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ADAPTIVE FINITE ELEMENT METHODS FOR PARAMETER
ESTIMATION PROBLEMS IN LINEAR ELASTICITY

TAO FENG, MÅRTEN GULLIKSSON, AND WENBIN LIU

Abstract. In this paper, the Lamé coefficients in the linear elasticity problem

are estimated by using the measurements of displacement. Some a posteriori

error estimators for the approximation error of the parameters are derived, and

then adaptive finite element schemes are developed for the discretization of

the parameter estimation problem, based on the error estimators. The Gauss-

Newton method is employed to solve the discretized nonlinear least-squares

problem. Some numerical results are presented.
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1. Introduction

In this paper, we consider a parameter identification problem in the linear elasticity
problem

(1) −µ∆u−(λ + µ)∇(∇ · u) = f in Ω,
u = uD on ΓD

where Ω is a polygonal domain in two dimensional space with the Lipschitz-continuous
boundary, and the boundary ΓD is positive dγ−measurable. As usual, u denotes
the displacement, and f and uD represent the body force and the boundary dis-
placement, respectively. Let U =

{
u ∈ (H1

0 (Ω))2
}

and u ∈ U +uD = Y , where the
space U is assumed to have the product norm

u = (u1, u2) → ||u||1,Ω = (
2∑

i=1

||ui||21,Ω)
1
2 .

We define the strain tensor (εij(u)) as

εij(u) = εji(u) =
1
2
(∂jui + ∂iuj), 1 ≤ i, j ≤ 2,

and the stress tensor (σij) is then given by Hooke’s law for isotropic bodies

σij(u) = σji(u) = λ(
2∑

k=1

εkk(u))δij + 2µεij(u), 1 ≤ i, j ≤ 2,

where δij is Kronecker’s symbol. The Lamé coefficients λ and µ are given by

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)

with Poisson’s ratio ν and Young’s modulus E. It is well known that λ ≥ λ′ > 0
and µ ≥ µ′ > 0.
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In our parameter estimation problem, we aim to recover the constants λ and µ
by using the known measurements of displacement u. To this end, the well-known
output least-squares formulation is used, i.e., we solve

(2) min
m

1
2
||Qu(m)− z||2Z ,

where u is the solution of the linear elastic equation (1) and m = (m1,m2)
T =

(λ, µ)T . The vector z ∈ Z is a given set of measurements and the observation space
Z is supposed to be a Hilbert space. Furthermore, we set Q : Y → Z as a linear
bounded observation operator.

Usually, the parameter estimation problem is ill-posed or ill-conditioned; see [16].
Some regularization terms are added to the cost function (2) such that

(3) min
m

{
1
2
||Qu(m)− z||2Z +

β

2
||m−mref ||2

}
,

where the penalty parameter β is assumed to be a very small positive number and
mref is a reference model. The regularization term β/2 · ||m −mref ||2 improves
the conditioning of the inverse problem. Here ||·|| denotes the l2 norm of the
vector. A good regularization parameter β should yield a fair balance between the
perturbation error and the regularization error. Assume that the data z contains
noise with known standard deviation e, then the regularization parameter should
be chosen such that

||Qu(m)− z||Z = ||e||Z ;
see [23]. To solve the problems without known deviation, methods such as L-curve
criterion, generalized cross-validation and the quasi-optimality criterion can be used
for the regularization parameter selection; for more details, see [15, 23, 29].

To solve the parameter estimation problem, one must approximate the infinite-
dimensional problem by introducing discretizations for the state space Y such as
a finite element or difference approach. It is clear that the efficiency of our nu-
merical methods will be influenced by the discretization scheme. In recent years,
adaptive finite element method has been extensively and successfully investigated;
see [1]. By using the adaptive finite element method, a numerical solution with a
prescribed tolerance can be obtained with a minimal amount of work. This ensures
a higher density of nodes in a certain area of the given domain, where the solution
is more difficult to approximate. Although adaptive finite element approximation is
widely used in the numerical simulation, it is not yet fully utilized in the parameter
estimation problem. Very recently, some a posteriori error estimators have been
derived for the parameter estimation problem [4, 8, 19]. In this paper, an adaptive
finite element method for our parameter estimation problems is developed. Our
emphasis here is to derive some a posteriori error estimators which control the er-
ror in the unknown parameters, instead of the cost function [4, 7]. Moreover, these
error estimators are used to guide our mesh refinement.

