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PHYSICS OF FLUID SPREADING ON ROUGH SURFACES

K. M. HAY AND M. I. DRAGILA

Abstract. n the vadose zone, fluids, which can transport contaminants, move

within unsaturated rock fractures. Surface roughness has not been adequately

accounted for in modeling movement of fluid in these complex systems. Many

applications would benefit from an understanding of the physical mechanism

behind fluid movement on rough surfaces. Presented are the results of a theo-

retical investigation of the effect of surface roughness on fluid spreading. The

model presented classifies the regimes of spreading that occur when fluid en-

counters a rough surface: i) microscopic precursor film, ii) mesoscopic inva-

sion of roughness and iii) macroscopic reaction to external forces. Theoretical

diffusion-type laws based on capillarity and fluid and surface frictional resistive

forces developed using different roughness shape approximations are compared

to available fluid rise on roughness experiments. The theoretical diffusion-type

laws are found to be the same apparent functional dependence on time; meth-

ods that account for roughness shape better explain the data as they account

for more surface friction.
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1. Introduction

The movement of fluids in unsaturated rock fractures is an involved subject,
requiring an understanding of multiphase fluid dynamics and fluid interaction with
soil and porous media as well as the use of complex modeling systems. However,
before one can model the big picture of multiphase flow in a rock fracture system it
is important to understand the basic physics that describes types of fluid movement
and interaction with boundaries. In a fractured rock system, the rock surface can
be porous, moist, chemically heterogeneous and rough. In this manuscript the focus
will be the movement of a wetting fluid over a rough surface. Glass is commonly
used to model rock when investigating characteristics of droplet movement in rock
fractures. It has been observed that the speed of droplets moving down between
smooth glass parallel plates is significantly different than the speed down rough
glass plates and rock fractures. The physical mechanism behind fluid movement on
rough surfaces is not yet well understood.

A wetting fluid is pulled into roughness by capillarity. What are the physical
mechanisms that drive and resist this movement? An analytical diffusion-type law
is developed that provides an explanation and a way to quantify the physical mech-
anisms that drive fluid invasion into roughness. The theory is based on the balance
between capillary and fluid and surface frictional resistive forces. Relationships
derived have the same apparent functional dependance on time as available experi-
ments of fluid rise on roughness. The more accurate the geometry of the roughness
shape, the better explain the data.
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There is a large body of experimental and theoretical literature that clearly
shows a rough surface affects fluid movement. Wenzel [1] observed that surface
roughness caused a hydrophobic fluid to behave as if it were more hydrophobic and
a hydrophilic fluid to behave as if it were more hydrophilic. Wenzel also suggested
that the structure of the surface had a greater effect on the static contact angle
than the chemistry. Bico et al. [2] suggest that a surface can be designed to tune
it’s wetting properties. They observe the dynamic behavior of the gas-liquid-solid
interface for a hydrophilic fluid on a rough surface and derive a spreading diffu-
sion law based on the change in energy that accompanies movement of the contact
line. Cazabat and Cohen Stuart [3] explored the effects of surface roughness exper-
imentally. They found that drops on rough surfaces spread faster than drops on
smooth surfaces. While the macroscopic cap of the drop on a rough surface follows
a gravity-dominated behavior, a thin fluid front rushes away from the macroscopic
edge, spreading into the roughness by capillarity. Eventually fluid in the macro-
scopic drop relaxes onto the fluid film that invaded the roughness.

Figure 1. Microstructure with regular micronic cylindrical spikes
used for the experiment [2].

The model for the invasion process incorporates the capillary driving mechanism
suggested by experimentalists and theoreticians in this field [2], [3]. The expression
derived uses an idealized geometry for the rough surface that coincides with the
micropatterned surface used in experiments by Bico et al. [2] (Figure 1). The goal
of the mathematical model is to predict the wetting behavior on a surface, given
the basic surface structure and to eventually describe larger multiphase systems
involving rock surfaces [4].

