uf,1\r
+ 2ryuf,N_1 + AtuﬁN for1<i<M-—1.

(44)

Theorem 3.1. If u(0,z,y) € C(f), then there exists a unique solution to the
difference equations (28)-(29), and if ry + 1, < & we have

(45) max uf ;| < C
(2% ’

for some constant C' which is independent of k, i.e., the scheme is stable under the
Mazimum norm.

Proof. From equations (33), (36)-(44), it is clear that the scheme is uniquely solv-
able.

Set A = max |ug(z, y)|.

For k =0,

(46) mas fu | = max uo(z, )| = A

For 0 < k < K, denote a; = max |ufj| If r, +r, < %, equations (36)-(44) imply

ary1 < (1+ At)ay, < (1+ At)ag_y

(47)

< (1+ AtFTlag < O(T)A.
Therefore,
(48) max |uf 5| < C(T)A,

where C(T') is independent of k and of the spatial mesh size.

Next we consider error estimates for the proposed scheme.

Theorem 3.2. If (27) has a solution such that u(t,z,y) € CY2([0,T] x Q), then
the solution of the difference scheme converges to the solution of (27) uniformly, as
(At, Az, Ay) — 0 and the convergence rate is O(At + Ax? + Ay?).

Proof. Let u(t,x,y) be the solution of equation (27). As before, for 0 < k < K, 0 <
1< M,and 0 < j <N, let

(49) U, = ulty, i, y5).
We have for k > 0,

k+1 k
U U,

(50) (e, i, y5) = i + O(A),
Uk . —2Uk. 4 U

(51) Upa (b, T4y Yj) = g A;QJ LI O(Ax?),
UF. . —2U0F +UF._

(52) Uyy (e, T4, Y5) = It J -1 +O(Ay2).

Ay?
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Equations (27), (50)-(52) imply the following difference equations:

Uit = U, Uk, —20F +UE

i+1,j
AN - Az?
) U — 208, + U8 ko\3
(54) Uf; =UF 4+ 0(A2?), Uypyy; =Uypq,; +0(Aa?), for 0<j <N,

Uby =Uf_+O0(8y°), Uy =Ufy 1 + O(Ay?) for 0<i< M
where R = O(At + Ax? + Ay?).
We define the error as
(55)
vk =Ul —uf,, fork=0,1,--- | K,i=0,1---,M, and j=0,1,---,N.
From (33), (36)-(44) and (53)-(54), we have

Vzk;rl = Tw(Vilil,‘ + ‘/ik—l,j) + Ty(‘/ilfj-i-l +VE_)

J J—1
(56) + (1= 2rp = 2r)V + AtV
— At ((Ui]fj)?’ - (ufj)zuftl)) + AtRy (AL, Az, Ay).
Since

(U5 = (u )P ui5! = (U5 (U - U5
(57) + VU + i ) USH
PV
equations (54), (55) and (56) imply
(1424t (uy ;)?)VE
= TI(‘/ilj-l,j + Vik—l,j) + Ty(vi]fjﬂ + Vi]fj—l) + (1 =27, — 2ry)‘/i],€j
+ AtV — ALUS)A U - U
— AtVEJ(UF + uf jUST + ARy (AL, Az, Ay).

(58)

If 7, + 7, < %, equation (57) and the boundedness of [UF ;| and |uf ;| imply that

(59) max [V < (14 C(Ar, Ao)At) max [V | + [AtR|,
where C'(A1, A2) depends only on Ay = max; ; & |ufj| and Ap = max; ; |Ui’fj|, and

Ry = O(Ot+ Az? + Ay?).
Equation (59) implies

(60) max VI < C(Ar, M) (At + Az + Ay?).

Therefore, the error is O(At + Ax? + Ay?). O
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4. Numerical results

In this section, we present some results of computational experiments to show
that the proposed difference scheme is stable and gives reasonable solutions.

Case 1: The diffusion part is small, i.e., € is small.

In this case, we consider the following two equations:

(61) { u = Jo Je(z = y)uly)dy — fo Je(z — y)dy u(z) — f(u)

u(0,x) = ug(x),

up = 2Au — f(u)
(62) o0 =0
U(O,.’E) = UO(I)

where f(u) = u® —u and J. = L J(Z) for a fixed kernel J. Note that for a large
class of kernels J, the linear operator on the RHS of (61) is asymptotically close to
€A in a certain sense (see [4]).

Consider the case n =1 and Q = (—1,1).

For the nonlocal Allen-Cahn equation (61), Je(z) = %e’(%)z, e =01, At =
0.001, and Az = 0.01. Figure 1 shows the initial data ug(z) = 0.1cos(27x) and
the numerical results at t = 0.5, ¢t =1,t = 5.

For the Allen-Cahn equation (62), € = 0.1, At = 0.0001, and Az = 0.02. Figure
2 shows the numerical results for the Allen-Cahn equation at t =0, ¢t = 0.5, ¢t =1,
and t = 5.

Forn=2let Q= (0,1) x (0,1).

1 22442

For the nonlocal Allen-Cahn equation (61), Je(z,y) = ze” < , € = 0.1,
At = 0.001, Az = 0.08, and Ay = 0.08. Figure 3 shows the initial data ug(z) =
0.1 cos(2mz) * cos(2my) and the numerical results at ¢ = 0.5, t = 2.5, t = 5.