We note that some efficient a posteriori error estimators have been derived by
using the adjoint equation approach [4, 8]. In these error estimators, the local
residuals of the solution are multiplied by weights which measure the dependence
of the error on the local residuals. The weights are obtained by approximately
solving an adjoint problem. However, the exact solution itself is included in these
error estimators, which must be approximated by techniques such as higher order
interpolation. Furthermore, since λ ≥ λ′ > 0 and µ ≥ µ′ > 0, we get inequality
constraints (see the optimal conditions (8) in section 2). In general, it is not clear
how to apply the adjoint approach to this inequality constraint minimization prob-
lem. Thus, our corresponding error estimators are based on the approach developed
by Kunisch, Liu and Yan [19]. In our error estimator, the weights are absorbed to
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a simple constant C and the error estimator is the sum of the state and adjoint
errors. Although some information is lost, it seems to be sufficient for guiding
efficient mesh refinements.

The Levenberg-Marquardt method is employed to solve the optimization problem
(2) on a fixed mesh; for details, see [13, 24, 27]. The algorithmic framework is given
as follows:

1. Solve problem (2) on an initial coarse grid.
2. Refine the mesh gradually based on our error estimators. Then solve a

sequence of the problem (2) on finer grids, using the solution of the most
recently solved problem as the first iterate for the solution process of (2)
on the next finer level.

This method is indeed a regularization and the penalty parameter β is updated
adaptively [30].

The outline of this article is as follows. The parameter identification problem
and its finite element discretization are described in section 2. In section 3, an
a posteriori error estimator is developed for our parameter identification problem.
Moreover, an a posteriori error estimator concerning the Neumann boundary con-
dition is derived as an extension. Numerical experiments are presented in section
4.

2. The parameter estimation problem and its finite element approxima-
tion

Let f = (f1, f2) ∈ (L2(Ω))2 and m ∈ P = (R+)2, where R+ denotes the positive
real number space. The weak formulation of (1) is given by the following: Find
u ∈ Y such that

(4) a(u,v) = (f ,v) ∀v ∈ U,

where

(5)
a(u,v) =

∫
Ω

2∑
i,j=1

σij(u)εij(v)dx

=
∫
Ω
{λ∇ · u∇ · v+2µ

2∑
i,j=1

εij(u)εij(v)}dx ∀v ∈ U

and

(6) (f ,v) =
∫

Ω

2∑

i=1

fivi ∀v ∈ U.

We define the composite function

(7) s (m) =
1
2
||Qu(m)− z||2Z

and assume that s (m) is uniformly convex near the solution, at least when z is
attainable. Let us introduce the adjoint Q∗ of Q. Then the optimal conditions for
our optimization problem (2) (see, e.g., [22]) are to find (u,p,m) ∈ Y ×U ×P such
that

(8)
a(u,v) = (f ,v) ∀v ∈ U,
a(q,p) = (Q∗(Qu− z),q) ∀q ∈ U,
(s′(m),m−w) ≤ 0 ∀w ∈ P,

where

(s′(m),m−w) = (−p̃ũ,m−w) = −
∫

Ω

2∑

i=1

p̃iũi(mi − wi),
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and we denote

(9) p̃ũ = (p̃1ũ1, p̃2ũ2) = (∇ · u∇ · p, 2
2∑

i,j=1

εij(u)εij(p)).

Consider the finite element method for (8). Here, we are only interested in n-simplex
elements and conforming finite elements. Let Ωh be a polygonal approximation of
the problem (8). Let Th be a partitioning of Ωh into disjoint regular n-simplex τ,

so that Ω
h

= ∪τ∈T hτ . Each element has at most one face on ∂Ωh; τ and τ ′ have at
most either one common vertex or a whole edge l if τ and τ ′ ∈ Th. The maximum
diameter of τ is denoted by hτ and the mesh parameter h is defined as a cell-wise
constant function by setting h |τ= hτ . We also require that Ei ∈ ∂Ωh ⇒ Ei ∈ ∂Ω
where {Ei} is the vertex set associated with the triangulation Th. For simplicity,
we assume that Ωh = Ω, i.e., Ω is a convex polygon.

Associated with Th is a finite element subspace Wh of C(Ω
h
), such that κ |τ

are polynomials of k-th order (k ≥ 1) for κ ∈ Wh and τ ∈ Th. Let V h = Wh ∩ U ,
then it is easy to see that V h ⊂ U.

