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HOMOGENIZATION OF SECONDARY-FLUX MODELS OF
PARTIALLY FISSURED MEDIA

MALTE A. PETER AND RALPH E. SHOWALTER

Abstract. Fully-saturated and partially fissured media, in which supplemen-

tary flow and transport arise from direct cell-to-cell diffusion paths, have been

described accurately over a wide range of scales by discrete secondary-flux

models. These models were constructed as an extension of classical double-

porosity models for totally fissured media by two-scale modeling considerations.

There is some substantial literature on the analysis of continuously distributed

secondary-flux models, and the corresponding discrete models have been proven

to give efficient and accurate simulations when compared to recently available

experimental data. These are particularly effective in the presence of advection.

In this note, a summary description is given for the two-scale convergence of the

discrete secondary-flux model to the corresponding continuous double-porosity

secondary-flux model.

Key Words. secondary-flux, partially fissured porous media, homogenization,

multiscale flow and transport.

1. Introduction

Problems of flow and transport through porous media lead to initial–boundary-
value problems for a coupled elliptic–parabolic system of partial differential equa-
tions of elliptic and parabolic type. The fluid flow is described by an elliptic equa-
tion, and its solution provides the velocity for a parabolic equation with advection
for the concentration u of a dissolved chemical transported by that flow. When the
process takes place in a non-homogeneous medium, the coefficients vary on such
a small scale that computation of the solution is very intensive and an upscaled
model is needed. We shall consider the generic case of the single parabolic equation
in a periodic medium of very small period ε > 0. This provides an indication of
the corresponding results for the full system of flow and transport.

The locally representative unit cell is given in the two parts, Y = Zf ∪ Zs,
and then it is scaled to εY in the ε-periodic structure. In the classical case of
the diffusion equation for transport, the diffusion coefficient varies between two
constants, Df on the fast region Zf and Ds on the slow region Zs of the unit cell
Y . We denote the fine-scale coefficient in this situation by Dε(x) = [Df , Ds; ε].
The system is homogenized by taking the two-scale limit as ε → 0, and the limit
of its solution uε(x, t) is the solution u(x, t) of an equation of the same form but
with the constant effective coefficient D̃. The formulae for D̃ show that the fast
and slow regions are flux coupled through the gradient of the solution on the two
regions. The gains of this homogenized model are that the fine-scale geometry
is averaged out, so it is computationally straightforward, and it provides a good
approximation of the real situation in the low-contrast cases when ε is small. See [7]
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for detailed expositions of various approaches and background in homogenization
of porous media.

However, such models do not recover the tailing effects that are observed in
experiments or in simulations when the contrast Df/Ds is large, for then there
are consequential memory effects due to the relatively slower release of the solute
stored in the small cells. A very special situation is the obstacle problem which
corresponds to the extreme case of Ds = 0. We denote the corresponding effective
coefficient by D̃0. Here, of course, there are no such memory effects, as there is
no secondary storage, and this situation is described well by the preceding classical
case. It is the cases of intermediate contrast that require better modeling.

The situation of highly-heterogeneous media in which the contrast between fast
and slow regions is very high can be described as above but with the diffusion coeffi-
cient Dε(x) = [Df , ε2Ds; ε] scaled as indicated in the slow region. Here the contrast
is balanced with the cell size to maintain the two-way coupling of concentration and
flux between the slow cells and the fast surrounding region. The limit leads to a
system whose structure is quite different from the original single equation, namely,
a macro-equation for an unknown u(x, t) given on the macroscopic medium and a
family of micro-equations for unknowns U(x, y, t) given in the local reference cell
at each point x of the macroscopic region. The cell solution provides the source
term or input q(x, t) =

∫
∂Zs Ds∇yU · ν dσ back into the macro-equation, while the

macro-variable enters the cell problem through the boundary condition

U(x, y, t) = u(x, t), y ∈ ∂Zs.(1)