For the Allen-Cahn equation (62), e = 0.1, At = 0.00001, Az = 0.02, and
Ay = 0.02. Figure 4 shows the initial data ug(z) = 0.1 cos(2mx) * cos(2my) and the
numerical results at ¢t = 0.5, t = 4, t = 10.

From the computational experiments for the nonlocal Allen-Cahn equation for
n =1 and n = 2, we observed that solutions u corresponding to equations (61) tend
to patterns that are nearly piecewise constant (Figure 1 and Figure 3) for initial
data —1 < ug(z) < 1. This is consistent with the result in [12]. It is also consistent
with the result in [10] that when ¢t — oo, u will approach a steady state solution of
(1). For the steady state solution of (1), see [3] and [14].

From the computational experiments for the Allen-Cahn equation, we observe
that although the solution u corresponding to (62) initially increases in time in the
region {x|ug(z) > 0} and decreases in time in the region {z|ug(z) < 0}, it will
not tend to a piecewise constant function. This is because, although the linear
operators are somewhat similar, diffusion is still an unbounded operator and the
nonlocal operator is bounded.

Case 2: The diffusion part is large relative to the reaction term.

In this case, we consider the following two equations:

(63) { ug =D [ [, Je(x — y)u(y)dy — [, Je(z — y)dyu(z)] — Dy f(u)
u(0,z) = up(z),
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= Dy Au — f(u)
%Z‘asz =0
’LL(O, .TZ‘) = Uo(fE)

where f(u) and J.(x) are defined as before.

For n = 1, Figure 5 shows the initial data ug(z) = 2 cos(2m
results for the nonlocal Allen-Cahn equation at t = 0.5, t =
D =10, D; =0.01, e = 0.1, At = 0.001, and Az = 0.02.

Figure 6 shows the initial data ug(z) = 2cos(2mz) and the numerical results
for the Allen-Cahn equation at t = 0.05,¢ = 0.1 and ¢t = 0.2. with Dy = 2,
At =0.00001, and Az = 0.02.

For n = 2, Figure 7 shows the initial data ug(x,y) = 2 cos(27z) cos(2my) and the
numerical results for the nonlocal Allen-Cahn equation at t =1, ¢ =25, and ¢t = 10
with D =6, D; =0.01, e = 0.1, At = 0.001, Az = 0.05, and Ay = 0.05.

Figure 8 shows the initial data ug(z,y) = 2 cos(2mz) cos(2my) and the numerical
results for the Allen-Cahn equation at ¢t = 1,¢ = 2 and ¢ = 5. with Dy = 2,
At =0.00001, Az = 0.02, and Ay = 0.02.

From these numerical experiments for the Allen-Cahn equation and the nonlocal
Allen-Cahn equation, we observe that the solution u corresponding to the Allen-
Cahn equation converges to zero rapidly since the diffusion term is very large.
We also observe that although w(¢,x) corresponding to the nonlocal Allen-Cahn
equation decreases when t increases, the speed is slower than that of the Allen-
Cahn equation.

(64)

x) and the numerical
2, and t = 80 with

Remark 4.1. Since we consider both large and small diffusion cases for equations
(1) and (5) in this section, instead of equations (1) and (5), we consider equations
(61)and (62). By checking the proof of Theorem 2.5 and Theorem 8.2, we see that
the convergence rate for the nonlocal Allen-Cahn equation (61) and the Allen-Cahn
equation (62) also depends on e. Actually, for the nonlocal Allen-Cahn equation
(61), if Je(x,y) = 5j(%, %) in Theorem 2.5, we have

/ Je(z; — x,y; — y)dzdy

. T; — X y]
(65) / /W ) ( e )dazdy
x; +L

x; +W
= J(u,v)dudv.

z;—L z;, —W
€ €

’L+L

+W
When we use the trapezoidal method to approximate fl L fx “w J(u,v)dudv,

the truncation error is O(Au? + Av?)L. Since u = %, v = y’e Y. we have
O(Au? + Av?) L = O(Ax? + Ay?) L. Therefore, we have

zi+L zi+W 1
(66) jlu,v)dudv = (j* 1);; + O(Az? + Ayz)—3

z;—L z; =W €

Similarly,
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1

(67) /Q Je(zi —z,y; —y)ulte, z,y)dedy = (J * Uk)ij + O(Ax2 + Ay2)€—3.

Following the proof of Theorem 2.5((19)-(25)), we have

1
(68) Vi1 <O (At + (A2 + Ayg)eg) _

Therefore, the convergence rate for equation (61) is O(At + (Ax? + Ay2)6%). If
€ is small, the mesh size Ax and Ay should be chosen correspondingly small.
For the Allen-Cahn equation (62), if we check the proof of Theorem 3.2, we have

k+1 k k k k
Uij —Uis _ 22U, =200+ Ui,
At Ax?
(69) + 62 Uik:j+1 - ZUZIfj + Ui]fjfl
Ay?

+ Uz.’fj — (Ui]fj)‘3 + O(At + ENz? + E0y°).

1

Instead of vy + 1y < %, we require e(ry +1y) < where v, and ry are defined

27
as before.
We have
(70) max |Vlkj'1\ < C(Ot+ ENx? + ENyP).

Therefore, the convergence rate for equation (62) is O(At + 2Ax? + 2 Ay?).
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sion coefficient.
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FIGURE 2. Allen-Cahn equation for n = 1 with a small diffusion coefficient.
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FIGURE 4. Allen-Cahn equation for n = 2 with a small diffusion coefficient.
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