The corresponding Galerkin solution (uh,ph,mh) ∈ Y h × V h × P of (8) is then
given by

(10)
ah(uh,vh) = (f ,vh) ∀vh ∈ V h,
ah(qh,ph) = (Q∗(Quh − z),qh) ∀qh ∈ V h,
(s′h(mh),mh−wh) ≤ 0 ∀wh ∈ P,

where (s′h(mh),wh) = (−p̃hũh,wh), and

ah(uh,vh) =
∫

Ω

{λhdivuhdivvh + 2µh

2∑

i,j=1

εij(uh)εij(vh)}dx ∀vh ∈ V h.

In order to implement the local mesh refinement, we keep the information about
the whole hierarchy of grids starting with the macro triangulation up to the actual
one [17, 21]. Every element in this triangulation can be infinitely uniformly refined
so that we can obtain an infinite hierarchy tree. Thus, every adaptive mesh is only
a section of this hierarchy tree.

3. A posteriori error estimates

In this section, an a posteriori upper error estimator for our parameter estimation
problem (2) is derived. Thereafter, we consider the case with Neumann boundary
conditions and present the corresponding a posteriori error estimator.

We define the norm of t as

|t| = (
2∑

i,j=1

|εij(t)|20,Ω)
1
2 ,

which is equivalent to the product norm [9]. A quasi-interpolation operator Ih is
defined with the interpolation error estimates

(11)
‖v − Ihv‖τ ≤ chτ ‖v‖1;w̃τ

,

‖v − Ihv‖l ≤ ch
1
2
l ‖v‖1;w̃l

,

where w̃τ denotes the union of all elements sharing at least one point with τ and
w̃l denotes the union of all elements sharing at least one point with l, and hl is the
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maximum diameter of the face l [28]. Further, we denote

∂u
∂n

= (
2∑

j=1

σ1j(u)nj ,

2∑

j=1

σ2j(u)nj)T ,

∂p
∂n

= (
2∑

j=1

σ1j(p)nj ,

2∑

j=1

σ2j(p)nj)T

and

(12)
p =

(
∇ · p,

2∑
i,j=1

εij(p)

)T

=

(
ε11(p) + ε22(p),

2∑
i,j=1

εij(p)

)T

,

u =

(
∇ · u,

2∑
i,j=1

εij(u)

)T

=

(
ε11(u) + ε22(u),

2∑
i,j=1

εij(u)

)T

.

Lemma 3.1. Let (u,p,m) and (uh,ph,mh) be the solution of (8) and (10), re-
spectively. Then

(13) ‖m−mh‖2 ≤ C(‖u(mh)− uh‖20,Ω + ‖p(mh)− ph‖20,Ω).

Proof. Since s (·) is uniformly convex near the solution m, we have

(14) (s′(mh),w) = (−p̃(mh)ũ(mh),w) ,

where (p(mh),u(mh)) are the solutions of the following auxiliary equations

(15) ah(u(mh),v) = (f ,v) ∀v ∈ U,
ah(q,p(mh)) = (Q∗(Qu(mh)− z),q) ∀q ∈ U.

It follows from the local convexity of s (·) that if mh is in the neighborhood of m,
then

(16) c ‖m−mh‖2 ≤ (s′(m),m−mh)− (s′(mh),m−mh),

where s′(mh) is defined in (14). By using (8), (10) and (16),

(17) c ‖m−mh‖2 ≤ −(s′(mh),m−mh)
≤ (s′h(mh)− s′(mh),m−mh).

Since λ, µ are constants, it can be shown that

‖p(mh)‖1,Ω ≤ C, ‖uh‖1,Ω ≤ C

when h is small, see [20] for more details. Noting that m belongs to a finite
dimensional space, we have

(18)

(s′h(mh)− s′(mh),m−mh)
= (p̃(mh)ũ(mh),m−mh)− (p̃hũh,m−mh)
= (p̃(mh)ũ(mh)− p̃(mh)ũh,m−mh)
− (p̃hũh − p̃(mh)ũh,m−mh)

≤ C ‖m−mh‖ (‖p(mh)− ph‖0,Ω + ‖u(mh)− uh‖0,Ω).

