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A NOTE ON THE CONSTRUCTION OF FUNCTION SPACES
FOR DISTRIBUTED-MICROSTRUCTURE MODELS WITH

SPATIALLY VARYING CELL GEOMETRY

SEBASTIAN MEIER AND MICHAEL BÖHM

Abstract. We construct Lebesgue and Sobolev spaces of functions defined on

a continuous distribution of domains {Yx ⊂ Rm : x ∈ Ω}. The resulting spaces

can be viewed as a generalisation of the Bochner spaces Lp(Ω; W l
q(Y )) for the

case that Y depends on x ∈ Ω. Furthermore, we introduce a Lebesgue space

of functions defined on the boundaries {∂Yx : x ∈ Ω}. The latter construction

relies on a uniform Lipschitz parametrisation of the above collection of bound-

aries, interpreted as a higher-dimensional manifold. The results are applied

to prove existence, uniqueness and upper and lower bounds for a distributed-

microstructure model of reactive transport in a heterogeneous porous medium.

Key Words. Lebesgue spaces, Sobolev spaces, distributed-microstructure

model, direct integral, reaction–diffusion, homogenisation.

1. Introduction

Transport in porous media is governed by at least two highly different spatial
scales: the pore scale and the macroscopic scale, the latter of which is usually
of interest in applications. In cases where two or more transport processes hap-
pen simultaneously on highly different time scales, it has been shown by periodic
homogenisation that distributed-microstructure models (or two-scale models) are
appropriate [3, 2]. Such models consist of averaged equations describing the fast
transport processes and of local microscopic cell problems accounting for the slow
transport. The most studied example is flow in fissured media [1, 25].

¿From a mathematical point of view, these models are interesting due to the non-
standard coupling of the equations and the unusual choice of solution spaces. In [25],
the authors show that the variational formulation of a distributed-microstructure
model with a cell geometry that varies at different points of the medium naturally
leads to function spaces of the form L2(Ω;H1(Yx)) where Yx is another domain
depending on x ∈ Ω. The construction of such spaces and particularly of their
trace spaces is quite intricate and it is the major aim of this paper.

We briefly recall the model from [25] and how a variational formulation is derived.
If Ω ⊂ Rn is the macroscopic flow region, then at each x ∈ Ω the local geometry
is described by a solid matrix block Yx ⊂ Y ⊂ Rn surrounded by the pore Y \ Y x.
The domain Yx can depend on the macroscopic space coordinate x ∈ Ω in order to
account for a heterogeneous medium. For x ∈ Ω, y ∈ Yx and t ≥ 0, let u(x, t) be
the fluid density in the pore space and U(x, y, t) that in the matrix blocks. The
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model equations consist of the (averaged) mass balance of fluid within the pores1

(1a)
∂

∂t
(a(x)u)−divx(A(x)∇xu) =

1
|Y |

∫

∂Yx

k(γxU(x, y, t)−u(x, t))·ν dσy, x ∈ Ω, t > 0,

where γxU(t, x, y) denotes the trace of U at y ∈ ∂Yx, and a family of local mass
balances in the matrix blocks parameterised by x ∈ Ω,

(1b)
∂

∂t
(b(x)U)− divy(B(x)∇yU) = 0, x ∈ Ω, y ∈ Yx, t > 0.

The exchange condition reads

(1c) −B(x)∇yU · νx = k(γxU(x, y, t)− u(x, t)), x ∈ Ω, y ∈ ∂Yx, t > 0.

Following [25], a variational formulation of (1) is given as follows. Let V :=
L2(Ω; H1(Yx)) be an anisotropic Sobolev space (see Def. 4). We look for a pair
of functions u ∈ L2(0, T ; H1(Ω)) and U ∈ L2(0, T ;V ) satisfying (1a) in the usual
weak sense and

d
dt

∫

Ω

∫

Yx

bUΨ dy dx +
∫

Ω

∫

Yx

B∇yU · ∇yΨ dy dx

+
∫

Ω

∫

∂Yx

k(γxU − u) γxΨ dσy dx = 0 ∀Φ ∈ V.

In [25], the authors prove that the system (1) is wellposed in the above sense.
However, a systematic discussion of the properties spaces of the form L2(Ω;H1(Yx))
is missing. Moreover, the cell boundaries Γx need to have some regularity with
respect to x ∈ Ω in order to justify terms of the form∫

Ω

∫

∂Yx

γxU γxΨ dσy dx.

It is the aim of this paper to fill this gap by constructing general spaces Lp(Ω;W l
q(Yx))

and Lp(Ω;Lq(∂Yx)) and proving some elementary properties of them like separa-
bility and reflexivity. While for the former space, it is sufficient that the higher-
dimensional set Q := ∪x∈Ω({x}×Yx) is Lebesgue measurable, it turns out that for
the latter space of functions defined on a family of cell boundaries, the situation
is more intricate. We construct a uniform parametrisation of the cell boundaries
∂Yx under quite general conditions on the geometry. With this framework at hand,
objects like the distributed trace operator γU(x, y) := γxU(x, ·)(y) are easily con-
structed. Afterwards, the results are applied to a semilinear two-scale reaction–
diffusion system, which has also been discussed in [17] under stronger restrictions
on the cell geometry. Modifying techniques from [14, 9], we prove boundedness,
existence and uniqueness of weak solutions.

We mention some related work for constant microstructure: The analysis of a
similar two-scale reaction–diffusion system has been shown in [10]. Homogenisation
results for a general diffusion–convection–reaction–adsorption system can be found
in [12, 13]. For numerical approaches to two-scale models, see [21, 1, 18]. A huge list
of further references is also given in [11]. We emphasise that in the present paper
and in all of the above cited work, a change of the microstructure w.r.t. time is not
considered. For homogenisation and two-scale models with evolving microstructure,
we refer to [22, 16].