2. Theory

The model presented classifies three regimes of spreading: precursor film, rough-
ness invasion and reaction to external forces (Fig. 2). It is known that a microscopic
precursor film precedes a fluid that is in contact with a solid. Movement of the pre-
cursor film is governed by molecular diffusive transport of vacancies from the tip
of the film to the edge of the macroscopic meniscus [5]. It is assumed here that
the precursor film must also occur on rough surfaces and this will be considered
the first regime of spreading. During the second regime of spreading on a rough
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surface, the gravity-independent mesoscopic fluid invasion, the fluid moves into the
rough texture and this regime is the focus of this study. The third regime begins
when the macroscopic meniscus relaxes into its new shape or location governed by
external forces, such as gravity.

Figure 2. Spreading fluid drop (black) on a rough surface (white),
not to scale. a) macroscopic passive drop; b) Mesoscopic fluid
invasion regime (fills in the roughness); c) Precursor film (on the
order of 100 Angstroms thick).

The rough surface shown in Figure 1 is idealized here as comprised of a se-
ries of small cylindrical posts lined up on an otherwise smooth surface. The fluid
movement through the idealized rough surface is further simplified theoretically by
modeling the surface as a series of parallel channels. This approach has been used
historically in porous media by Washburn [6]. The model assumes that invasion
into the rough surface is driven solely by capillary forces; gravity is ignored for
this regime. Other simplifying assumptions made: the system is isothermal, solid,
liquid and vapor elements are chemically homogeneous and there is no evaporation.

Figure 3. Illustration of the fluid-air interface created by the
presence of roughness. All gas-fluid-solid contact angles (θ) are
identical. Interface curvature creates capillarity and drives flow.
Fluid movement is in the direction of the shaded arrow. Determi-
nation of the radius of curvature is governed by λ and δ.

2.1. Capillary driving mechanism. A constant capillary force exerted at the
wetting front is assumed to pull fluid into roughness (invasion). The capillary force
is calculated using the curvature of the fluid-gas interface. The radius of curvature is
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completely described by the height of the cylinders (δ) and the separation between
cylinders (λ) and the static gas-liquid-solid contact angle (θ). This force per unit
area is defined by the Young-Laplace equation,

(1) ∆Pc = γ
( 1
Rδ

+
1
Rλ

)
,

where ∆Pc is the pressure difference across the fluid-air interface caused by capil-
larity, γ is the liquid-gas surface tension, and Rδ and Rλ are the radii of curvature.
If the cylinders are normal to the smooth surface (see Figure 3) and assuming the
pressure in the bulk macroscopic fluid equals the external (atmospheric) pressure
then the force per unit area driving the fluid into the rough texture is [4]

(2) ∆Pc = γ
( (2δ + λ) cos θ − λ sin θ

δλ

)
.

2.2. Various friction approximations. In this section, the viscous dissipation
generated from fluid flow is calculated. The strength of viscous dissipation is a
function of the geometry of the surface. In modeling, it is of interest to use the
simplest geometry that captures the behavior. For this purpose we compare results
of four geometries (of varying complexity) to the experimental results. One geome-
try is that of a flat surface with no roughness elements, the remainder use channel
approximations.

First, a hydraulic diameter formulation is used to approximate the complex
geometry of the surface (the no-slip boundary) that is in contact with the moving
fluid. The hydraulic diameter method approximates a non-circular flow duct (in
this case a rectangular channel) as a cylinder with an effective radius that requires
knowledge of the geometry of the system, comparing the wetted area to the wetted
perimeter to give a reasonable estimate of friction.

Application of the Navier-Stokes Equation for an arbitrarily shaped channel leads
to a relationship between a constant pressure gradient, ∆P , across the invading fluid
and the velocity of the invading fluid front, U , in the form

(3) ∆Pµ =
2PoµU∆x

d2
h

,

where x is the distance from the macroscopic edge of the bulk fluid to the invasion
front (see Figure 2), µ is the dynamic viscosity, dh is the hydraulic diameter and P0

is the Poiseuille number [7]. Both dh and P0 are specified by the surface geometry.
The pressure gradient results from the decrease in pressure in the fluid at the fluid-
air interface caused by capillarity, described by Equation 2. Solving for the velocity,
U , of the front edge of the invading fluid yields

(4) U =
γd2

h

2Poµx

( (2δ + λ) cos θ − λ sin θ
δλ

)
.