Therefore, Lemma 3.1 is a direct consequence of (17) and (18). ¤

In order to estimate ‖u(mh)− uh‖20,Ω and ‖p(mh)− ph‖20,Ω, we need the fol-
lowing lemma.
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Lemma 3.2. Let (p(mh),u(mh)), (ph,uh) be the solution of (15) and (10), re-
spectively. Then

(19)

‖p(mh)− ph‖20,Ω ≤ C
{
‖u(mh)− uh‖20,Ω +

∑
l

hl

∫
l
[∂ph

∂n ]2

+
∑
τ

h2
τ

∫
τ
(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))2

}
,

‖u(mh)− uh‖20,Ω ≤ C
{ ∑

l

hl

∫
l
[∂uh

∂n ]2 +
∑
τ

h2
τ

∫
τ
(µh∆uh

+(λh + µh)∇(∇ · uh) + f)2
}

,

where [r]l represents the jump of r on the edge l. For convenience of presentation,
[r]l = 0 when l ⊂ ∂Ω.

Proof. Let ep = p(mh) − ph, ep ∈ (H1
0 (Ω))2, then by using the positive definite

property of the elasticity matrix and Korn’s inequality (see [10]), also combined
with (10), (11), (12) and (15), we can obtain

‖p(mh)− ph‖20,Ω = |ε11(ep) + ε22(ep)|20,Ω +

∣∣∣∣∣∣

2∑

i,j=1

εij(ep)

∣∣∣∣∣∣

2

0,Ω

≤ C

2∑

i,j=1

|εij(ep)|20,Ω = C |ep|2 ≤ Cah(ep, ep)

= C
{

(Q∗(Qu(mh)− z), ep)− ah((ep − Ihep),ph)− ah(Ihep,ph)
}

= C
{

(Q∗(Qu(mh)−Quh), ep)− ah((ep − Ihep),ph)

−(Q∗(Quh − z), Ihep − ep)
}

≤ C
{
‖u(mh)− uh‖0,Ω ‖ep‖0,Ω +

∑

l

∫

l

[
∂ph

∂n
](Ihep − ep)

+
∑

τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))(ep − Ihep)
}

≤ C
{
‖u(mh)− uh‖0,Ω ‖ep‖0,Ω + (

∑

l

hl

∫

l

[
∂ph

∂n
]2)

1
2 ‖ep‖1,Ω +

(
∑

τ

h2
τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))2)
1
2 ‖ep‖1,Ω

}
.

Thus,

‖p(mh)− ph‖20,Ω ≤ C
{
‖u(mh)− uh‖20,Ω +

∑

l

hl

∫

l

[
∂ph

∂n
]2

+
∑

τ

h2
τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))2
}

.

Similarly, it can be proved that

‖u(mh)− uh‖20,Ω ≤ C
{ ∑

l

hl

∫

l

[
∂uh

∂n
]2 +

∑
τ

h2
τ

∫

τ

(µh∆uh

+(λh + µh)∇(∇ · uh) + f)2
}

.

This completes the proof of the lemma. ¤
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Now, we give the a posteriori error estimator in the following theorem.

Theorem 3.3. Let (u,p,m) and (uh,ph,mh) be the solution of (8) and (10),
respectively. Then

(20) ‖mh −m‖2 + |uh − u|2 + |ph − p|2 ≤ C
(
η2
1 + η2

2

)
,

where

η2
1 =

∑

l

hl

∫

l

[
∂ph

∂n
]2 +

∑
τ

h2
τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))2

and

η2
2 =

∑

l

hl

∫

l

[
∂uh

∂n
]2 +

∑
τ

h2
τ

∫

τ

(µh∆uh + (λh + µh)∇(∇ · uh) + f)2,

with [r]l representing the jump of r on the edge l.

Proof. Following Lemma 3.1, Lemma 3.2 and Korn’s inequality, we get

(21) ‖mh−m‖2 + |u(mh)− uh|2 + |p(mh)− ph|2 ≤ C(η2
1 + η2

2).

According to (8) and (15), it can be shown that

(22)
|p(mh)− p| ≤ C(‖mh−m‖+ ‖u(mh)− u‖0,Ω),
|u(mh)− u| ≤ C ‖mh−m‖ .