This paper is organised as follows. In section 2, we discuss function spaces on
cell domains. Function spaces on the cell boundaries are treated in section 3. In

1The model (1) corresponds to the regularised-microstructure case in [25].



FUNCTION SPACES FOR DISTRIBUTED-MICROSTRUCTURE MODELS 111

section 4, we apply the results to prove well-posedness of a two-scale model for
reactive transport.

2. Spaces of functions defined in the cell

We construct spaces Lp(Ω; Lq(Yx)) and Lp(Ω;W l
q(Yx)) of functions defined on a

family of bounded domains {Yx ⊂ Rm : x ∈ Ω ⊂ Rn}. As our basic tool, we use
the (n + m)-dimensional Lebesgue measure of the domain Q = ∪x∈Ω({x} × Yx).
The corresponding spaces of Bochner integrable functions are recovered as special
cases if Yx ≡ Y . For general information on the Bochner integral, see [28, 15].

Some of the following results are well-known for the special case that Ω = [0, T ]
and x is the time variable. In this case, these spaces are widely used when dealing
with free-boundary problems or PDEs on noncylindrical domains. See [19] for
similar definitions and further references.

2.1. The Lebesgue space Lp(Ω; Lq(Yx)). Let Ω ⊂ Rn and Y ⊂ Rm be
bounded domains. For each x ∈ Ω, let Yx ⊂ Y ⊂ Rm be another domain such
that

Q := Ω× Yx :=
⋃

x∈Ω

({x} × Yx) ⊂ Rn+m

is measurable with respect to the (n + m)-dimensional Lebesgue measure. If no
further restrictions are given, then p ∈ [1,∞] and q ∈ [1,∞) are given exponents
and p′ and q′ are the dual exponents defined by 1/p + 1/p′ = 1 and 1/q + 1/q′ = 1.
The case q = ∞ is not considered in this paper.

Definition 1 (The space Lp,q(Q)).
(1) We define the Banach space

Lp,q(Q) ≡ Lp(Ω; Lq(Yx))

:= {u ∈ Lp(Ω; Lq(Y )) : u(x, ·) = 0 on Y \ Yx for a.e. x ∈ Ω}
with the norm

‖u‖Lp,q(Q) :=

{
(
∫
Ω
‖U(x)‖p

Lq(Yx) dx)1/p, p < ∞,

ess supx∈Ω‖U(x)‖Lq(Yx), p = ∞.

(2) In the case p = q = 2, we define the Hilbert space L2,2(Q) with the scalar
product

(u, v)L2,2(Q) :=
∫

Ω

(u(x), v(x))L2(Yx) dx.

Remark. Since q < ∞, the function x 7→ ‖u(x, ·)‖Lq(Yx) is measurable by Fu-
bini’s theorem. Thus, the space Lp,q(Q) is well-defined. As a closed subspace of
Lp(Ω;Lq(Y )), it is also complete.

Proposition 2 (Properties of the space Lp,q(Q)).
(1) (Hlder’s inequality) For all u ∈ Lp(Ω; Lq(Yx)) and v ∈ Lp′(Ω;Lq′(Yx)), it

holds ∫

Ω

∫

Yx

u(x, y)v(x, y) dy dx ≤ ‖u‖Lp,q(Q)‖v‖Lp′,q′ (Q).

(2) Let p < ∞. Then Lp,p(Q) is isometrically isomorph to Lp(Q).
(3) Let p < ∞. Then the simple functions as well as the continuous functions

on Q are dense in Lp,q(Q). In particular, Lp,q(Q) is separable.



112 S. MEIER AND M. BÖHM

Proof. Part (1) is obtained straightforwardly from the standard Hlder’s inequalities
in the spaces Lp(Ω) and Lq(Yx).

Part (2) follows via extension by zero from the corresponding fact for the Bochner
space Lp(Ω; Lp(Y )). A proof of the latter result can be found in [8], pp. 196ff.

(3) By definition, f ∈ Lp,q(Q) is Bochner-integrable as a function f : Ω → Lq(Y ).
Therefore we can approximate f by simple functions fk : Ω → Lq(Y ) via

fk(x) :=
mk∑

i=1

αk
i 1Ek

i
(x), αk

i ∈ Lq(Y ), Ek
i ⊂ Ω measurable for i, k ∈ N,

such that fk → f in Lp(Ω;Lq(Y )) for k →∞. Moreover, each αk
i can be approxi-

mated by

αkl
i (y) :=

nl∑

j=1

βkl
ij 1Dkl

ij
(y), βkl

ij ∈ R, Dkl
ij ⊂ Y measurable for j, l ∈ N.

Then one easily verifies that the simple functions on Q given by

fkl(x, y) :=
mk∑

i=1

nl∑

j=1

βkl
ij 1Ek

i ×(Dkl
ij∩Yx)(x, y)

approximate f in Lp,q(Q) for k, l → ∞. In order to prove the density of C(Q)
in Lp,q(Q), it suffices to approximate simple functions f : Q → R. Thus, we can
assume that f ∈ Lr(Q) for every r ≥ 1. Since C(Q) is dense in Lmax{p,q}(Q), the
result follows. ¤

Proposition 3 (Characterisation of the dual space). Let p ∈ [1,∞) and q ∈ (1,∞).
The operator

〈J(f), g〉 :=
∫

Ω

∫

Yx

f(x, y)g(x, y) dy dx, g ∈ Lp,q(Q), f ∈ Lp′,q′(Q),

is an isometric isomorphism J : Lp′,q′(Q) → [Lp,q(Q)]′. In particular, Lp,q(Q) is
reflexive for p > 1.

Remark. The case q = 1 is not covered since the space Lp′,∞(Q) has not been
defined.

Proof. Let f ∈ Lp′,q′(Q). By Hlder’s inequality, J(f) is well-defined and ‖J(f)‖ ≤
‖f‖p′,q′ . Moreover, by the fundamental lemma of calculus of variations, J is injec-
tive.

