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NUMERICAL METHODS FOR UNSATURATED FLOW
WITH DYNAMIC CAPILLARY PRESSURE
IN HETEROGENEOUS POROUS MEDIA

MAÃLGORZATA PESZYŃSKA AND SON-YOUNG YI

Abstract. Traditional unsaturated flow models use a capillary pressure-saturation

relationship determined under static conditions. Recently it was proposed to

extend this relationship to include dynamic effects and in particular flow rates.

In this paper, we consider numerical modeling of unsaturated flow models in-

corporating dynamic capillary pressure terms. The resulting model equations

are of nonlinear degenerate pseudo-parabolic type with or without convection

terms, and follow either Richards’ equation or the full two-phase flow model.

We systematically study the difficulties associated with numerical approxima-

tion of such equations using two classes of methods, a cell-centered finite dif-

ference method (FD) and a locally conservative Eulerian-Lagrangian method

(LCELM) based on the finite difference method. We discuss convergence of

the methods and extensions to heterogeneous porous media with different rock

types. In convection-dominated cases and for large dynamic effects instabilities

may arise for some of the methods while those are absent in other cases.

Key Words. unsaturated flow, Richards’ equation, two-phase flow model, dy-

namic capillary pressure, pseudo-parabolic equation, finite difference method,

locally conservative Eulerian-Lagrangian method, implicit time-stepping

1. Introduction

The main interest of this paper is in numerical algorithms for unsaturated flow in
highly heterogeneous media and in particular handling dynamic capillary pressure.

Unsaturated preferential flow in porous media is a physical phenomenon occur-
ring in heterogeneous soils and bedrock and is related to the presence of special
features of the medium such as cracks, fissures, and macropores. Such hetero-
geneities are represented in partial differential equation (PDE) models of the flow
by a variation of nonlinear rock properties of the medium with position, called the
rock type dependence. Here we are concerned mainly with the capillary pressure
function; that is, the pressure-saturation relationship S 7→ Pc(S) which, when this
property is rock type dependent, it reads S 7→ Pc(x, S), where x denotes position.
It is standard practice to include rock type dependence in a reservoir simulator
[47]; however, there are few associated mathematical and numerical analyses ex-
cept [18, 33] and those for multiscale heterogeneities developed in [28, 19, 16, 17].

Additional phenomena occurring in preferential flow such as nonequilibrium ef-
fects, hysteresis, and/or large flow velocities have been recently discussed by ex-
perimental and theoretical soil physicists. In particular, it has been observed and
reconfirmed recently, see [66] and references therein, that rock properties measured
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in a laboratory in equilibrium conditions bear little resemblance to those observed
in experiments in case of large fluxes (velocities); it has been in fact postulated
that the data collected especially for the capillary pressure has a non-unique char-
acter when considered over a range of nonequilibrium conditions. This suggests
existence of a hidden variable as pointed out in [41] and can be explained in terms
of the imbibition (increasing S) and drainage (decreasing S) hysteresis. Another
recently proposed class of model modifications has been the use of dynamic cap-
illary pressure [42, 68, 67, 66, 12, 11] which accounts for the dynamic flow rates
via S 7→ Pc(x, S, dS

dt ). Some authors believe that dynamic capillary pressure terms
could explain instabilities in gravity-driven flow and in particular the phenomena
of fingering [51]. Finally, there is evidence that in the presence of strong het-
erogeneities the conditions at the interface of different rock types should reflect
non-equilibrium [55, 19].

Our interest is in numerical modeling of preferential flow in porous media which
may occur at more than one scale through macropores or due to small or large inho-
mogeneities as well as in rock fractures, gravel filled excavated areas etc. Therefore,
it is necessary for us to explore the numerical algorithms for dynamic capillary pres-
sure and multiple rock types.

From a theoretical PDE point of view, Richards’ model of unsaturated flow is
a nonlinear degenerate parabolic equation in the unknown water saturation S; its
character depends on the nonlinear diffusion parameter D(S) which may become
degenerate (zero or very large) for some values of S. In addition, if the flow has
vertical components, then the associated nontrivial convective term competes with
the nonlinear degenerate diffusion. Depending on the rock type and initial and
boundary conditions of the flow, the solutions may be smooth or may exhibit sharp
fronts [4, 5, 6].

The presence of dynamic capillary pressure terms changes the type of origi-
nal nonlinear degenerate parabolic PDEs to pseudo-parabolic, with the additional
nonlinear degenerate term being proportional to a coefficient τ , see development
in Section 2.3. Available existence, uniqueness, and regularity theory for pseudo-
parabolic equations [58, 60, 61] predicts that the additional pseudo-parabolic term
decreases the smoothing property characteristic to parabolic problems (if at all
present) to a factor involving e−τ . In addition it is known that there is in general
no maximum principle for pseudo-parabolic equations such as one expected of solu-
tions to parabolic equations. Finally, we note that the available theory may or may
not include cases with dominating and degenerate convection; assumptions need to
be verified on a case by case basis.

Numerical methods for Richards’ equation include practical implementations
of finite difference [69], finite elements [69, 40, 44, 54], finite volumes [1] and
characteristic-based methods [7]; we do not attempt to give a comprehensive re-
view here. Typically, convergence results are formulated for either transformed
variables or for cases away from degeneracy, or for regularized problem. See, e.g.,
[9, 36] for results and references using Kirchoff transformation, and [33] for those
using similarity solutions. Numerical methods for Richards’ equation in physical
variables have been used in hydrology [20] but have not been analyzed outside
smooth regimes where standard convergence rates apply. Furthermore, there exist
a plethora of methods applicable to two-phase flow formulation of unsaturated flow,
see [25, 43, 22, 23, 21]; however, similarly to the case of Richards’ equation, those
results have been formulated for transformed variables or for smooth regime(s). Fi-
nally, comparison of two-phase flow versus Richards’ formulations have been studied
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in [62, 44, 64]; these point out that in some regimes the use of Richards’ equation
leads to loss of information.

On the other hand, there exist discretizations and associated analysis for (sin-
gle) pseudo-parabolic equations given in [35, 10, 38, 39, 37] but these theoretical
convergence results do not indicate any difficulties associated with large convec-
tive (advective) terms. Possibly such cases are ruled out by assumptions on the
smoothness of the analytical solution necessary to obtain convergence results.