This is the double-porosity model of Arbogast, Douglas & Hornung [2]. It is a large
fully-coupled system, with a local diffusion problem at each point in the medium,
but the structure is highly parallel and amenable to computation. It is value or
concentration coupled into the cells and gradient or flux coupled into the macro-
equation. The gain of this model includes the additional secondary-storage via the
coupling of the fast and slow components and some of the resultant tailing effects
and memory effects observed in experiments but unattainable with the classical
model. The assumptions depend on the critical contrast ε2 between coefficients. It
was observed in [9] that the coefficients in the macro-equation are precisely those
of the corresponding obstacle problem.

The double-porosity model completely misses any advective effects at the cell
level, since the input to the cell (1) is constant on the local boundary. In order to
couple the cells more tightly to the surrounding medium, the boundary condition
(1) was replaced with the affine constraint

(2) U(x, y, t) = u(x, t) +∇u(x, t) · (y − y0), y ∈ ∂Zs,

by Peszyńska & Showalter [9]. Their objective was to include the local advective
contributions and accurately model the full range of contrasts that were reported
in the extensive experiments [13]. They showed the source term q(x, t) needs to
be altered to maintain conservation of mass, and this leads to the secondary-flux
term. With the affine coupling into the cells, this model captures advection effects
and contributes both the secondary-storage and the secondary-flux which are added
back through the source term to the macro-equation. With this tighter coupling
through both values and gradients, this model can cover a wide range of contrasts
and accurately reproduce the break-through curves throughout the entire range of
contrasts. See [9] for further discussion.
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Since Dε = [Df , Ds; ε] suits the very-low-contrast case while Dε = [Df , ε2Ds; ε]
describes the very-high-contrast case well, it is tempting to expect that an inter-
mediate choice, e.g., Dε = [Df , εDs; ε], might be appropriate for the intermediate
contrast. This is untrue, however, because, in this intermediate-contrast situation,
advective effects become important [13]. These can not be captured by microscopic
models describing diffusive transport only, cf. [11, 10]. The cell variable U needs to
see the gradient of the macro-variable, ∇u, in order to account for an additional
advection. This is accomplished by a condition of the type (2).

Discrete models of secondary-flux type were recently introduced in [9], although
the continuous analogues were developed in [5] and [6] without any justification.
The affine constraint (2) had been introduced earlier in the numerical work of Arbo-
gast [3]. His viscous dual-porosity model used this pressure gradient to substantially
improve the simulations of recovery at later times. These had been inadequate with
only the pressure coupling of (1), and it was recognized that some modification of
the source term q(x, t) in the macro-equation was needed. We shall show here that
the continuous model is not ad hoc, but is obtained as the two-scale limit of the
corresponding exact microproblem of discrete type introduced in [9]. The detailed
analysis of the problem will be presented in a forthcoming publication.

2. Statement of the problem

Let Y = (0, 1)n be the reference cell, made up of two distinct parts Zf and Zs

where Zs ⊂ Y , and let Γ = ∂Zs. Given the open bounded Lipschitz-domain Ω ∈ IRn

and ε > 0, we define Ωα
ε = Ω∩ int

⋃
k εZα

k , α ∈ {f, s}, where the subscript k denotes
translation of the set by the n-tuple of integers k ∈ Zn. Similarly, Γε = Ω∩⋃

k εΓk.
The time interval under consideration is S = (0, T ) where T > 0.

Let [x]Y denote the unique integer combination
∑n

i=1 kiei of the periods such
that {x}Y = x − [x]Y belongs to [0, 1)n. The vector ej is the jth unit vector in
n-dimensional Euclidean space. Note that we have x = ε([x/ε]Y + {x/ε}Y ) for any
x ∈ IRn.