Let F ∈ [Lp,q(Q)]′ be given. We have to show that an f ∈ Lp′,q′(Q) exists with

F = J(f) and ‖f‖p′,q′ ≤ ‖F‖.
We reduce the statement to the cylindrical situation in the following way: Define

J̃ : Lp′(Ω;Lq′(Y )) → [Lp(Ω; Lq(Y ))]′, 〈J̃(f), g〉 :=
∫

Ω

∫

Y

fg dy dx.

In this case, it is known that J̃ is an isometric isomorphism. The proof, which
is very similar to the real-valued case Lp(Ω), can be found in [4]. Define λp,q :
Lp(Ω;Lq(Y )) → Lp,q(Q) to be the linear restriction operator and let λ′p,q be its
dual. Both operators have norm 1, and the right-inverse of λp,q is the extension by
zero, which we denote by γp,q : Lp,q(Q) → Lp(Ω;Lq(Y )). Hence, γp,q ◦ λp,q = id.
Let

f := λp′,q′ ◦ J̃−1 ◦ λ′p,q ◦ F ∈ Lp′,q′(Q).
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Then ‖f‖p′,q′ ≤ ‖F‖ and, for any g ∈ Lp,q(Q),

〈J(f), g〉 =
〈
J ◦ λp′,q′ ◦ J̃−1 ◦ λ′p,q ◦ F, g

〉

=
∫

Ω

∫

Yx

(λp′,q′ ◦ J̃−1 ◦ λ′p,q ◦ F ) g dy dx

=
∫

Ω

∫

Y

(J̃−1 ◦ λ′p,q ◦ F ) γp,qg dy dx

=
〈
λ′p,q ◦ F, γp,q ◦ g

〉

=
〈
F, (λp,q ◦ γp,q)g

〉

= 〈F, g〉.
Hence J(f) = F , which proves the Proposition. ¤

2.2. The Sobolev space Lp(Ω; W l
q(Yx)). In the following, let l ∈ N. For a

multi-index α ∈ {0, . . . , l}m, let ∂αu(x, y) denote the α-th derivative w.r.t. y.

Definition 4. We define the Banach space

W 0,l
p,q(Q) ≡ Lp(Ω;W l

q(Yx)) := {u ∈ Lp,q(Q) : ∂αu ∈ Lp,q(Q) ∀|α| ≤ l}
with the norm

‖u‖W 0,l
p,q(Q) :=

∑

|α|≤l

‖∂αu‖Lp,q(Q).

In the case p = q = 2, W 0,l
2,2(Q) is a Hilbert space with the scalar product

(u, v)W 0,l
2,2(Q) :=

∑

|α|≤l

(∂αu, ∂αv)L2,2(Q) .

Remark. The proof that W 0,l
p,q(Q) is complete reduced to the completeness of Lp,q(Q)

by the analogous argument as for standard Sobolev spaces.

Proposition 5 (Properties of W 0,l
p,q(Q)). The space W 0,l

p,q(Q) is separable if p < ∞
and reflexive if p, q ∈ (1,∞).

Proof. In order to prove separability, define the linear bounded operator

T : X := W 0,l
p,q(Q) →

∏

|α|≤l

Lp,q(Q), f 7→ (∂αf)|α|≤l.

Then T (f) can be estimated from above and below by the norm ‖f‖X . Thus, X is
isomorph to T (X). Since C(Q) is dense in Lp,q(Q) for p < ∞, the subspace T (X)
is separable and, hence, also X.

Finally, for p, q ∈ (1,∞), Lp,q(Q) is reflexive by Prop. 3. Since X is a Banach
space, T (X) is a closed subspace of Lp,q(Q) and is therefore also reflexive. ¤

Remark. As already mentioned in [25], for the special case q = 2 and p < ∞,
the space W 0,l

p,2(Q) can alternatively be constructed as a direct integral of Hilbert
spaces. See [7, 26] for abstract definitions, or [6] for the special case that n = 1 and
Ω = (a, b). For details on how the construction works for the space W 0,l

p,2(Q), the
reader is referred to [16].
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3. Spaces of functions defined on the cell boundary

In order to give a meaning to integrals of the form
∫
Ω

∫
∂Yx

u(x, y) dσy dx, we
need to define spaces of functions defined on the cell boundary ∂Yx. Here the
situation is more complicated since we need to parameterise the whole collection
of cell boundaries {Γx : x ∈ Ω}. For a concise presentation, we exclude some
(degenerate) geometries that could perhaps be treated with more technical effort.

3.1. Parametrisation of the cell boundaries. We assume that the Lebesgue
measure of the cells Yx ⊂ Rm is uniformly bounded from below, i.e., there exists a
constant c > 0 such that |Yx| ≥ c for all x ∈ Ω. Let us introduce a parametrisation
of

Σ := Ω× ∂Yx :=
⋃

x∈Ω

({x} × ∂Yx) ⊂ ∂Q.

Note that ∂Q is not smoother than Lipschitz, even if Yx and Ω have smooth bound-
aries. In general, the normal will be multi-valued at points (x, y) ∈ ∂Ω × ∂Yx. In
order to avoid technicalities, we therefore assume that Q can be extended to a
bounded Lipschitz domain Q1 ⊃ Q (cf. figure 2 on the left) and construct a param-
eterisation of Σ1 := ∂Q1 ⊃ Σ.