However, the reported numerical simulation results point out difficulties in incor-
porating dynamic capillary pressure and stipulate that the problems are properties
of the numerical method [42] or of the PDE’s themselves [51]. Most of these results
focus on the modeling aspects of dynamic capillary pressure and on the identifica-
tion of the coefficient τ ; τ appears not to be constant especially in heterogeneous
media [42, 49]. We also note that the combination of dynamic capillary pressure
with play-type hysteresis, for a nonlinear non-degenerate case of horizontal flow, is
discussed in [13]. Among these results, [42] and [49] appear to use traditional dis-
cretizations of Richards’ and two-phase formulations, respectively. The work [51]
seeks similarity and traveling wave solutions. The approach in [13] leads to solving
a time-lagged coupled system of two equations, the first of which is elliptic and
is solved for pressure, while the second is an ODE for saturation. In the quoted
results we did not find detailed formulation of numerical algorithm, or convergence
analysis/studies.

As a point of departure for this paper, we consider numerical methods which
apply to nontransformed, nonregularized model(s) of unsaturated preferential flow
in porous media with strong heterogeneities and with locally large fluxes. We are
interested in both Richards’ and two-phase formulations. We systematically study
the difficulties associated with the numerical approximation of dynamic capillary
pressure terms. Since the reported numerical simulation results on dynamic capil-
lary pressure using traditional methods appear to exhibit instabilities, our approach
is to carefully formulate different variants, study their convergence and finally detect
the presence of instabilities if any. In an effort to be inclusive, we include a large
set of prototypes (variants) of the traditional methods from the finite difference
(FD) family to determine whether a particular detail of discretization may be the
factor that triggers the instabilities. The variants therefore include various ways
of averaging, implicit or semi-implicit solutions, and different choices of primary
unknowns. In addition to the FD family, we formulate and investigate a different
class of models which enables a locally conservative handling of convection terms
(LCELM family) combined with FD treatment of nonlinear diffusion. All these
discretizations are proposed for Richards’ equation.

Moreover, we discuss a numerical formulation for the full two-phase flow model
which is more general than Richards’ equation; we allow for different rock types and
dynamic capillary pressure and compare solutions to those for Richards’ equation.
Our formulations and discussion are supported by convergence studies and the nu-
merical simulation results are illustrated. Finally, we consider a representative cell
of a multiscale heterogeneous medium; discussion of a full simulation of preferential
flow with dynamic effects is outside the scope here; to our knowledge such a study
has not been undertaken.

Below in Section 2 we discuss the physical models, in Section 3 we formulate the
numerical methods, and in Section 4 we present convergence studies and simulation
results. The paper closes with Conclusions and Acknowledgements.



HETEROGENEOUS UNSATURATED FLOW WITH DYNAMIC CAPILLARY PRESSURE 129

2. Physical model

Consider a porous medium: an open bounded domain Ω ⊂ Rd, with d = 1, 2, 3,
characterized by physical properties of porosity φ = φ(x) > 0 and (absolute) per-
meability K = K(x) ∈ Rd×d, the latter in general heterogeneous and anisotropic.
Here we assume as it is usually done that K is uniformly positive definite. In
addition, let K be diagonal, i.e. its variability is aligned with coordinate axis.

Furthermore, let us be given for convenience, in the given coordinate system, the
value of depth of the porous medium D(x) under the earth’s surface. We set

i)D(x) ≡ 0 : horizontal flow case,(1)
ii)D(x) = x : vertical infiltration problem.(2)

The governing equations for the flow of two immiscible fluids in this porous
medium are given by the full two-phase flow model (3)–(4) or by the Richards’
equation model to be defined below (18) which is a simplified version of the two-
phase model. The models are standard [52, 24, 43, 50]. We briefly recall the
formulation(s) for completeness.

The two phases are denoted by subscripts α whereby α = w refers to water
(wetting phase) and α = n refers to the other (nonwetting) phase which may be air
or a hydrocarbon phase/component. The fluids have densities ρw, ρn and viscosities
µw, µn, respectively. For simplicity, if no subscript is used, this denotes by default
the wetting phase, i.e.. µ ≡ µw, ρ ≡ ρw etc. The flow is described by the equations

φ
∂S

∂t
−∇ ·

(
1
µ
Kkw(x, S)(∇P − ρG∇D)

)
= 0, x ∈ Ω, t > 0,(3)

φ
∂Sn

∂t
−∇ ·

(
1
µn

Kkn(x, S)(∇Pn − ρnG∇D)
)

= 0, x ∈ Ω, t > 0,(4)

Pn − P = Pc(x, S).(5)

In this model we have incorporated conservation of mass and multiphase extension
of Darcy’s law for immiscible two-phase fluids, which for each phase α, in the
absence of external sources, read, respectively, φ∂ραSα

∂t +∇ · (ραuα) = 0 and uα =
−Kkα

µα
(∇Pα−ραG∇D). The incompressibility assumption allows for the elimination

of the constant densities from the formulation everywhere except in the gravity
terms ραG∇D.

The unknowns of the system are the saturations S, Sn related by

S + Sn ≡ 1,(6)

and the pressures P, Pn. These unknowns are related to each other by (5), or by
its extension(s) to be discussed.

Here the rock-fluid properties are the capillary pressure relationship (5) and rel-
ative permeabilities kw, kn which are functions of the wetting phase saturation S
and as such take values in [0, 1] and are, respectively, nondecreasing and nonin-
creasing. Their dependence on x reflects heterogeneity of rocks and in particular
the fact that in a domain composed of different rock types, for example, containing
coarse and fine sand, the properties kw, kn, Pc will be given by different functional
relationships, see Figure 1.
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Figure 1. Capillary pressure (left) and relative permeabilities
(right) for two rock types: sand I (coarse), and sand II (fine).
Here we use van Genuchten model with data as in Table 4.1.

In numerical examples in this paper we use the so-called van-Genuchten–Mualem
model in which

Pc(S) =
1
α

(S−
1
m − 1)

1
n ,(7)

kw(S) = Sε
[
1−

(
1− S

1
m

)m]2

,(8)

(9)

kn(S) = (1− S)γ
[
1− S

1
m

]2m

.(10)

Generally, ε = 1
2 , γ = 1

3 and m = 1− 1
n , and α, n are given from experiments. Rock

type dependent kw, kn and Pc can be determined by α(x) and n(x).
For the case when kw, kn, Pc are not rock type dependent, the existence and

uniqueness as well as regularity of solutions to the PDEs have been studied. Given
appropriate boundary and initial conditions and based on some assumptions on the
data (see section below) one can determine the solution uniquely [4, 22, 23]. See
also [18, 33] for the case of multiple rock types.