Thus, we have

(23) |ph − p| ≤ |p(mh)− p|+ |p(mh)− ph| ,
|uh − u| ≤ |u(mh)− u|+ |u(mh)− uh| ,

and (20) follows from (21)-(23). ¤

As an extension, we consider the optimization problem (2) governed by the linear
elasticity problem including Neumann boundary condition on ΓN , i.e., we solve

(24) min
m

1
2
||Qu(m)− z||2Z

subject to
a(u,v) = (f ,v) + (g,v), ∀v ∈ U,

where

(g,v) =
∫

ΓN

g · v =
∫

ΓN

2∑

i=1

givi, ∀v ∈ U,

and Γ = ΓD + ΓN . The Dirichlet part ΓD of the boundary must have a positive
one-dimensional Lebesgue measure in order to guarantee the unique solvability of
the state problem. We set g = (g1, g2) ∈ (L2(ΓN ))2, and define Y = U + uD

and U =
{
u = (u1, u2) ∈ (H1(Ω))2, ui = 0 on ΓD, 1 ≤ i ≤ 2

}
. Assume that the

composite function s(m) is locally uniformly convex, the optimal conditions for
(24) are to find (u,p,m) ∈ Y × U × P such that

(25)
a(u,v) = (f ,v) + (g,v) ∀v ∈ U,
a(q,p) = (Q∗(Qu− z),q) ∀q ∈ U,
(−p̃ũ,m−w) ≤ 0 ∀w ∈ P.

The finite element approximation of (25) is to find (uh,ph,mh) ∈ Y h × V h × P
such that

(26)
ah(uh,vh) = (f ,vh) + (g,vh) ∀vh ∈ V h,
ah(qh,ph) = (Q∗(Quh − z),qh) ∀qh ∈ V h,
(−p̃hũh,mh−wh) ≤ 0 ∀wh ∈ P.
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By employing similar techniques used in the proof of Theorem 3.3, the following
theorem can be derived.

Theorem 3.4. Let (u,p,m) and (uh,ph,mh) be the solution of (25) and (26),
respectively. Then

(27) ‖mh −m‖2 + |uh − u|2 + |ph − p|2 ≤ C
(
η2
1 + η2

2

)
,

where

η2
1 =

∑

l/∈ΓN

hl

∫

l

[
∂ph

∂n
]2 +

∑

l∈ΓN

hl

∫

l

(
∂ph

∂n
)2

+
∑

τ

h2
τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))2

and

η2
2 =

∑

l/∈ΓN

hl

∫

l

[
∂uh

∂n
]2 +

∑

l∈ΓN

hl

∫

l

(g − ∂uh

∂n
)2

+
∑

τ

h2
τ

∫

τ

(µh∆uh + (λh + µh)∇(∇ · uh) + f)2,

with [r]l representing the jump of r on the edge l. We set [r]l = 0 when l ⊂ ΓD.

Proof. Let ep = p(mh)− ph, ep ∈ U, where p(mh) is the solution to the equation

(28) ah(u(mh),v) = (f ,v) + (g,v) ∀v ∈ U,
ah(q,p(mh)) = (Q∗(Qu(mh)− z),q) ∀q ∈ U.

By using the positive definite property of the elasticity matrix and Korn’s inequality,
combined with (12), (11), (25), (26) and (28), we have

‖p(mh)− ph‖20,Ω ≤ Cah(ep, ep)

= C{(Q∗(Qu(mh)−Quh), ep)− ah((ep − Ihep),ph)
−(Q∗(Quh − z), Ihep − ep)}

≤ C
{
‖u(mh)− uh‖0,Ω ‖ep‖0,Ω

+
∑

l/∈ΓN

∫

l

[
∂ph

∂n
](Ihep − ep) +

∑

l∈ΓN

∫

l

(
∂ph

∂n
)(Ihep − ep)

+
∑

τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))(ep − Ihep)
}

≤ C
{
‖u(mh)− uh‖0,Ω ‖ep‖0,Ω

+(
∑

l/∈ΓN

hl

∫

l

[
∂ph

∂n
]2 +

∑

l∈ΓN

hl

∫

l

(
∂ph

∂n
)2)

1
2 ‖ep‖1,Ω

+(
∑

τ

h2
τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))2)
1
2 ‖ep‖1,Ω

}
.

Thus,

‖p(mh)− ph‖20,Ω ≤ C
{
‖u(mh)− uh‖20,Ω +

∑

l/∈ΓN

hl

∫

l

[
∂ph

∂n
]2 +

∑

l∈ΓN

hl

∫

l

(
∂ph

∂n
)2

+
∑

τ

h2
τ

∫

τ

(µh∆ph + (λh + µh)∇(∇ · ph) + Q∗(Quh − z))2
}

.
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Similarly, we obtain

‖u(mh)− uh‖20,Ω ≤ C
{ ∑

τ

h2
τ

∫

τ

(µh∆uh + (λh + µh)∇(∇ · uh) + f)2

+
∑

l/∈ΓN

hl

∫

l

[
∂uh

∂n
]2 +

∑

l∈ΓN

hl

∫

l

(g − ∂uh

∂n
)2

}
.