We recall the definition of a Lipschitz boundary (cf. [27], e.g.). At any given
point (x0, y0) ∈ Σ1, there exists a neighbourhood U of (x0, y0) such that, after
an Euclidean coordinate transform, Σ1 ∩ U is the graph of a (locally) Lipschitz
continuous function g : Rn+m−1 → R and Q1 ∩ U lies on one side of the graph.
See figure 1. More precisely, there exists an orthonormal basis {vj}j=1,...,n+m, a
number r > 0, such that with the notation ξ′ = (ξ1, . . . , ξn+m−1), the bijective
coordinate transform

Ψ−1 : Rn+m → Rn+m, ξ 7→ (x, y) = (x0, y0) +
n+m−1∑

i=1

ξjvj + (ξn+m + g(ξ′))vn+m,

the cube Wn+m = (−r, r)n+m, r > 0, and the open set

U = Ψ−1(Wn+m) ⊂ Rn+m,

it holds for all (x, y) ∈ U

(x, y) ∈ U ∩ Σ1 ⇐⇒ ξn+m = g(ξ′),(2)

(x, y) ∈ U ∩Q1 ⇐⇒ 0 < ξn+m − g(ξ′) < r,(3)

(x, y) ∈ U \Q1 ⇐⇒ − r < ξn+m − g(ξ′) < 0.(4)

Figure 1. Parametrisation of the (n + m− 1)-dimensional manifold Σ1.
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The set of unit normal vectors directed outward is defined (independently of the
parametrisation) as

(5) νΣ(x, y) := (1+|∇ξ′g(ξ′)|2)−1/2




n+m−1∑

j=1

∂jg(ξ′)vj − vn+m


 , (x, y) ∈ Σ1.

Here, ∂jg and ∇ξ′g can be multi-valued and refer to the Clarke gradient (see [5]).
In general, at some given point (x, y) ∈ Σ1 the normal νΣ(x, y) is a convex set of
vectors, but for almost every (x, y) it is a singleton.

We recall how the integral over the (n+m−1)-dimensional manifold Σ is defined.
Since Σ is compact, there exist finitely many of such parameterisations (xk

0 , yk
0 ), Uk,

gk, {vk
j }j=1,...,n+m such that Σ ⊂ ∪N

k=1U
k. Let (ηk)k=1,...,N be a partition of unity

subordinated to the Uk. We define the integral of a function f : Σ → R to be

∫

Σ

fdσx,y :=
N∑

k=1

∫

W n+m−1
(ηkf)

(
(Ψk)−1(ξ′, 0)

) √
1 + |∇ξ′gk(ξ′)|2 dξ′.

Note that the integral is single-valued, as the set of points where the gk are not
differentiable is of measure zero (Rademacher’s theorem).

Next we construct a parametrisation of the cell boundaries {∂Yx : x ∈ Ω}
from the above one. Cf. figure 2 in the center, we define the normal νx at the
cell boundary ∂Yx to be the (normalised) projection Py of νΣ onto the subspace
{x = 0} spanned by the vectors en+1, . . . , en+m, with other words,

(6) νx(y) :=
PyνΣ(x, y)
|PyνΣ(x, y)| , (x, y) ∈ Σ.

For this definition to make sense, it is necessary that the projection is nonzero. It
can be shown that this condition is also sufficient for constructing a parametrisation
of the cell boundaries. This is the purpose of the following Lemma.

Figure 2. Left: The extension Σ1 of the boundary. Center: Unit
normal νΣ at Σ and cell normal νx. Right: Example of a geometry
that does not satisfy condition (7).
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Lemma 6. Assume that

(7) PyνΣ(x, y) 63 0 ∀(x, y) ∈ Σ.

Then the cells Yx are bounded Lipschitz domains with unit normals at ∂Yx given
by (6) and the parametrisation in each point (x0, y0) ∈ Σ can be chosen such that

vj = ej , j = 1, . . . , n.

Moreover, there exist positive constants c and C such that

(8) c ≤ |Yx|, |∂Yx| ≤ C for all x ∈ Ω.

Remark. It is important that (7) is valid for all (x, y) in the closed set Σ = Ω×∂Yx.
By this assumption, we exclude some degenerate cases; see figure 2 on the right.

Proof. Let (x0, y0) ∈ Σ be an arbitrary point and assume that a local parametrisa-
tion in a neighbourhood U is given as above. We construct a new parametrisation
as required. We write (2) in (x, y)-coordinates:

vn+m · (x, y) = g(v1 · (x, y), . . . , vn+m−1 · (x, y)) ∀(x, y) ∈ U ∩ Σ1,

or

G(x, y) := g(v1 · (x, y), . . . , vn+m−1 · (x, y))− vn+m · (x, y) = 0 ∀(x, y) ∈ U ∩Σ1.

We have, according to (5) and (7),

∇yG(x, y) =
n+m−1∑

j=1

∂jg(ξ′)Pyvj − Pyvn+m

= (1 + |∇ξ′g(ξ′)|)2)1/2 PyνΣ(x, y) 63 0 ∀(x, y) ∈ U ∩ Σ1.

We can therefore apply the implicit function theorem (see [5] for a Lipschitz ver-
sion) and resolve the equation near (x0, y0) with respect to a vector lying in the
subspace {x = 0} spanned by en+1, . . . , en+m. More precisely, there exists an
ONB w1, . . . , wn of Rn and a (possibly smaller) cube W̃n+m = (−r̃, r̃)n+m and
a Lipschitz continuous function g̃ : Rn+m−1 → R such that, with the coordinate
transform

Ψ−1 : W̃n+m → Rn+m, (x, ζ) 7→ (x0, y0)+

(
x,

m−1∑

i=1

ζiwi + (ζm + g̃(x, ζ ′))wm

)
,

(where ζ ′ := (ζ1, . . . , ζn−1)), it holds for all (x, y) ∈ Ψ−1(W̃n+m) = Ũ ,

ζm = g̃(x, ζ ′), ⇐⇒ (x, y) ∈ Σ1 ∩ Ũ ,

with other words, since Ũ = (x0 − r, x0 + r)× Ũx, where Ũx is a neighbourhood of
y0 ∈ ∂Yx,

ζm = g̃(x, ζ ′), ⇐⇒ y ∈ ∂Yx ∩ Ũx.