2.1. Boundary and initial conditions. Let us be given P0, S0 and PD, SD.
In the discussion below and in most experiments we use the following initial

conditions

P (x, 0) := const = P0, x ∈ Ω,(11)
S(x, 0) := const = S0, x ∈ Ω.(12)

These conditions combined with (5) give initial values for the nonwetting phase
pressure and saturation. Note that in the case (1) without gravity, a constant
initial pressure and saturation represent an equilibrium solution. This is not true
in case (2) with significant gravity where these initial conditions do not represent
an equilibrium state. Finally, when considering multiple rock types in Example 3,
we assume only (11) and an appropriately equivalent condition for the nonwetting
phase, while S(x, 0) is determined from equality of capillary pressures.

The boundary ∂Ω consists of the no-flow part ∂ΩN on which Neumann no-flow
conditions are specified

uw · η = 0, x ∈ ∂ΩN , t > 0,(13)
un · η = 0, x ∈ ∂ΩN , t > 0(14)
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as well as of its complement ∂ΩD in ∂Ω, the part on which we impose Dirichlet
boundary conditions

P (x, t) = PD, x ∈ ∂ΩD,(15)
S(x, t) = SD, x ∈ ∂ΩD.(16)

In most experiments on part of ∂ΩD we impose PD ≡ P0 and/or SD ≡ S0.

2.2. Richards’ equation. Richards’ equation can be derived from (3), (4), (5),
(6) by assuming that the nonwetting phase, hereby presumed to be air, remains at
a constant pressure equal to the atmospheric pressure which for convenience one
can set (in certain units) to 0

Pn ≡ 0.(17)

Thereby one of the equations and variables is eliminated and one rewrites the
equation (3) as follows

φ
∂S

∂t
−∇ ·

(
1
µ
Kkw(x, S)(∇P − ρwG∇D)

)
= 0,(18)

where S, P are coupled via (5) and (17) as

P = −Pc(x, S).(19)

If Pc(·) is a smooth invertible function, then one can simply seek a solution in
either variable. However, in general, Pc(·) exhibits strong degenerate behavior so
that limS→0 Pc(S) = ∞. In addition, in some range of S and for some rock types,
P ′c(S) ≈ 0. Therefore depending on the particular rock type and on specific issues
with behavior of Pc(x, S), there are advantages in using either P or S as the primary
unknown.

In hydrology applications [57, 50] yet another version of (18) is preferred. Here
the (convective, first order) gravity term is separated from the diffusive second
order term, the nonlinearites are lumped together, and it is assumed that K ≡ KI
and that the rock-fluid properties are not rock-dependent. Finally the chain rule is
applied to set

D(S) := − 1
µ
Kkw(S)P ′c(S),(20)

C(S) :=
1
µ
Kkw(S)ρwG∇(−D(x)),(21)

from which (18) can be rewritten as a convection diffusion equation solved for S

φ
∂S

∂t
+∇ · (D(S)∇S) = ∇ · (C(S)) .(22)

Here the diffusivity coefficient D(S) is nonnegative definite and degenerate and the
advective term C(S) is monotone nonincreasing degenerate. In case (1) the advec-
tive term vanishes C(S) ≡ 0 and the equation has a nonlinear degenerate parabolic
character. In case (2) the problem has nontrivial advection which, depending on
the magnitude of capillary pressure, may or may not dominate the character of the
flow.

The equation (22) can be also reformulated in terms of other variables: in hy-
drology it is popular to use the water content Θ := φS and pressure head h := P

Gρw

[50, 57].
Yet another formulation and change of variable are used in derivation of exis-

tence, uniqueness, and regularity theory for Richards’ equation. One identifies a
smooth variable, say u, by a Kirchoff transformation for which the well-posedness
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Figure 2. Idea of dynamic capillary pressure.

is studied; see [9, 36]. Then the values of S and/or P can be derived from u by
means of a more or less degenerate transformation.

While the use of an auxiliary variable u is very helpful in understanding the
transformed problem, it may or may not have a practical impact on applications in
which the actual values of S and P need to be found. A similar remark applies to
numerical methods applied to Richards’ equation whose convergence for the trans-
formed variable may be optimal in u albeit will exhibit sub-optimal convergence
rates when studied in S, P .

2.2.1. Boundary and initial conditions. The boundary and initial conditions
for Richards’ equation follow from those for the two-phase flow (11), (12), (15),
(13), (14), (16) noticing that by (17) the condition (14) is automatically satisfied
and that (19) must be satisfied for all other conditions.

2.3. Dynamic capillary pressure. As mentioned above, the idea of incorporat-
ing dynamic effects in the capillary pressure-saturation relationship is to replace
Pc(x, S) by Pc(x, S, ∂S

∂t ) to account for dependence on time scale of getting to cap-
illary equilibrium. Two main directions of models include the Hassanizadeh–model
[42] and the Barenblatt–model [12, 11]. See Figure 2 for illustration. Also see
a combination of play-type hysteresis and dynamic capillary pressure models in
[13, 14].

In this paper we focus on the Hassanizadeh model and extend it to multiple rock
types thereby assuming that (5) is replaced by (23)

Pc(x, S,
∂S

∂t
) := Pc(x, S)− τ

∂S

∂t
,(23)

where τ ≥ 0 is a constant or it varies with x, t.
Note that plugging this relationship to (19) we obtain, instead of (18),

φ
∂S

∂t
+∇ ·

(
Kkw(S)

µ
∇Pc(S,

∂S

∂t
)
)

= ∇ ·
(

Kkw(S)
µ

ρwG∇D(x)
)

(24)

which can be rewritten in a generic nonlinear pseudo–parabolic form similar to
(22)

∂S

∂t
−∇ · (D(S)∇S) = ∇ ·C(S)+∇ ·

(
Kkw(S)

µ
∇τ

∂S

∂t

)
.(25)
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2.4. Modeling flow in heterogeneous media. Consider now a full two-phase
flow model with different rock types in a cell with coarse and fine sand described by
x ∈ ΩI ,x ∈ ΩII , respectively, in which fast and slow flow occur. In our experiments
reported in Section 4.3 the parameters KI and KII differ by a factor of 103. See
Figure 3 for a schematic representation of the cell.

Figure 3. Schematic representation of a cell with two different
media types: ΩI (outside region) and ΩII (inside).

It is well known [43] that in addition to variation in K, one has to take into
account rock-type dependent capillary-pressure properties

Pc(x, S) =
{

P I
c (S), x ∈ ΩI

P II
c (S), x ∈ ΩII

as well as relative permeabilities kw, kn. In the dynamic capillary pressure model,
we additionally have to take into account

τ(x) =
{

τ I , x ∈ ΩI

τ II , x ∈ ΩII .