Let Tε : Lp(Ω) → Lp(Ω × Y ), p ∈ [1,∞], be the periodic unfolding operator [4],
i.e. for u ∈ Lp(Ω), extended by zero outside of Ω, we define

(3) Tε(u)(x, y) = u(ε[x/ε]Y + εy) for x ∈ Ω and y ∈ Y.

We define zε(x) to be the function mapping each x to its part in εY translated by
y0,

(4) zε(x) = ({x/ε}Y − y0),

where y0 is the centroid of the interior region of the unit cell, Zs. Moreover, we
denote the mean value of a u ∈ W 1,2(Ωf

ε) on each εΓk by m0(u),

(5) m0(u) =
1
|Γ|

∫

Γ

Tε(u)(x, y) dσy,

and the mean value of a vector-valued v ∈ [L2(Ωf
ε)]n in each εZf

k by m1(v),

(6) m1(v) =
1
|Zf |

∫

Zf
Tε(v)(x, y) dy.

Notice that m0 and m1 are constant in each cell εYk.
All source terms are combined in the functions fα

ε = fα
ε (x, t) = fα(x, x/ε, t),

α ∈ {f, s}, whose extensions by zero to all of Ω are assumed bounded independently
of ε in L2(Ω × S). The coefficient functions Dα

ε = Dα
ε (x, t) = Dα(x, x/ε, t) are

assumed bounded from above and away from zero by Dα
0 > 0 independently of
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ε, α ∈ {f, s}, and they are supposed to be admissible test functions in two-scale-
convergence sense [1].

The micro-problem under consideration is given by

∂tu
f
ε(x, t)−∇ · (Df

ε(x, t)∇uf
ε(x, t)) = f f

ε(x, t), x ∈ Ωf
ε, t ∈ S,(7a)

∂tu
s
ε(x, t)−∇ · (ε2Ds

ε(x, t)∇us
ε(x, t)) = f s

ε(x, t), x ∈ Ωs
ε, t ∈ S,(7b)

m0(uf
ε) + βm1(∇uf

ε) · zε = us
ε(x, t), x ∈ Γε, t ∈ S,(7c)

−Df
ε(x, t)∇uf

ε(x, t) · νf
ε = ε2 1

|Γ|
∫

Γ

Tε(Ds
ε∇us

ε · νs
ε)(x, y) dσy

+ βε2 1
|Zf |

∫

Γ

Tε(Ds
ε∇us

ε · νs
εzε)(x, y) dσy · νf

ε, x ∈ Γε, t ∈ S.

(7d)

uf
ε(x, t) = 0, x ∈ ∂Ωf

ε ∩ ∂Ω, t ∈ S,(7e)

uf
ε(x, 0) = uf

0, us
ε(x, 0) = us

0, x ∈ Ω.(7f)

Note that, in particular, condition (7d) ensures that we have flux conservation
across Γε, since

−
∫

Γε

Df
ε(x, t)∇uf

ε(x, t) · νf
ε dσx = ε2 1

|Γ|
∫

Γε

∫

Γ

Tε(Ds
ε∇us

ε · νs
ε)(x, y) dσy dσx

=
∫

Γε

ε2Ds
ε(x, t)∇us

ε(x, t) · νs
ε dσx,(8)

where we have used the norm identity

(9)
∫

Γε

v(x) dσx =
1
|Γ|

∫

Γε×Γ

Tε(v)(x, y) dσy dσx.

For the weak formulation, the following function space is used,

(10) Vε(Ω) = {(uf
ε, u

s
ε) ∈ L2(0, T ; W 1,2(Ωf

ε))× L2(0, T ;W 1,2(Ωs
ε)) |

uf
ε = 0 on ∂Ωf

ε ∩ ∂Ω and m0(uf
ε) + βm1(∇uf

ε) · zε = us
ε on Γε},

and we write u(t) = u( · , t),

(11) (u(t) | v(t))Ωα
ε

=
∫

Ωα
ε

u(x, t)v(x, t) dx, (u | v)Ωα
ε ,t =

∫ t

0

(u(s) | v(s))Ωα
ε

ds.