It follows that, with g̃x(y) := g̃(x, y), (x, y) ∈ Ω×Wm, and the new transformation

Ψ̃−1
x = Ψ̃−1(x, ·) : Wm → Ũx, ζ 7→ y0 +

m−1∑

i=1

ζiwi + (ζm + g̃x(ζ ′))wm

we have found a parametrisation of ∂Yx. If the neighbourhood Ũ has been chosen
small enough, then the corresponding conditions (2)–(4) are satisfied.

The estimates (8) are now obvious since, due to the compactness of Σ, the whole
collection of cells can be covered by a finite number of maps Ψk, k = 1, . . . , N . ¤

Motivated by the preceding Lemma, we define:
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Definition 7 (Regular family of cells). The family {(Yx, Γx) : x ∈ Ω} is called a
regular family of cells if Ω ⊂ Rn is a bounded Lipschitz domain and it holds:

(1) For each x ∈ Ω, Yx ⊂ Rm is a bounded domain such that Q := Ω × Yx ⊂
Rn+m is measurable. There exists a constant c > 0 such that |Yx| ≥ c for
all x ∈ Ω.

(2) For each x ∈ Ω, Γx is a measurable subset of ∂Yx.
(3) Σ := ∂Q ⊂ Rn+m can be extended to a boundary of a Lipschitz domain

Q1 ⊃ Q in Rn+m, such that the convex set of unit normals νΣ at ∂Q1

satisfies

PyνΣ(x, y) 63 0 ∀(x, y) ∈ Σ.

Let {(Yx, Γx) : x ∈ Ω} be a regular family of cells. Remember that we want
to define the integral of a function over Γx such that it is measurable w.r.t. x.
W.l.o.g., we assume that the parametrisation {xk

0 , yk
0 , Uk, gk}k=1,...,N has already

the form as constructed in the proof of Lemma 6. We define the corresponding
transformations Ψk such that Σ ⊂ ∪N

k=1U
k. Clearly, the x-intersections Uk

x ⊂ Rm

cover Γx for every x ∈ Ω and the ηk
x = ηk(x, ·) can be chosen as a partition of unity

subordinated to the Uk
x . Thus, we can define:

Definition 8 (Integral over Γx). Let {(Yx, Γx) : x ∈ Ω} be a regular family of
cells. For a function f : Σ → R which is integrable with respect to the (n+m− 1)-
dimensional Lebesgue measure, we define, for almost every x ∈ Ω,

∫

Γx

f(x, y)dσy :=
N∑

k=1

∫

W m−1
(ηkf)

(
x, (Ψk

x)−1(ζ ′)
) √

1 + |∇ζ′gk
x(ζ ′)|2 dζ ′.

Remark.

(1) By our assumption on the geometry, jumps in the cell structure along the
x-coordinate are excluded. We can account for at least finitely many jumps
by a simple modification: Assume that Ω is decomposed into M ≥ 1 disjoint
domains such that Ω̄ = ∪M

i=1Ω̄i. We now adopt the Lipschitz and geometric
conditions for each of the domains Ωi. The integral is then constructed as
the sum of all integrals over Ωi.

(2) An important special case is given if Ω = (a, b) is one-dimensional and
t := x ∈ (a, b) represents the time variable. Then the cells {Yt : t ∈ (a, b)},
describe a time-dependent domain. In this case, the normal velocity of the
interface at (t, y) ∈ Q = (a, b)× Γt is given by

wΓ(t, y) =
PtνΣ(t, y)
|PyνΣ(t, y)| , for a.e. t ∈ (a, b), y ∈ Yt,

where Pt is the projection to {y = 0}. See also figure 2 in the center. The
condition that {(Yt,Γt) : t ∈ (a, b)} is a regular family of cells guarantees
that wΓ is well-defined almost everywhere.
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3.2. The space Lp(Ω; Lq(Γx)). In what follows, let {(Yx, Γx) : x ∈ Ω} be a
regular family of cells.

Proposition 9. The space

Lp,q(Σ) ≡ Lp(Ω; Lq(Γx)) := {u : Σ → R measurable such that

u(x) ∈ Lq(Γx) for a.e. x ∈ Ω and ‖u‖Lp(Ω;Lq(Γx)) < ∞}

is a Banach space with the norm

‖u‖Lp,q(Σ) :=

{
(
∫
Ω
‖u(x)‖p

Lq(Γx) dx)1/p, p < ∞,

ess supx∈Ω‖u(x)‖Lq(Γx), p = ∞.

and a Hilbert space in case of p = q = 2 with the obvious scalar product.

Proof. It is clear by construction that u(x, ·) : Γx → R is a measurable function
and the norm ‖u(x, ·)‖Lq(Γx) is measurable in x. Hence, the space above is well-
defined. The proof of completeness is obtained by slight modification of the usual
Fischer-Riesz type arguments. See [16] for details. ¤

Proposition 10. Let p < ∞. Then the space Lp,p(Σ) is equivalent to Lp(Σ). In
general, both spaces are not isometric isomorph.

Proof. Let f ∈ Lp,p(Σ). Then, by Fubini’s theorem, the mapping x 7→ ∫
Γx

f(x, y) dσy

is measurable and

‖f‖p
Lp,p(Σ) =

∫

Ω

∫

Γx

|f(x, y)|p dσy dx

=
N∑

k=1

∫

Ω

∫

W m−1
(ηk|f |p) (

x, (Ψk
x)−1(ζ ′, 0)

) √
1 + |∇ζ′gk

x(ζ ′)|2 dζ ′ dx.

(9)

Moreover, by construction, the integral of f over Σ can be written as

‖f‖p
Lp(Σ) =

∫

Σ

|f(x, y)|p dσx,y

=
N∑

k=1

∫

W n+m−1
(ηk|f |p) (

Ψk)−1(ξ′, 0)
) √

1 + |∇ξ′gk(ξ′)|2 dξ′

=
N∑

k=1

∫

Ω

∫

W m−1
(ηk|f |p) (

x, (Ψk
x)−1(ζ ′, 0)

) √
1 + |∇xgk(x, ζ ′)|2 + |∇ζ′gk

x(ζ ′)|2 dζ ′ dx.