3. Numerical approximation

Now we formulate two classes of numerical methods and their variants as applied
to the two-phase problem system (3)–(6) and the Richards’ equation in the form (18)
or (22). These two methods are the cell–centered Finite Difference method (FD),
and the Locally Conservative Eulerian-Lagrangian Method (LCELM). A subset of
these methods handle multiple rock types; all algorithms handle dynamic capillary
pressure terms directly; that is, via (23).

We refer to [56] for an analogy between mixed finite element spaces of lowest
Raviart-Thomas order on rectangles and cell-centered FD methods for single-phase
flow, and to [65] for a convergence analysis of FD for a linear elliptic problem.
Theoretically, via equivalence to mixed finite elements, the cell-centered FD provide,
for simple linear problems, convergence order in primary unknowns (P, S) similar to
the one in fluxes, or higher, via superconvergence. However, handling of nonlinear
and degenerate terms and convection dominated problems requires extensions to
expanded mixed methods [9, 69] and higher order temporal discretizations with the
additional error due to the loss of consistency order, or to the stabilizing terms.
We refer to [52] for a standard discretization of multiphase flow and to [53] for
extensions of [56] to multiphase flow and treatment of boundary conditions, and to
[40] for a discussion of stabilization procedures. Also, see [9, 36, 1, 15] for a variety
of other schemes. Again, we do not attempt to give a complete set of references.
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Method Model advective diffusive time discr. unknown

R LCELM Richards (22) - a use S
n
. See (40) S

R LCELM2 Richards (22) - a use Sn−1. See (40) S

R FD1 Richards (22) u a time-lagging S
R FD2 Richards (18) u u time-lagging S
R FD3 Richards (18) u u fully implicit P
R FD4 Richards (18) u u time-lagging P
R FD5 Richards (18) u u fully implicit S

2PH Two-phase u u fully implicit (variable t.step) P, S
2PH E Two-phase u u time-lagging P, S
2PH F Two-phase u u fully implicit (fixed t.step) P, S

Table 1. Numerical approximation schemes considered in this pa-
per. Symbol u denotes upwinding, symbol a denotes arithmetic
average.

In our work FD is applied to both the two-phase formulation and Richards’
equation; we discuss for simplicity only the discretization for d = 1 but the results
shown come from a general MATLAB implementation applicable to d = 1, 2, 3. The
variants of FD presented here differ by the way we handle a) edge nonlinearities,
and b) time-discretization and solving the resulting nonlinear system. Only the
two-phase FD method is applied when rock types are different. When upwinding
is applied, we expect the method to be at most O(4x +4T ) accurate, in either
variant, with restrictions on the time step for the non-implicit variants due to the
CFL condition. In the case i) with no gravity and away from degeneracy of Pc, and
when diffusion terms are discretized using arithmetic averaging which gives higher
order consistency, one could expect a convergence rate of O((4x)2 +4T ).

It is well known that standard finite difference and finite element methods may
inaccurately approximate convection-diffusion problems when the Péclet number
is large. A variety of numerical methods have been developed to obtain better
approximations; and many of these methods fall under the generic classification of
Eulerian-Lagrangian methods [32, 34, 63, 29, 8]. Among them, a family of locally
conservative Eulerian-Lagrangian methods (LCELM) was introduced [31] in the
simulation of immiscible displacement in porous media; extensive computational
experiments were presented in [31, 30, 3, 2]. Optimal-order error estimates have
been derived for a finite difference analogue of LCELM for a semilinear parabolic
equation in a single space variable [26] and for a multidimensional LCELM based
on mixed finite elements for a semilinear parabolic equation [27].

Details on FD and LCELM discretization are provided in subsequent sections.

3.1. Finite difference approximations (FD). Consider first Richards’ equa-
tion (18) and apply the FD method, fully implicit in time. Here for brevity we
present the formulation for d = 1.

Discretize the spatial domain Ω as covered by a rectangular uniform grid of
size 4x, with cell centers denoted by xi, and unknowns denoted by subscript i,
i = 1, . . . nx. The time variable is discretized by splitting (0, T ) into subintervals
of variable size 4Tn, n = 1, . . . N where N is the number of time steps. Here the
values of unknowns at time tn are denoted by superscripts n.

We set

S0
i := S0(xi), i = 1, . . . nx.(26)
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and then, for n = 1, . . . N , we solve

(27) (4x)2φ(Sn
i − Sn−1

i )

−4TnKi+1/2
1
µ

k∗w,i+1/2

(
Pn

i+1 − Pn
i

)

+4TnKi+1/2
1
µ

k∗∗w,i+1/2ρG (Di+1 −Di)

+4TnKi−1/2
1
µ

k∗w,i−1/2

(
Pn

i − Pn
i−1

)

−4TnKi−1/2
1
µ

k∗∗w,i−1/2ρG (Di −Di−1) = 0, i = 1, . . . nx.

In this scheme the main gist and the source of variants in formulations is in a)
the choice of time-lagged coefficients or fully implicit solution, b) the handling of
the advective k∗∗w,i±1/2 and the diffusive k∗w,i±1/2 edge nonlinearities, and finally c)
the choice of primary unknowns: P or S. The various variants are summarized in
Table 1 with details given as follows. Our methods resemble most closely those in
[40, 69, 45, 53]. Boundary conditions are treated as in [53].

These variants follow standard textbook procedures [52, 43] but their choices
may be delicate especially in the forthcoming context of dynamic capillary pressure
terms; we give details for completeness.

For a) time discretization we use time-lagging whereby we set n∗ := n − 1 or
a fully implicit solution in which we use n∗ := n. These definitions are used in
computing coefficients of the (non)linear system.

In b) the choices include upwinding denoted in Table 1 by ’u’ or arithmetic
averages denoted by ’a’. Specifically, in upwinding, we set k∗w,i+1/2 = kw(Sn∗

i )
provided the potential difference4ψn∗

i+1/2 := Pn∗
i+1−Pn∗

i −ρG(Di+1−Di) is negative
indicating that the flow is from the left. If the potential difference indicates flow
from the right, we use the value k∗w,i+1/2 = kw(Sn∗

i+1). In arithmetic averaging, we
select k∗w,i+1/2 = 1

2 (kw(Sn∗
i )+kw(Sn∗

i+1)). Handling of k∗∗w,i+1/2 and all other terms is
analogous. The upwinding, albeit associated with lower convergence rate, provides
additional stability and is applicable to more general models with compressibility
and multiple rock types; see discussion in [40].