(27) then can be proved with the technique used in Theorem 3.3 and Lemma 3.1. ¤

Since we assume that Q : Y → Z is a linear bounded observation operator,
the adjoint operator Q∗ : Z → Y is a linear bounded operator too [18]. However,
in some applications, only nm measurements at some particular points xi, i =
1, 2, · · · , nm, are available. If u ∈ U = (H1(Ω))2, the solution u may not be
continuous when the geometrical dimension d is equal to or higher than two. This
implies that the solution in the measurement points may not be defined and that Q
is not a linear bounded observation operator any more. In order to circumvent this
issue, one may work with the average value of the quantity in a small neighborhood
$ε(xi) of the measurement points, or use mollification; see [1, 25]. It is customary
to choose the mollifiers kε of the form

kε(x− xi) =
{

Cexp[−ε2/(ε2 − (x− xi)2)] if |x− xi| < ε,
0 if |x− xi| ≥ ε,

where the constant C, which depends on d, ε and xi, is selected to satisfy
∫

Ω

kε(x− xi)dx = 1.

Hence ,we can reformulate the optimization problem as

min
m

1
2

∑

i

∫

Ω

kε(x− xi)(u(m)− zi)2dx,

where zi denotes the observation data at the point xi. Our approach, developed in
section 3, is then well-suited to the point-wise case; see [12] for more details.

In practice, measurement data may not match exactly due to measurement er-
rors. The statistical quality of the estimated parameter is proportional to the least
square residual Qu(m)− z, for more details, see [5]. This means that it is in gen-
eral not efficient to reduce the error in the parameter by mesh refinement when the
discretization error is smaller than the statistical error.

4. Numerical examples

In this section, we carry out some numerical experiments to demonstrate the
efficiency of our error estimators obtained in Section 3. Throughout, the finite ele-
ment method is defined on a triangular mesh and piecewise quadratic polynomials
are used in our finite element space. Furthermore, the same mesh will be used for
the state and adjoint variables. Thus, η2

1 + η2
2 will be the indicator of the mesh

refinement. Moreover, we use the h-method and the general idea is to refine the
mesh such that the error indicators are equally distributed over the computational
meshes. To this end, an equidistribution strategy for mesh refinement is used in
our algorithm [11]. Assume that an a posteriori error estimator η has the form
η2 = Σeiη

2
ei

, where ei is a finite element. In the process of mesh refinement, a
tolerance tol and a parameter θ are defined (tol could be the average value of the
error estimator), and the element ei will be refined if η2

ei
> θtol.

In order to solve the optimization problem, we employ the standard Gauss-
Newton algorithm (see, e.g., [14]) with a trust region technique. It is well known
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Table 1. The errors in λ and µ for the uniform mesh and adaptive mesh.

Discretization DOF | λ− λh | | µ− µh |
Uniform mesh 24929 9.108e-04 6.932e-04
Adaptive mesh 2956 8.90e-05 2.61e-05

that there are many types of trust-region methods. In our paper, the Levenberg-
Marquardt method is utilized; see [13, 27]. All our computations are carried out
with AFEPack, a generic C++ adaptive finite element library [21].

4.1. Example 1. In the first example, we consider the planar linear elasticity
problem in an L-shaped domain (see Figure 1). The parameters (λ, µ) = (2, 1) are

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4
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0.5

(ρ,θ) 

Figure 1. L-shaped domain.

estimated using the exact displacement given as follows

u = u∗ +
1

λ + µ
φ +

1
µ

ϕ,

where

u∗(ρ, θ) = ργ

(
cos γθ sin γθ
− sin γθ cos γθ

)(
α
β

)
,

φ(x1, x2) =
( − cosπx1 cosπx2

sin πx1 sinπx2

)
, ϕ(x1, x2) =

(
sin πx1 cosπx2

− cosπx1 sinπx2

)
,

with α = β = γ = 1
2 , and f is given by

f =2π2

(
sinπx1 cosπx2

− cosπx1 sin πx2

)
+ 2π2 2µ + λ

µ + λ

( − cos πx1 cos πx2

sinπx1 sin πx2

)
.

On the boundary ΓD of the domain, we set uD = u. The polar coordinate (ρ, θ) is
shown in Figure 1.