(10)

The norm equivalence follows now from the fact that the surface elements in (9)
and (10), namely

√
1 + |∇ζ′gk

x(ζ ′)|2 and
√

1 + |∇xgk(x, ζ ′)|2 + |∇ζ′gk
x(ζ ′)|2,

are essentially bounded from above and below, uniformly w.r.t. x.
A counterexample that the spaces are not isometric isomorph is given as follows:

Let n = m = 1, Ω = (a, b), b > a > 0, and Yx := (−x, x). If we integrate 1 over Γx,
we obtain 2 in each cell. Therefore, the integration (9) gives

∫
Ω

∫
Γx

dσy dx = 2(b−a)
whereas an integration over the one-dimensional surface measure according to (10)
gives the value 2(b− a)

√
2.

¤
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Next we construct the connection between the spaces W 0,1
p,q and Lp,q(Σ) via the

distributed trace.

Proposition 11. Let p < ∞ and γx : W 1
q (Yx) → Lq(Γx) be the continuous trace

operator. Then ‖γx‖ is uniformly bounded in x ∈ Ω and the distributed trace

γ : W 0,1
p,q (Q) → Lp,q(Σ), γ(u)(x) = γx(u(x)),

is a bounded linear operator.

Proof. By construction, γx is measurable and the norm ‖γx‖ is bounded uniformly
w.r.t. x. (See [16] for details and for an estimation of ‖γx‖ in terms of the parametri-
sation.) The boundedness of the distributed trace follows then from the estimate

‖γu‖p
Lp,q(Σ) =

∫

Ω

‖γxu(x)‖p
Lq(Γx) dx ≤ sup

x∈Ω
‖γx‖p ·

∫

Ω

‖u(x)‖q
W 1

q (Yx) dx.

¤

Remark. Higher order trace estimates in W l
q(Yx), l > 1, can also be formulated.

The only technical difficulty is the higher regularity needed for the boundary Γx.
The parametrisation has to be adapted to the case where the geometry is smoother
with respect to y than w.r.t. x. We do not follow this direction.

4. Application to reactive transport in porous media

Making use of the space constructions in the previous sections, we can now
define a variational formulation of a distributed-microstructure system for reactive
transport in a heterogeneous porous medium and prove its wellposedness.

Figure 3. Geometry of the distributed microstructure model (11).

4.1. The problem. We consider an unsaturated porous medium, in which the
distribution of pore water is assumed completely known and transport of water is
at rest. Let S = [0, T ] be a bounded time interval and Ω ⊂ Rn be a bounded
Lipschitz domain with boundary Γ = ∂Ω, representing the macroscopic domain
filled by the medium.

Let Y := (0, l)n denote the n-dimensional cuboid with side length l > 0. For each
x ∈ Ω, assume we are given bounded domains Ys,x, Yx ⊂ Y representing the solid
and the liquid phase near x such that Ys,x ∩ Yx = ∅. We assume that the pore air
is connected, whereas the liquid domains Yx are individually isolated, i.e., Y x ⊂ Y .
An example of such a geometry is depicted in figure 3. In typical applications,
this corresponds to a low humidity of the medium. We then denote the interface
between the gaseous and the liquid phase by Γx := ∂Yx \ ∂Ys,x 6= ∅ and assume
that the family {(Yx, Γx) : x ∈ Ω} is a regular distribution of cells in the sense of
Def. 7.
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We consider a substance A that diffuses slowly as a solute in the pore water and
fast as a gas in the pore air. At the gas–liquid interfaces, exchange of A occurs in
both directions. In the pore water, A is subjected to one or more chemical reactions.
The setting is motivated by carbonation of concrete; see [24, 18]. The mass balance
for the concentration u = u(t, x) of A in the pore air is effectively described by an
averaged diffusion equation of the form

(11a) ∂t(θ(x)u(t, x))− div(d(x)∇u) = −f(t, x), t ∈ S, x ∈ Ω,

where θ(x) = |Yg,x|/|Y | is the volume fraction of the pore air, d(x) ∈ Rn×n is the
effective diffusion tensor and f(t, x) is the amount of A that gets absorbed in the
pore water. The structure of f will be derived below. At Γ = ∂Ω we impose the
Robin condition

(11b) −d∇u(t, x) · ν(x) = b(x)(u− ue(t, x))), t ∈ S, x ∈ Γ,

with the unit normal ν(x) (directed outward), an exchange coefficient b(x) and a
given external concentration ue(t, x).

The slower transport of A in the pore water is described at the micro scale. Let
U = U(t, x, y) be the concentration of A at time t ∈ S, macroscopic coordinate
x ∈ Ω and microscopic coordinate y ∈ Yx. Then the microscopic (not-averaged!)
mass balance reads

(11c) ∂tU(t, x, y)− divy(D∇yU) = g(t, x, y, U), t ∈ S, x ∈ Ω, y ∈ Yx,

where D > 0 is the microscopic diffusivity and g(t, x, y, U) is the production or
consumption of A by chemical reactions. Note that all spatial derivatives in (11c)
are taken with respect to the microscopic coordinate y, such that x is effectively a
parameter in (11c). We indicate this by the lower index y. In contrast, the symbols
“∇” and “div” without lower index stand for differentiation w.r.t. x.

For a function w : Yx → R, let γxw := w|Γx be its trace at the boundary Γx.
Then the boundary conditions for U read

(11d) −D∇yU(t, x, y) · νx = k(γxU(t, x, y)−Hu(t, x)), t ∈ S, x ∈ Ω, y ∈ Γx,

where νx is the unit normal to ∂Yx (directed outward), k is an exchange coefficient
and H is the equilibrium constant between u and U (Henry constant), and

(11e) −D∇yU(t, x, y) · νx = 0 t ∈ S, x ∈ Ω, y ∈ ∂Yx \ Γx.