As concerns c), in the model (22) preferred by hydrologists and solved for S
only, the term D(S) given by (20) is discretized using arithmetic averaging on the
entire term and the term C(S) is discretized using upwinding as in all other FD
variants. It appears that the averaging of the lumped form of D(S) leads to faster
convergence than without the chain rule.

In the original model (18), when it is solved for P , the values of S and conse-
quently the nonlinear properties are obtained via (19). Depending on the choice of
time-lagging or fully implicit solution, the relation (19) is applied at the same time
step or with time lagging.

Each of these choices has associated existing numerical theory which applies
as long as the values of kw(x, S), P ′c(S) (or D(S)) remain bounded away from
singularities. In particular, it is known that for large advection, the use of arithmetic
averaging in k∗∗w,i+1/2 leads to instabilities. On the other hand, the use of upwinding
increases numerical diffusion and leads to schemes that are slightly less accurate,
at least away from degenerate conditions [48].
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3.1.1. Discretization of two-phase model (3)–(4). In analogy to what was
done for Richards’ equation; that is, (3), one can write the discrete analogue for
the nonwetting phase (4) and consider multiple variants of discretizations. For
simplicity, here we report only on those discretization variants in which we use
upwinding for both convective and diffusive terms. Time discretization can be
implicit or time-lagged, the unknowns chosen are P, S.

3.1.2. Incorporating dynamic capillary pressure. In order to model dynamic
capillary pressure, we discretize (23) as follows:

Pn∗
n − Pn∗ = Pc(x, Sn∗)− τ

Sn − Sn−1

4Tn
,(28)

where for implicit solution we use n∗ = n and for time-lagging we use n∗ = n− 1.
In the case of Richards’ equation we use Pn∗

n ≡ 0 from which follows a modifi-
cation of (28).

3.1.3. Solution of (27). The system of discrete equations (27) for the time-lagged
case when n∗ ≡ n− 1 requires application of a linear solver. We use a direct solver
from MATLAB suite for sparse matrices or an SOR iteration in which we iterate
to very small tolerance.

In the fully implicit case when n∗ ≡ n we have a nonlinear system to solve at
every time step. This is done by Newton’s iteration with the Jacobian computed
analytically and with the initial guess extrapolated from previous time steps. The
time step is either fixed or it is controlled automatically depending on the success
or failure of the Newton iteration. We refer to [46] for a general reference to solving
nonlinear systems with Newton’s method and to [44, 25, 45] for the work applicable
to unsaturated flow.

3.2. Locally conservative Eulerian-Lagrangian method. LCELM is based
on an operator-splitting procedure that separates the transport (convection) from
the diffusion in (24) as follows:

1◦ Initialize:

(29) S0(x) = S(x, 0).

2◦ Transport(Gravity): For n ≥ 1,

(30a)
∂(φS)

∂t
+∇ ·

(
ρwG

µ
Kkw(S)∇D

)
= 0, tn−1 < t < tn,

(30b) S(x, tn−1) = Sn−1(x).

3◦ Diffusion(Capillary pressure): For n ≥ 1,

(31a)
∂(φŜ)

∂t
+∇ ·

(
1
µ
Kkw(Ŝ)

(
P ′c(Ŝ)∇Ŝ −∇τ

∂Ŝ

∂t

))
= 0, tn−1 < t < tn,

(31b) Ŝ(x, tn−1) = S(x, tn).

4◦ Set

(32) Sn(x) = Ŝ(x, tn),

and go to 2◦.
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3.2.1. The local conservation relation. Let Mij , i = 1, . . . nx, j = 1, . . . ny be
the 4x×4y rectangle given by

Mij = [xi−1/2,j−1/2, xi+1/2,j−1/2]× [xi−1/2,j−1/2,xi−1/2,j+1/2].

Now, let us define a predecessor set for Mij . Let y(t;x) be the solution of the final
value problem given by

(33a) y′ =
ρwGKkw(S)∇D

µφS
,

(33b) y(tn,x) = x.

Then, let

(34) ∂M̃n
ij = {y(tn−1;x) : x ∈ ∂Mij },

and define the interior of ∂M̃n
ij to be the predecessor set M̃ij at time tn−1 corre-

sponding to Mij at time tn. Define the tube En
ij to be the set interior to Mij , M̃

n
ij

and the lateral boundary Fn
ij defined by the integral curve y(t;x), tn−1 < t <

tn, x ∈ ∂Mij . Then, the solution of (24) satisfies the relation
(35)∫

Mij

φSn dx−
∫

M̃ij

φSn−1 dx+
∫

Eij

∇·
(

1
µ
Kkw(x, S)

(
P ′c(S)∇S −∇τ

∂S

∂t

))
dxdt = 0.

3.2.2. The approximate transport. The sets M̃n
ij and En

ij depend explicitly
on the solution S of (22), thus, they must be approximated using the values of
the approximate solution, which will be denoted by Sn, n = 0, 1 . . . N . In this
paper, we shall limit ourselves to the lowest order version of the LCELM based
on a finite difference method in that Sn is taken to be piecewise constant. Note
that Sn is multivalued on ∂Mij , consequently, we will introduce a piecewise bilinear
interpolation operator I as follows:

(36) IS(xi−1/2,j−1/2) = (Si−1,j−1 + Si,j−1)/2,

i.e., IS is the upstream average. Now, assume that Sn−1 is known. Denote the
vertices of Mij by xij,k, k = 1, . . . , 4. Then, define an approximate predecessor Q̂n

ij

as the quadrilateral having vertices

(37) x̂n
ij,k = xij,k − ρwGKkw(IS(xij,k))∇D(xij,k)

µφIS(xij,k)
4 T, k = 1, . . . , 4.

Let Ên
ij be the tube formed with top Mij and bottom Q̂n

ij . Then, the approximate
local conservation equation can be written as

(38)
∫

Mij

S
n

dx =
∫

Q̂n
ij

Sn−1 dx.