Note that in the case of vertical imbibition, the lower boundary for the roughness
driven invasion is x0 = κ−1, where κ−1 is the capillary length given by (γ/ρg)1/2.
Even on a flat surface the wetting front will move up by a height of κ−1. Integrating
Equation 4 leads to a diffusion-type film invasion rate,

(5) xh =
[ γd2

h

Poµ

( (2δ + λ) cos θ − λ sin θ
δλ

)]1/2
t1/2 + x0.

where t is the time it takes for the edge of the fluid to travel the distance x along
the textured surface away from the macroscopic edge of the bulk fluid and the
subscript h denotes the use of hydraulic diameter method to approximate the fric-
tional resistance [4]. x ∝ t1/2 is the solution to a diffusion equation. Diffusion is
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a process which describes any movement driven by an energy gradient where the
energy difference is constant but the distance over which the gradient is expressed
grows. Diffusion is often used to describe the process of heat transport in a fluid
or mass transport in the mixing of fluids due to molecular brownian motion [7]. In
this fluid invasion of roughness case, mass is transported away from the bulk fluid
driven by a pressure gradient imposed by capillarity. Physically, this solution form
means that the fluid movement slows as the invasion front gets further and further
from the bulk fluid.

The Poiseuille number and the hydraulic diameter must be known to calcu-
late the diffusion coefficient (the entire term in front of t1/2 in Equation 5). The
Poiseuille number, P0, is 14.38 for a rectangle with an aspect ratio of α = δ/λ = 0.48
[8] as is the case for the experiment used here. The hydraulic diameter is [4]

(6) dh =
4A
Pw

=
4
[
λδ − λ2

4

(
π
2−θ
cos θ − tan θ

)]
2δ + λ

,

where the cross-sectional area of the flow, A, was approximated as a rectangle
with vertical walls of height δ and width λ minus the area of a circular segment
determined by the contact angle (Figure 4 e) and the wetting perimeter, Pw =
2δ + λ. For a simple rectangle, dh = 4δλ/(2δ + λ) (Figure 4 d).

If the elements are rounded, the same equation (6) can be used by substituting
θ for θ + θ′ where θ′ is the angle of inclination of the cylinder top (Figure 4 f) [4].

Another modeling option is to approximate the roughness as a semi circular
channel. The no-slip boundary is applied along the entire semi-circular perimeter.
Specifically, a Hagen-Poiseuille half pipe flow model gives the following function
for the spreading distance,

(7) xH−P =
[γδ2

4µ

( (2δ + λ) cos θ − λ sin θ
δλ

)]1/2
t1/2 + x0.

where the radius of the pipe has been approximated as the height of the obstacles,
δ (see Figure 4 c), the subscript H−P denotes the use of the Hagen-Poiseuille pipe
flow approximation for the frictional resistance term. This approximation may be
more adequate in naturally textured surfaces (e.g. rock) than for a surface such as
shown in Figure 1, because natural systems are likely to have less severe vertical
edges. A downfall of this method is that a pipe flow approximation will become
less accurate for systems with obstruction heights not comparable to the half-width
separation between obstructions. The experiment used for comparison to these
theories has δ = 1.2µm and half-width distance, λ/2 = 01.25µm.

The simplest geometry is that of a Poiseuille film flow (Figure 4 b). The equation
for the spreading distance becomes

(8) xP =
[2δ2γ

3µ

( (2δ + λ) cos θ − λ sin θ
δλ

)]1/2
t1/2 + x0,

where the subscript P denotes the use of the Poiseuille film flow approximation [4].
Approximating the flow in the roughness as a film ignores dissipation caused by the
presence of the cylinders and only accounts for no-slip condition along a smooth
plate (see Figure 4 b) and is thus expected to overestimate the rate of invasion.