Now the total amount of A crossing the interface Γx at a given time t ∈ S and a
given point x ∈ Ω is

(11f) f(t, x) =
1
|Y |

∫

Γx

k(Hu− γxU) dσy, t ∈ S, x ∈ Ω,

which completes the mass balance (11a) for u. Finally, the initial conditions are

(11g) u(0, x) = u0(x), U(0, x, y) = U0(x, y), x ∈ Ω, y ∈ Yx.

The system (11) is a semilinear, weakly coupled system of two parabolic PDEs.
It is conceptually similar to the regularised microstructure model introduced in [25]
for flow in fissured media.
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4.2. Variational formulation. Let θ ∈ L∞(Ω) be bounded away from zero,
i.e. θ(x) ≥ θ0 > 0 for a.e. x ∈ Ω. Let d : Ω → Rn×n be measurable and uni-
formly elliptic, i.e. there exist constants c, C > 0 such that

c |ξ|2 ≤
∑

k,l

dk,l(x)ξkξl ≤ C |ξ|2 ∀ξ ∈ Rn, a.e. x ∈ Ω.

Let b ∈ L∞(∂Ω) be nonnegative and let k, H and D be positive constants. For
the initial and external values we assume that u0 ∈ L∞(Ω), U0 ∈ L∞(Ω× Yx) and
ue ∈ L∞(S × ∂Ω) such that for a positive constant CU it holds

(12) 0 ≤ Hu0(x), U0(x, y),Hue(t, x) ≤ CU a.e.

The reaction term has the structure

(13) g(t, x, y, U) = −M1(t, x, y)η1(U) + M2(t, x, y)η2(U),

where M1, M2 ∈ L∞(S×Ω×Yx) are nonnegative functions and η1, η2 : R→ [0,∞)
are locally Lipschitz and satisfy

(14) η1(U) = 0 for U ≤ 0 and η2(U) ≤ 1 + |U | for U ∈ R.

Note that (14) actually implies that the production rate η2 is globally Lipschitz on
[0,∞).

We denote by Hθ the usual space L2(Ω), equipped with the equivalent scalar
product

(u, v)Hθ
:=

∫

Ω

θ(x)u(x)v(x) dx, u, v ∈ Hθ,

and introduce

V := H1(Ω)× L2(Ω;H1(Yx)),

H := Hθ × L2(Ω;L2(Yx)),

V := L2(S; V ), V ′ := L2(S; V ′).

Then, by Def. 4 and Prop. 5, V and H are separable Hilbert spaces and the embed-
dings V ↪→ H ↪→ V ′ are continuous and dense. Moreover, if γx : H1(Yx) → L2(Γx)
is the usual trace map on the cell boundary, then from Prop. 11 we obtain that the
distributed trace γ : L2(Ω;H1(Yx)) → L2(Ω; L2(Γx)) is a bounded linear operator.
We introduce the notation

(15) (u, v)Ω×Γx
:=

∫

Ω

∫

Γx

uv dσydx, u, v ∈ L2(Ω;L2(Γx)),

and (·, ·)Ω×Yx
, (·, ·)Ω, etc., analogously. Note that (15) is not equal to the integral

over the (2n− 1)-dimensional manifold Ω× Γx (cf. Prop. 10).

Definition 12 (Weak upper and lower solutions). A pair of essentially bounded
functions [u,U ] ∈ V is called a weak lower (upper) solution of problem (11) if
[u(0), U(0)] ≤(≥) [u0, U0], and for all [ϕ,Ψ] ∈ V with [ϕ,Ψ] ≥ 0 a.e., it holds

(16)
d
dt

([u, U ], [ϕ,Ψ])H + (d∇u, ∇ϕ)Ω + (D∇yU, ∇yΨ)Ω×Yx
+ (b(u− ue), ϕ)Γ

+
(
k(Hu− γU), |Y |−1ϕ− γΨ

)
Ω×Γx

≤(≥) (g(·, U), Ψ)Ω×Yx
for a.e. t ∈ S.

If [u,U ] is both a lower and an upper weak solution, then it is called a weak solution.

Remark. The system for u, U is quasi-monotone increasing in the sense of [20].
We modify the technique of weak upper and lower solutions and the comparison
principle from [14, 9].
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Proposition 13 (Comparison Principle). Assume that g is globally Lipschitz in
U . Let [u,U ] and [u,U ] be lower and upper weak solutions, resp., corresponding to
different data satisfying u0,≤ u0, U0 ≤ U0 and ue ≤ ue a.e. Then

u(t, x) ≤ u(t, x), U(t, x, y) ≤ U(t, x, y) for a.e. t ∈ S, x ∈ Ω, y ∈ Yx.

Proof. Let β = (H|Y |)−1 and denote u = u − u, u0 = u0 − u0, etc. Subtracting
both inequalities (16) for [u,U ] and for [u, U ] and testing with

[ϕ,Ψ](t) = [u+(t), βU+(t)], t ∈ S,

gives with standard arguments for τ ∈ (0, T ]

1
2
‖[u+(τ), βU+(τ)]‖2H +

∫ τ

0

(
d∇u, ∇u+

)
Ω

+
∫ τ

0

(
D∇yU, β∇yU+

)
Ω×Yx

+
∫ τ

0

(
bu, u+

)
Γ

+
∫ τ

0

(
k(Hu− γU), β(Hu+ − γU+)

)
Ω×Γx

≤ 1
2
‖[u+

0 , βU+
0 ]‖2H +

∫ τ

0

(
bue, u+

)
Γ

+
∫ τ

0

(
g(·, U)− g(·, U), βU+

)
Ω×Yx

.

Since the cut-off function (·)+ : R→ R≥0 is monotone, it holds
∫ τ

0

(
k(Hu− γU), β(Hu+ − γU+)

)
Ω×Γx

≥ 0.