3.2.3. The diffusive fractional step. We shall approximate the solution of the
diffusive fractional step (31) by one of two variants of time-lagged cell-centered
finite difference methods, referred to below by R LCELM and R LCELM2. Here,
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we for simplicity assume that τ is a constant and define:

(4x)2(4y)2φ(Sn
i,j − S

n

i,j)(39)

+
(4y)2

µ
Ki+1/2,j

{
4T (kwP ′c)

∗,n
i+1/2,j(S

n
i+1,j − Sn

i,j)

−τk∗,nw,i+1/2,j

(
(Sn

i+1,j − Sn
i,j)− (S̃n

i+1,j − S̃n
i,j)

)}

− (4y)2

µ
Ki−1/2,j

{
4T (kwP ′c)

∗,n
i−1/2,j(S

n
i,j − Sn

i−1,j)

−τk∗,nw,i−1/2,j

(
(Sn

i,j − Sn
i−1,j)− (S̃n

i,j − S̃n
i−1,j)

)}

+
(4x)2

µ
Ki,j+1/2

{
4T (kwP ′c)

∗,n
i,j+1/2(S

n
i,j+1 − Sn

i,j)

−τk∗,nw,i,j+1/2

(
(Sn

i,j+1 − Sn
i,j)− (S̃n

i,j+1 − S̃n
i,j)

)}

− (4x)2

µ
Ki,j−1/2

{
4T (kwP ′c)

∗,n
i,j−1/2(S

n
i,j − Sn

i,j−1)

−τk∗,nw,i,j−1/2

(
(Sn

i,j − Sn
i,j−1)− (S̃n

i,j − S̃n
i,j−1)

)}

= 0,

where (kwP ′c)
∗,n
i±1/2,j and k∗,nw,i±1/2,j are the arithmetic mean,

(kwP ′c)
∗,n
i±1/2,j =

(
(kwP ′c)(S

n

i,j) + (kwP ′c)(S
n

i±1,j)
)

/2

and

k∗,nw,i±1/2,j =
(
kw(S

n

i,j) + kw(S
n

i±1,j

)
/2,

respectively and (kwP ′c)
∗,n
i,j±1/2 and k∗,nw,i,j±1/2 are defined analogously. Here,

(40) S̃n
i,j =

{
S

n

i,j in R LCELM,

Sn−1
i,j in R LCELM2.

A convergence analysis for R LCELM2 for a linear problem has been done and will
be presented in a subsequent paper.

4. Results

Here we report on numerical results for the schemes presented above. First,
we illustrate the convergence and stability discussion given above; this is done
via Example 1 in which no dynamic capillary pressure is taken into account i.e.
τ ≡ 0. Next, in Example 2 we compare the solutions with and without dynamic
capillary pressure and are concerned with convergence and stability of the schemes.
In Example 3 we demonstrate the use of multiple rock types combined with dynamic
capillary pressure using a two-phase formulation.

Examples 1 and 2 are essentially 1D even though they are run with 2D codes;
example 3 is run essentially in 3D but it has 2D features only.

Our studies are comprehensive and include simulations across all listed cases and
schemes. However, for brevity we present only the typical and/or most interesting
cases.
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4.1. Example 1: convergence studies for τ ≡ 0. Our examples include i)
horizontal (1) and ii) vertical (2) infiltration problem, with parameters shown in
Table 4.1. Initial saturation S0 is constant, infiltration proceeds from the left at SD.
This is a purely “static” case with τ = 0. Its purpose is to demonstrate convergence
of methods which are used in Example 2 to simulate dynamic capillary pressure
phenomena.

The data S0, SD for two-phase flow model are chosen so that (17) is essentially
satisfied. Note, however, that this won’t happen for just any choice of values S0, SD

. The data P0, PD are adjusted accordingly.
Overall, the simulation parameters in this Example are chosen to demonstrate

robustness of the methods for the relatively hard case which is the infiltration of a
wetting front into an initially very dry soil. The infiltration is due to a boundary
condition on i) left and ii) top, respectively, in each case imposing a pressure gradi-
ent. The right (bottom) boundary conditions are the same as the initial condition.

Recall that i) means the problem has only nonlinear (degenerate) diffusion terms
while in case ii) it has additional nonlinear convective terms. Consulting Table 4.1
and Figure 1 we see that the case of sand II (fine) with large capillary pressure
is diffusive, with or without gravity terms, while the case of sand I (coarse) has
a strong convective term when gravity is present. This is evident in the solutions
shown in Figure 4 which shows convergence study for Richards’ equation and two-
phase formulations.

It is clear that all methods converge, albeit R FD1 and R LCELM appear to
have a higher convergence rate. Due to the upwinding R FD2–R FD5 have lower
convergence rates. Moreover, all schemes and both models, Richards and two-phase,
agree very well qualitatively and in most cases quantitatively. It seems that the
choice of time-lagging or implicit solution is not essential as is the choice of the time
step, as long as the time step is refined along with spatial grid parameter (studies
not shown). Finally, what is not visible on the picture due to its resolution, is the
fact that both methods R LCELM and R FD1 as opposed to R FD2–R FD5 appear
to converge to a solution from opposite sides. This fundamental difference must be
caused by the use of arithmetic averaging to all of D(S) in the former methods
as opposed to handling them directly via a dependent variable in the latter case.
In fact, the R FD1 method appears to be closely related to standard Galerkin
finite element discretization via the lumped discretization/averaging whereas the
R FD2–R FD5 relate closer to the mixed methods.

Next, the choice of primary unknown: P or S in Richards’ formulation with
implicit time stepping appears to suggest, perhaps not surprisingly, that the use of
P (implicit S) allows for larger time steps and smoother convergence of Newton’s
iteration than the use of S which is less diffusive.

More examples and comparisons are given in Figure 5 where we show results
for multiple numerical methods for a given discretization, with gravity. Here we
see again that R LCELM and R FD1 are capable of producing sharper fronts than
R FD2–R FD5. The case without gravity is not shown but it features all curves in
essentially the same place for all schemes.

Finally, as concerns comparison between modeling unsaturated flow using Richards’
or two-phase flow model, it appears that for those cases when Pn ≈ 0, the differ-
ences between (almost) equivalent methods R FD2–R FD5 and 2PH* are negligible.
Here and below, 2PH* represents all the variants of FD based on the two-phase
model.
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Figure 4. Convergence studies for fine sand II (top) and coarse
sand I (bottom) examples, for different numerical methods; shown
are cases with i) no convection (left, horizontal flow (1)) and ii)
with convection (right, vertical flow (2)). Here nx varies from 32
to 256, and 4T is changed appropriately.
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Figure 5. Comparison between numerical methods used for
Richards’ equation and two-phase flow formulation for both types
of sand, with gravity.

4.2. Example 2: implementation of dynamic capillary pressure. Here we
continue simulations with scenarios as in Example 1. However, now the dynamic
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Physical properties of fluids:
ρw = 103[kg/m3], ρn = 1.2[kg/m3],
µw = 10−3[Pas], µn = 1.78 · 10−5[Pas],
G = 9.8066[m/s2].