A weak form of problem (7) is defined as follows: find (uf
ε, u

s
ε) ∈ Vε(Ω) with

(uf
ε(0), us

ε(0)) = (uf
0, u

s
0) such that

(12) (∂tu
f
ε(t) |φf(t))Ωf

ε
+ (∂tu

s
ε(t) |φs(t))Ωs

ε
+ (Df

ε(t)∇uf
ε(t) |∇φf(t))Ωf

ε

+ ε2(Ds
ε(t)∇us

ε(t) |∇φs(t))Ωs
ε

= (f f
ε(t) |φf(t))Ωf

ε
+ (f s

ε(t) |φs(t))Ωs
ε

for all (φf , φs) ∈ Vε(Ω) and a.e. t ∈ S.
The following proposition ensures that (12) is an appropriate weak form of (7),

the proof of which makes extensive use of (9) and the fact that for a function
φf ∈ C∞0 (Ωf

ε × S), we have

(13) m1(∇φf) =
1
|Zf |

∫

Zf
Tε(∇φf)(x, y) dy =

1
|Zf |

∫

Γ

Tε(φfνf
ε)(x, y) dσy.

Proposition 2.1. Let (uf
ε, u

s
ε) ∈ Vε(Ω) be a solution of (12). If the pair of func-

tions (uf
ε, u

s
ε) also belongs to the space C1([0, T ]; C2(Ωf

ε)) × C1([0, T ];C2(Ωs
ε)), it

satisfies problem (7).
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Rather than the extra assumed smoothness of the solution, one can use the
abstract Green’s theorem [12, Proposition II.5.3] to characterize the strong form of
the problem.

3. Macroscopic limit problems

We state the macroscopic limit problem satisfied by the limit functions of the
sequences of solutions of (7) as ε → 0. The limit functions of uf

ε and us
ε are denoted

by uf and us, respectively. An outline of how these limit problems are obtained is
given in §4.

The solution of a cell problem is required. Let ςj , j = 1, . . . , n, be the Y -periodic
solution of the cell problem

(14)
−∇y · (Df(x, y, t)(∇yςj(x, y, t) + ej)) = 0, y ∈ Zf , x ∈ Ω, t ∈ S,

−Df(x, y, t)(∇yςj(x, y, t) + ej) · νf = 0, y ∈ Γ, x ∈ Ω, t ∈ S,

the weak form of which is given by

(15) (Df(x, · , t)(∇yςj(x, · , t) + ej) |∇yφ)Zf = 0

for all Y -periodic test functions φ. This allows the definition of the tensor P f = [pf
ij ]

via

(16) pf
ij(x, t) =

∫

Zf

Df(x, y, t)(δij + ∂yiςj(x, y, t)) dy,

where δij is the Kronecker delta. This turns out to be the effective tensor in
the macroscopic limit problem. It is symmetric and positive definite, since Df is
bounded away from zero.

The limit problem reads as follows:

|Zf |∂tu
f(x, t)−∇ · (P f(x, t)∇uf(x, t))

=
∫

Zf

f f(x, y, t) dy −
∫

Γ

f int(x, y, t) dσy +∇ ·
∫

Γ

βf int(x, y, t)(y − y0) dσy, x ∈ Ω, t ∈ S,

(17a)

uf(x, t) = 0, x ∈ ∂Ω, t ∈ S,(17b)

∂tu
s(x, y, t)−∇y · (Ds(x, y, t)∇yus(x, y, t)) = f s(x, y, t), x ∈ Ω, y ∈ Zs, t ∈ S,

(17c)

uf(x, t) + β∇uf(x, t) · (y − y0) = us(x, y, t), x ∈ Ω, y ∈ Γ, t ∈ S,(17d)

uf(x, 0) = uf
0, us(x, y, 0) = us

0, x ∈ Ω, y ∈ Zs.(17e)