We let the initial values of parameters to be m0 = (5, 0.6)T . A typical mesh
resulting from the application of our error estimator is shown in the left plot of
Figure 2. It is obvious that the refinement is mainly around the origin. The reason
is that the stress is singular at the origin. A comparison of the accuracy achieved
on the uniform mesh and our adaptive mesh is made and the result is shown in
Table 1, where DOF represents the degrees of freedom of the mesh. It turns out
that the adaptive finite element method using our error estimator produces a mesh
with obvious savings in degrees of freedom for a prescribed accuracy level.
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Figure 2. Left: Typical meshes produced by our error estimator
with distributed measurement. Right: Typical meshes produced
by our error estimator with point-wise measurement.

In some applications, measurements can be obtained only at distinct points.
Assume that the measurements are given by values of the state variable at six
different points:

(x1, y1) = (−0.2, 0.3), (x2, y2) = (−0.4, 0.3), (x3, y3) = (−0.2,−0.3),

(x4, y4) = (−0.4,−0.3), (x5, y5) = (0.3,−0.2), (x6, y6) = (0.3,−0.4).
The mesh resulting from the application of our error estimator is shown in the
right-hand plot of Figure 2. During the test, we add random noise such that the
observation z is computed from

z(xi, yi) = u(xi, yi) ∗ (1 + δκ)

for a random number κ in [-0.5, 0.5] with δ as the noise level. The errors in
‖m−mh‖ with different noise levels are shown in Figure 3. It indicates that when
the noise is large, the errors in the parameters are large as well. Moreover, with
a high level of noise, the errors in the parameters cannot be reduced efficiently by
the mesh refinement. For instance: in case δ = 10%, further mesh refinement does
not produce much more accuracy. However, when the noise level is low, the errors
in the parameters can be reduced considerably by the mesh refinement.

Finally, we investigate the quantitative behavior of the estimator by computing
the effectivity index of the error estimator, which is defined by

Ieff = ‖m−mh‖2/(η2
1 + η2

2).

The result is shown in Table 2 and it indicates that our error estimator is sufficient
for guiding efficient mesh refinement.

Table 2. The effectivity index of the error estimator.

DOF ‖m−mh‖2 η2
1 + η2

2 Ieff

119 4.763e-3 9.660e-3 0.493
429 1.840e-3 4.524e-3 0.407
1550 8.642e-4 2.230e-3 0.388
2301 3.878e-4 1.110e-3 0.349
3042 1.665e-4 5.509e-4 0.302
3161 7.520e-5 2.768e-4 0.272
3348 3.142e-5 1.395e-4 0.225
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Figure 3. Error reduction in ‖m−mh‖ for the different noise levels.

It is important to remark that, in the point-wise measurement case, care must be
taken in selecting the size of ε. In our finite element codes, the integration is carried
out using classical Gauss quadrature rules and accuracy is directly correlated to the
number of Gaussian points used in each element. Therefore, the size of the support
of kε(x − xi), equal to 2ε, should be selected with respect to the mesh size h of
the element containing the point xi. Some suggestions can be found in [25], where
some numerical experiments are carried out to show a possible good choice of the
size of ε.

A mesh that is efficient for our parameter estimation problem will depend not
only on the forward problem, but also on the objective function. In general, a
mesh efficient for the discretization scheme of the parameter estimation is quite
different from a mesh suited for the forward problem. For instance, the mesh
refinements will not be around the measurement points for the point-wise case by
only considering a mesh suited for the solution of the forward problem. Of course,
for this particular case, we know the probable refinement areas a priori so that
it is possible to investigate a priori local mesh refinements, which is impossible in
general.

Here we report investigations on a priori local mesh refinements and comparisons
with our adaptive mesh refinement strategy. The main idea is to use a priori
knowledge about the singularity of the forward solution and the measurement points
to determine mesh densities of the elements near the corner and the measurement
points [2, 3]. We first tried a priori indicators of power type defined by r > 0

η′priori =
∑

τ

1
(xτ − xi)r

,

where the points xi represent the measurement points and the re-entrant corner
point and xτ denotes the barycenter of the element τ . It seemed that such indicators
did not work well. Then we used the mollifiers kε as the indicator, which is defined
in section 3. By using only the coordinator information, an a priori indicator can
be constructed as

ηpriori =
∑

τ

∫

τ

kε(x− xi).
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For convenience, we let ε = εk+1 = ξ ∗ εk, 0 < ξ < 1, k = 0, 1, · · ·, where k
denotes the refinement step. In the process of mesh refinement, at each iteration,
an average value ηavg is calculated and a parameter θ is defined, 0 < θ < 1. Then
the element τ will be refined if ηpriori,τ > θηavg, where ηpriori,τ =

∫
τ

kε(x − xi).
In our experiments, we first put ξ = 0.8, ε0 = 0.05, the same as those defined in
the objective function. The results were not satisfactory, however. Then we tried
several different combinations of these parameters. For the case ξ = 0.8, θ = 0.75,
different choices of the size of ε0 with the convergence results are shown in Figure
4.
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Figure 4. Error reduction in ‖m−mh‖ for a priori mesh and
adaptive mesh depending on the degrees of freedom.