Properties of porous medium:
φ = 0.4,
KI = 10−10[m2],
KII = 10−11[m2].

van Genuchten parameters:
coarse sand I: n = 2.494, α = 10−3,
fine sand II: n = 2.237, α = 10−4,
all cases: ε = 0.5, γ = 1/3.

Boundary and initial conditions:
coarse sand I: S0 = 0.02, Sleft = 0.30,
fine sand II: S0 = 0.05, Sleft = 0.35.

Table 2. Simulation parameters for Example 1 and Example 2, in
SI units. The porous medium and rock-fluid properties are similar
to those in the literature [43, 42]. We focus on effective saturations,
therefore Swr = 0.
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Figure 6. Influence of dynamic capillary pressure and conver-
gence tests, no gravity; both fine and coarse sand cases.

capillary pressure terms are present, that is, τ > 0. To a numerical analyst it
actually comes as a surprise that in order to see the influence of dynamic capillary
pressure, the values of τ (in the units used) have to be of several orders of magnitude,
see however the identification of τ in [42].

Figures 6–9 present results of simulation for the case from Example 1, except
with τ > 0.

The first observation is that all methods (some cases are not shown) appear to
converge and have smooth solutions; at least as long as no significant convection is
present. We see again higher convergence rates for R LCELM and R FD1 and lower
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Figure 7. Convergence studies with dynamic capillary
pressure: Fine sand with gravity (some convection, but not
dominating). Solution profiles for R LCELM2 are essentially
identical with those for R FD1. Relative error, ‖R FD1 −
R LCELM2‖`∞/‖R FD1‖`∞ is less than 0.16% for each τ when
nx = 128, dt = 25.

x

S

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R_LCELM tau=0 nx=32 dt=100
R_LCELM tau=0 nx=64 dt=50
R_LCELM tau=0 nx=128 dt=25
R_LCELM tau=1e7 nx=32 dt=100
R_LCELM tau=1e7 nx=64 dt=50
R_LCELM tau=1e7 nx=128 dt=25
R_LCELM tau=1e8 nx=32 dt=100
R_LCELM tau=1e8 nx=64 dt=50
R_LCELM tau=1e8 nx=128 dt=25

Dynamic capillary pressure for coarse sand, with gravit

x

S

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R_LCELM2 tau=0 nx=32 dt=100
R_LCELM2 tau=0 nx=64 dt=50
R_LCELM2 tau=0 nx=128 dt=25
R_LCELM2 tau=1e7 nx=32 dt=100
R_LCELM2 tau=1e7 nx=64 dt=50
R_LCELM2 tau=1e7 nx=128 dt=25
R_LCELM2 tau=1e8 nx=32 dt=100
R_LCELM2 tau=1e8 nx=64 dt=50
R_LCELM2 tau=1e8 nx=128 dt=25

Dynamic capillary pressure for coarse sand, with gravity

x

S

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R_FD1 tau=0 nx=32 dt=100
R_FD1 tau=0 nx=64 dt=50
R_FD1 tau=0 nx=128 dt=25
R_FD1 tau=1e7 nx=32 dt=100
R_FD1 tau=1e7 nx=64 dt=50
R_FD1 tau=1e7 nx=128 dt=25
R_FD1 tau=1e8 nx=32 dt=100
R_FD1 tau=1e8 nx=64 dt=50
R_FD1 tau=1e8 nx=128 dt=25

Dynamic capillary pressure for coarse sand, with gravity

x

S

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

2PH_E tau=0 nx=32 dt=20
2PH_E tau=0 nx=64 dt=10
2PH_E tau=0 nx=128 dt=6
2PH_E tau=1e7 nx=32 dt=20
2PH_E tau=1e7 nx=64 dt=10
2PH_E tau=1e7 nx=128 dt=5
2PH_E tau=1e8 nx=32 dt=20
2PH_E tau=1e8 nx=64 dt=10
2PH_E tau=1e8 nx=128 dt=5

Dynamic capillary effects for coarse sand, with gravity

Figure 8. Convergence studies with dynamic capillary pressure.
Coarse sand with gravity (very significant convection). Relative
error, ‖R FD1 − R LCELM2‖`∞/‖R FD1‖`∞ is less than 6.8%
for each τ when nx = 128, dt = 25.

for R LCELM2, R FD2–R FD5 and 2PH*. This is consistent with the regularity
theory presented in [59] which suggests that the presence of dynamic capillary
pressure terms should not have de-stabilizing effects, at least in the purely parabolic
case where convection is absent.
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Figure 9. Comparison of results for dynamic capillary pressure.
Both sand types with gravity, various methods.

Now, with some convection present (Figure 7), the convergence with the same
observations is apparent. However, R LCELM leads to a sharpening of the front,
while R LCELM2 doesn’t. This can be explained by ability of LCELM to han-
dle transport regardless of direction. The sharpening of the front visible in the
R LCELM case can be explained by the effect of terms with large τ which lead to
a decrease of diffusion stronger for large S for this variant of time-stepping. See
(40).

Then, for dominant convection (Figure 8), we obtain results which have non-
monotone profiles for large τ for all FD-based methods, regardless of whether the
Richards’ or two-phase flow formulation is used. Note also that R LCELM2 presents
qualitatively the same profiles as FD-based methods. It is hard to assess conver-
gence in this case as we do not have the true solution at this point. Also, we cannot
speculate whether the apparent nonmonotonicity of profiles in Figure 8, present for
all FD and R LCELM2 solutions, relates to a numerical instability, or to a physical
phenomenon. One could speculate that R LCELM profiles are “real” and therefore
instabilities in FD arise due to their lack of ability to approximate a sharp front
which arises “against” the apparent convection direction. One could also bring
back the discussion of nonmonotonicity in [40] for a vertical infiltration problem
with heterogeneity.

To put these results in perspective, we recall that it has been reported in [42]
that a straightforward discretization of the dynamic capillary pressure term leads
to instabilities for large values of τ , albeit the details of the problematic and of
improved formulation(s) were not given. On the other hand, the results reported in
[51] focus on instabilities in the similarity solutions due to dynamic capillary pres-
sure terms varying in t which are argued to be physical and not merely numerical
phenomena.