Since g is globally Lipschitz in U , it follows that

1
2
‖[u+(τ), βU+(τ)]‖2H + c

∫ τ

0

‖∇u+‖2Ω + Aβ

∫ τ

0

‖∇yU+‖2Ω×Yx

≤ 1
2
‖[u+

0 , βU+
0 ]‖2H +

1
2

∫ τ

0

‖
√

b(ue)+‖2Γ + C

∫ τ

0

‖U+‖2Ω×Yx
.

By Gronwall’s inequality one obtains

‖[(u− u)+, (U − U)+]‖L∞(S;H) + ‖[(u− u)+, (U − U)+]‖L2(S;V )

≤ C
(
‖(ue − ue)+‖L2(S×Γ) + ‖[(u0 − u0)+, (U0 − U0)+]‖H

)
.

Now the result follows immediately. ¤

By similar arguments, we obtain an energy estimate for the system.

Proposition 14 (Energy estimate). There exists a constant C > 0 such that every
weak solution [u,U ] ∈ V satisfies

(17) ‖[u,U ]‖L∞(S;H) + ‖[u,U ]‖L2(S;V ) ≤
(
C(1 + ‖ue‖L2(S×Γ) + ‖[u0, U0]‖H

)

and

(18) ‖[u′, U ′]‖L2(S;V ′) ≤ C
(
‖[u,U ]‖L2(S;V ) +‖ue‖L2(S×Γ) +‖g(·, U)‖L2(S×Ω×Yx)

)
.

Remark. Due to assumption (14), global Lipschitz continuity of g is not needed for
the result. However, if either g is globally Lipschitz in U or if an a-priori L∞-bound
for U is known, then the a-posteriori estimate (18) for the time derivative can be
turned into an a-priori estimate using (17).
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4.3. Boundedness, existence and uniqueness. First, we are looking for can-
didates for upper and lower solutions.

Proposition 15 (Positivity and boundedness). Let U ∈ C1(S) be a solution
of the ODE

∂tU = ‖M2‖∞η2(U), t ∈ S,

satisfying U(0) ≥ CU where CU and M2 are given from (12) and (13). Then each
solution [u,U ] satisfies

0 ≤ u(t, x) ≤ H−1U(t), 0 ≤ U(t, x, y) ≤ U(t) for a.e. t ∈ S, x ∈ Ω, y ∈ Yx.

Proof. Let [u,U ] be a solution. Since by definition [u,U ] is essentially bounded, we
can replace η1 w.l.o.g by a cut-off function. So g can be assumed globally Lipschitz
in U . Hence, Prop. 13 can be applied. Now the nonnegativity result follows from
the fact that by (14) g(·, 0) ≥ 0 and therefore [0, 0] is a weak lower solution.

Denote u := H−1U . Then one has to check that [u, U ] is a weak upper solution:
By (12) we have

[u(0), U(0)] = [H−1U(0), U(0)] ≥ [u0, U0]

and also b(u − ue) ≥ 0 a.e. Finally, for nonnegative test functions [ϕ,Ψ] ∈ V , we
have

(
[u′, U

′
], [ϕ, Ψ]

)
H

=
(
θu′, ϕ

)
Ω

+
(
U
′
, Ψ

)
Ω×Yx

≥ 0 +
(‖M2‖∞η2(U), Ψ

)
Ω×Yx

≥ (
g(U), Ψ

)
Ω×Yx

.

This gives the inequality (16) for [u, U ]. ¤

Remark. Note that the cutoff argument works only for the negative reaction term
η1. The crucial point is that, after cutting off the function η1 for values above
M > 0, say, we are able to prove L∞-bounds for U that are independent of M .
This is not possible for the positive part η2.

Theorem 16 (Existence and uniqueness). There exists a unique weak solution of
problem (11).

Proof. We use Banach’s fixed point theorem with the weighted-norm space

X = C(S; H), ‖u‖X = max
t∈S

{e−λt‖u(t)‖H}, λ > 0.

For [ũ, Ũ ] ∈ X given, we consider the linearised problem (16) for [u,U ], in which the
right-hand side is replaced by

(
g(·, Ũ), Ψ

)
Ω×Yx

. By Prop. 14, we can w.l.o.g. as-

sume g to be globally Lipschitz. By a standard result on evolution equations (see,
e.g., [23], Thm. 10.3), there exists a unique solution [u,U ] ∈ L2(S;V )∩H1(S; V ′) ↪→
X.

Now we define a fixed point operator as

T : X → X, T ([ũ, Ũ ]) = [u,U ],
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and consider solutions [u,U ], [v, V ] corresponding to different data [ũ, Ũ ] and [ṽ, Ṽ ].
By similar arguments as in Prop. 13, we obtain, for τ ∈ (0, T ], the estimate

‖[u(τ)− v(τ), U(τ)−V (τ)]‖2H ≤ C

∫ τ

0

‖[ũ(t)− ṽ(t), Ũ(t)− Ṽ (t)]‖2H dt

≤ C

∫ τ

0

eλt dt max
t∈[0,τ ]

{
e−λt‖[ũ(t)− ṽ(t), Ũ(t)− Ṽ (t)]‖2H

}

≤ C
eλτ

λ
‖[ũ− ṽ, Ũ − Ṽ ]‖2X .

It follows that

‖[u− v, U − V ]‖X ≤
√

C

λ
‖[ũ− ṽ, Ũ − Ṽ ]‖X ,

and, hence, for λ chosen small enough, T : X → X is strictly contractive. ¤
Remark.

(1) Note that the embedding V ↪→ H is not compact. For this reason, we have
chosen a technique of proving existence that does not need any compactness
arguments.

(2) Uniqueness can alternatively be obtained by the analogous estimate as in
the proof of Prop. 13, applied to two solutions and omitting the cut-off func-
tions. This procedure yields also continuous dependence of the solutions
on the initial and boundary data.
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