The weak form of problem (17) is: find (uf , us) ∈ L2(0, T ;W 1,2
0 (Ω))× [(uf + β∇uf ·

(y − y0)) + L2(0, T ; (L2(Ω); W 1,2
0 (Zs)))] with (uf(0), us(0)) = (uf

0, u
s
0) such that

|Zf |(∂tu
f(t) |φ(t))Ω + (P f(t)∇uf(t) | ∇φ(t))Ω = (

∫

Zf
f f( · , y, t) dy |φ(t))Ω

− (
∫

Γ

f int( · , y, t) dy |φ(t))Ω − (
∫

Γ

βf int( · , y, t)(y − y0) dy |∇φ(t))Ω,

(18a)

(∂tu
s(t) |ψ(t))Ω×Zs + (Ds(t)∇yus(t) |∇yψ(t))Ω×Zs = (f s(t) |ψ(t))Ω×Zs(18b)
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for all (φ, ψ) ∈ L2(0, T ; W 1,2
0 (Ω)) × L2(0, T ; (L2(Ω); W 1,2

0 (Zs))) and a.e. t ∈ S,
where the interface term f int is given by

(19) f int(x, y, t) = Ds(x, y, t)∇yus(x, y, t) · νs, x ∈ Ω, y ∈ Γ, t ∈ S.

It is interesting to note that the limit problem would have been the same if we
chose an average over Zf instead of Γ in the definition of m0 (cf. (5)).

4. Existence of solutions, a-priori estimates, convergence

We briefly summarize the steps of the homogenization analysis. The following
theorem follows by standard techniques.

Theorem 4.1. For fixed ε > 0, there exists a solution (uf
ε, u

s
ε) ∈ Vε(Ω) of problem

(12) such that

|uf
ε(t)|Ωf

ε
+ |∇uf

ε|Ωf
ε,t + |us

ε(t)|Ωs
ε
+ ε|∇us

ε|Ωs
ε,t ≤ C,(20)

for a.e. t ∈ S, where the constant C depends on T and the data but not on ε.

We use elements of two-scale convergence [8, 1] and periodic unfolding [4] in
order to investigate the convergence of the sequences of solutions of (7) as ε → 0.
A key element in this analysis is the following proposition, which deals with the
convergence of the terms m0(uf

ε) and m1(∇uf
ε).

Proposition 4.2. The following convergence results hold:
(a) m0(uf

ε) −→ uf strongly in L2(Ω).
(b) m1(∇uf

ε) −→ ∇uf in two-scale sense.

The limit problems associated with the limits of sequences of solution of the
microproblem need to be identified. This is performed in two steps: the identifica-
tion of the boundary condition (17c) and of equations (18a) and (18b). Particular
attention needs to be paid to the recovery of the secondary-flux term in (18a). The
main result can be summarized as follows:

Theorem 4.3. The limit functions as ε → 0 associated with a sequence of solutions
of the microproblem (12) satisfy the macroproblem (18).
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[11] Peter, M. A. & Böhm, M. Different choices of scaling in homogenization of diffusion and
interfacial exchange in a porous medium. Math. Meth. Appl. Sci. 31 (11), p. 1257-1282.

[12] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential
equations, volume 49 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 1997.

[13] Zinn, B., Meigs, L. C., Harvey, C. F., Haggerty, R., Peplinski, W. J. & Freiherr von
Schwerin, C. Environmental visualization of solute transport and mass transfer processes in
two-dimensional conductivity fields with connected regions with high conductivity. Environ.
Sci. Technol. 38 (2004), 3916–3926.

Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, NZ
E-mail : mpeter@math.auckland.ac.nz

URL: http://www.math.auckland.ac.nz/∼mpeter
Department of Mathematics, Oregon State University, Corvallis, OR, 97331-4605, USA
E-mail : show@math.oregonstate.edu

URL: http://www.math.oregonstate.edu/∼show