Our results confirm that the straightforward inclusion of the dynamic capillary
pressure does not lead to instabilities when convection terms are not present or are
not dominant. At the same time, it is clear that the presence of advective terms
which dominate diffusion may lead to physical appearance of various internal and
boundary layers which may perhaps explain the nonmonotonicity of the solutions
reported in Figure 8. At this point however we are not ready to make more general
conclusions without further analysis which is outside the scope of this paper.
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We close this discussion with remarks on time stepping and choice of primary
unknowns. For all FD cases, the presence of dynamic terms appears to slow down
the dynamics of the flow, similarly as reported in [42]. From a numerical point of
view, this results in smoother performance of implicit methods, and very large time
steps can be taken without harming the convergence of the Newton iteration. For
example, the automatic time-stepping, if unrestricted, would allow the time step
to grow by three orders of magnitude. However, the use of S as primary unknown
in implicit formulations of Richards’ equation required very small time steps as the
Newton iteration was very sensitive to the domain of validity of (23).

The qualitative behavior of solutions for increasing τ comes without surprise.
As shown in Figure 2, the larger dynamic terms during imbibition decrease the
apparent diffusion due to capillary pressure, hence they should slow down the front
which is moving partly due to nonlinear diffusion, and partly to convection. Where
the two effects (diffusion and convection) become comparable, it is perhaps their
competition that leads to instabilities which cannot be reliably captured with the
numerical methods discussed here.

4.3. Example 3: dynamic capillary pressure and different rock types. In
this experiment we show results of simulation for a 20 × 20 cell with D(x) = 0
of heterogeneous medium such as shown in Figure 3. We are interested in the
combined effects of heterogeneity and dynamic capillary pressure. The numerical
scheme we choose is the implicit implementation of two-phase model with upwinding
and variable time-stepping listed as 2PH in Table 1.

The data used for this example is very simple and except for the special data
described below it is as in Table 4.1. Heterogeneity is associated with the ratio
of 3 orders of magnitude difference in permeabilities KI = 103 · KII . We use
kw(x, S) = S2, kn(x, S) = (1 − S)2 for both rock types. As concerns static and
dynamic capillary pressure relationships, we consider four experiments. The first
two are with static capillary pressure and read a) P I

c (S) ≡ P II
c (S) = 1

10
√

S
; τI =

0; τII = 0, b) P I
c (S) = 1

10
√

S
; P II

c (S) = 0.5(1 − S); τ I = 0; τ II = 0. In
next two experiments we vary dynamic capillary pressure coefficients c) P I

c (S) =
1

10
√

S
; P II

c (S) = 0.5(1 − S); τ I = 10; τ II = 0, d) P I
c (S) = 1

10
√

S
; P II

c (S) =
0.5(1− S); τ I = 0; τ II = 10. That is, in general, we have

P I
c (S) 6= P II

c (S).(41)

All examples start from an initial equilibrium in which we are given a constant
equilibrium pressure in both phases (hence, no pressure gradient) across both rock
types. Such an equilibrium implies equality of capillary pressures and, in the case of
(41), this implies inequality of initial saturations; see the initial condition of S for
cases b), c), and d) shown below. On right and left boundaries of the cell we apply
a Dirichlet boundary condition for saturations and pressures and no-flow condition
is used on remaining boundaries. Thereby we create an infiltration front moving
from right to left and which results in appearance of some internal boundary layers
close to the outlet boundary.

Results of simulations are shown in Figures 10 and 11. They show the importance
of both heterogeneity and dynamic effects.

In particular, comparison in Figure 10 shows significance of (41) starting at
initial time step and in what follows. Case a) shows an example of bypassed air
(nonwetting phase) pockets inside of the cell where the wetting phase has not
invaded.
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Figure 10. Results with static capillary pressure for cases a) (top)
and b) (bottom), at the beginning, middle, and last time step of
the simulation (from left to right).

Figure 11. Initial time step (left) for cases c) and d) and results
with dynamic capillary pressure at the end of simulation: case c)
(middle) and d) (right).

Comparison of cases b) with dynamic cases of c) and (more physical) d) reveals
that the delay effects in sand I (case c) slow down the flow in ΩI surrounding ΩII

and lead to an internal boundary layer close to left boundary of ΩII . The effect is
reversed in case d). We mention here that it appears (Majid Hassanizadeh, private
communications) that case d) is more physical: dynamic effects are likely to be
more significant in fine sand where capillary pressure is more important than in
coarse where they are not as important.

Characteristics of case d) will be the building blocks in our future construction
of multiscale models of preferential flow with dynamic effects.

5. Conclusions

While the rigorous analysis for the nonlinear degenerate case is outside the scope
of this paper, the convergence of FD formulation for (22) with dynamic capillary
pressure (pseudo-parabolic) terms without convection i.e. C(S) ≡ 0 has been
confirmed by numerical experiments and is consistent with the findings of [35].
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As reported above for case i) without gravity all the FD-based methods appear
to converge and to have monotone solutions. For this case however the LCELM
formulation is not relevant.

In the general case, we have shown above that in the presence of dynamic capil-
lary pressure as well as different rock types, numerical solutions exhibit substantial
differences with respect to those without dynamic terms. In cases without con-
vection such as (22) with C(S) ≡ 0, the solutions for large τ lag behind. This is
consistent with the analysis in [60, 58] predicting that the size of jump in initial
data, here due to the difference between initial and boundary conditions, decreases
slowly when large τ in pseudo-parabolic terms is used.

However, it appears that the main difficulties and the presence of apparent in-
stabilities are associated with the strong convective terms C(S) and large τ . In
separate experiments not reported here we were able to determine, for each τ , the
critical size of Dfac in D(x) = Dfacx for which the method remains stable. In other
words, there appears a critical Péclet number beyond which, due to the boundary
or internal layers the numerical solution exhibits nonmonotonicities which remain
stable with respect to the spatial and temporal grid refinement.

As concerns the convective term, our hope was that the use of LCELM would
alleviate any potential instabilities. Indeed, the R LCELM (but not R LCELM2)
results appear stable and have monotone behavior which is stable with respect
to mesh refinement. While this approach offers different results than FD-based
methods, we believe that more analysis of the time splitting and of the influence
of convective terms is necessary before firm conclusions are drawn as to the nature
and convergence of the methods.

Next, we believe that one needs a two-phase model rather than Richards’ equa-
tion to properly model both the heterogeneities and dynamic capillary pressure
effects. This follows from our observations on the size of nonwetting phase pressure
Pn as monitored in the two-phase flow model which, albeit small compared to the
value of P , exhibits substantial variations especially in dynamic case.

Finally, as seen from Example 3, the numerical methods for preferential flow
should take into account both the variation rock type as well as proper models of
accounting for dynamic effects such as dynamic capillary pressure. The impact of
these two elements on the solutions is substantial, both qualitatively and quantita-
tively.
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