As shown in Figure 4, it is clear that an appropriate mesh generated by a priori
mesh refinement strategy can produce rather accurate solutions compared to our
adaptive mesh, e.g., in the case where ε0 = 0.1, although it does not seem that
they can match the adaptive method in terms of accuracy. Furthermore, it is much
cheaper from a computational point of view. However, it is not straightforward to
select the constants in the a priori mesh grading algorithms, such as ε0, θ and ξ;
i.e., it is not easy to decide a good density of the mesh around measurement points,
re-entrant corner and other parts of the domain. As we can see from Figure 4, in
the case ε0 = 0.05, an a priori mesh cannot produce high-accuracy solutions. Such
problems are quite common in a priori mesh approaches; see [2]. In our adaptive
mesh refinement algorithm, after we define the parameter θ, the mesh is generated
completely automatically with respect to the error estimators and a good balance
between the refined and unrefined regions is obtained. For more details on how to
choose the parameter θ, please refer to [6]. We should mention that several different
values of θ have been tested for our adaptive algorithm, all with satisfactory results.

Moreover, although the a priori mesh refinement strategy may manage to work
for this individual problem, our goal is to produce efficient meshes for general
applications. The adaptive finite element method suits this purpose. In our next
parameter estimation problem, the locations of measurement points are unknown
and are in fact design variables. This will lead to the following formulation:

min
m

max
xi

1
2

∑

i

∫

Ω

kε(x− xi)(u(m,x)− zi)2dx,
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where zi is the measurement value of u(m0,xi) at point xi, and we assume that
m0 is the exact value of m. It is clear that we cannot design an a priori mesh
refinement strategy for this problem. However, the general framework presented
in this paper still works. Finally, our adaptive method is also suitable for the
distributed parameter estimation problems.

4.2. Example 2. In the second example, we consider the linear elastic problem
with the Neumann boundary conditions. As shown in Figure 5, a short cantilever
plate of elastic isotropic material is analyzed [26]. The computational domain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  


Figure 5. Short cantilever plate.

Ω = (0, 1)2. The boundary conditions on the top edge of the computational domain
are set to g · n = (0,−1.0), the boundary conditions on the right are set to u = 0,
and the boundary conditions are set to homogeneous natural boundary conditions
on the bottom and left edges. Young’s modulus E = 1.0 and Poisson’s ratio ν = 0.3.
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Figure 6. Typical meshes produced by our error estimator.

The exact solution for this problem is not known analytically, so we use a very fine
mesh to solve the problem to get the ”exact” solution at the measurement points
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(0.2, 0.2), (0.2, 0.5), (0.2, 0.8), (0.5, 0.2), (0.5, 0.5), (0.5, 0.8), (0.8, 0.2), (0.8, 0.5),
(0.8, 0.8). Typical meshes resulting from the application of our error estimator are
shown in Figure 6. The mesh refinement procedures are not only around the top-
right corner and the bottom-right corner, where the stress is relatively larger, but
also around the measurement points.

A comparison of the accuracy in µ achieved on the uniform mesh and the adap-
tive mesh is shown in Figure 7. It can be seen that our proposed algorithm is
much more efficient. We also execute some numerical computations with different
observation noise levels. In Table 3, the errors in λ and µ with different noise levels
are shown. Again, the result indicates that when the noise level is low, the errors
in the parameters can be reduced considerably by mesh refinement.
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Figure 7. Error reduction in | µ− µh | for the uniform mesh and
adaptive mesh depending on the degrees of freedom.

Table 3. Computation with noisy data.

δ DOF | λ− λh | | µ− µh |
10% 1172 0.0885 4.597e-3
5% 3089 0.0115 2.749e-3
1% 3010 1.277e-3 1.628e-4
0.1% 2910 7.220e-4 8.634e-5
0.0% 3336 3.066e-4 3.24e-05
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