3. Comparison to experiment

Experiments to test this concept consist of a rough microstructured surface (Fig-
ure 1) that was brought into contact with a reservoir of silicon oil. The upward
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Figure 4. Various cross-sectional channel flow models used to es-
timate viscous dissipation. The solid line represents the shape of
the ideal rough surface (height δ, width λ), the shaded region is
the fluid. a) The rough surface, no fluid; b) Poiseuille film flow;
c) Hagen-Poiseuille half-pipe flow; d) Hydraulic diameter approx-
imation, rectangle; e) Hydraulic diameter, static contact angle off
the vertical wall; f) Hydraulic diameter, static contact angle plus
θ′.

rate of fluid invasion into the rough surface is not dependent on surface orientation
[3], [2]. Figure 5 compares the experimental data of Bico et al (2001) with each of
the theoretical spreading equations.

Values for the diffusion coefficients for Equations 5, 7 and 8 can be calculated
using parameters from the experimental set up of Bico et al [2]: surface tension,
γ = 20.6 × 10−3N/m; density, ρ = 950kg/m3; advancing contact angle, θ = 0;
dynamic viscosity, µ = 16× 10−3Pa− s; height of the cylinders, δ = 1.2× 10−6m;
radius of cylinders, R = 0.5 × 10−6m; and distance between cylinder edges, λ =
2.5× 10−6m (separation between cylinder centers = λ+ 2R).

Values for each theoretical diffusion coefficient correspond to the slope of the
curves in Figure 5 and are listed on the figure. The data fits well to a curve that
has the same functional dependence as the theories and a slope of 2.7×10−4ms−1/2.

3.1. Discussion. Regardless of the method used for approximating the resisting
fluid friction, all the theoretical spreading equations result in diffusion laws of the
form x ∝ t1/2, having the same apparent functional time dependence as the exper-
imental data of Bico et al.

The half-pipe flow model is slower than the film flow model because pipe ge-
ometry provides for greater contact area although it still doesn’t account for the
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Figure 5. Data acquired by Bico et al [2]. Data is compared to
various theoretical diffusion-type models, x = Dt1/2+x0, where D,
the diffusion coefficient, equals the slope of the line. Corresponding
geometry illustrations from Fig. 4 are included in the legend. The
theories here have x0 = 1.5mm, corresponding to the theoretical
capillary length.

rectangular shape of the cylinder edges. An effective hydraulic diameter approxi-
mation provides a more realistic boundary condition than film or pipe flow and also
allows for freedom in describing the approximated channel shape and fluid shape.

The hydraulic diameter approximation that uses the contact angle off the vertical
wall to govern the shape predicts a diffusion coefficient that is smaller than the data.
Allowing a corner angle adjustment of θ′ = 7◦, increases the wetting area compared
to wetting perimeter, and gives a close fit to the data. However, a precise match
created by an arbitrary adjustment to the cylinder geometry may be fortuitous
because the discrepancy between the theories and the data may be an indication
of unaccounted for physical mechanisms. There remain several unaccounted for
features such as an uneven advancing fluid front, small scale fluid dynamics, vertical
fluid motion, and allotment for non-channelized approximation which are further
discussed in Hay et al. [4].

4. Summary

It is the intention of this research to eventually explain the movement of the air-
water interface occupying the space between rock fractures. This has applications
to fluid transport through rock fractures, then on a larger scale, transport of fluid
from the ground surface to groundwater, estimating the transport characteristics of
contaminants. To this end, the first issue that needs to be addressed is the physical
mechanism behind fluid flowing over a rough surface.

This investigation compares predictions by a theoretical model for a fluid invasion
on a rough surface to experiments. The rate of spreading on a rough surface can
be predicted given the surface tension, viscosity, contact angle and geometry of the
surface. It is the nature of roughness in natural systems to be random and possibly
fractal-like. This provides serious challenges in attempting to theoretically quantify
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the wetting behavior over these surfaces. Idealizing the structure is one step closer
to understanding this complex fluid movement. Results indicate that a hydraulic
diameter approach, because of its flexibility in representing complex shapes may be
very useful as long as the shape of the free surface is properly accounted for. Fluid
movement suggested here describes the fluid invasion process that occurs when a
wetting fluid encounters roughness but may not affect the overall speed of a fluid
droplet between parallel plates, except by possibly changing the contact angle. This
issue is being investigated further.

We thank Dr. José Bico for the use of his experimental data, Zachary Wiren for
the many conceptual discussions that lead to improving the invasion theory and
the NSF (Grant 0449928) for financial support.
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