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WAVELETS, A NUMERICAL TOOL FOR MULTISCALE
PHENOMENA: FROM TWO DIMENSIONAL TURBULENCE TO

ATMOSPHERIC DATA ANALYSIS.

PATRICK FISCHER AND KA-KIT TUNG

Abstract. Multiresolution methods, such as the wavelet decompositions, are
increasingly used in physical applications where multiscale phenomena occur.
We present in this paper two applications illustrating two different aspects of
the wavelet theory.
In the first part of this paper, we recall the bases of the wavelets theory. We
describe how to use the continuous wavelet decomposition for analyzing mul-
tifractal patterns. We also summarize some results about orthogonal wavelets
and wavelet packets decompositions.
In the second part, we show that the wavelet packet filtering can be successfully
used for analyzing two-dimensional turbulent flows. This technique allows the
separation of two structures: the solid rotation part of the vortices and the
remaining mainly composed of vorticity filaments. These two structures are
multiscale and cannot be obtained through usual filtering methods like Fourier
decompositions. The first structures are responsible for the inverse transfer of
energy while the second ones are responsible for the forward transfer of en-
strophy. This decomposition is performed on numerical simulations of a two
dimensional channel in which an array of cylinders perturb the flow.
In the third part, we use a wavelet-based multifractal approach to describe
qualitatively and quantitatively the complex temporal patterns of atmospheric
data. Time series of geopotential height are used in this study. The results ob-
tained for the stratosphere and the troposphere show that the series display two
different multifractal behaviors. For large time scales (several years), the main
Hölder exponent for the stratosphere and the troposphere data are negative in-
dicating the absence of correlation. For short time scales (from few days to one
year), the stratopshere series present some correlations with Hölder exponents
larger than 0.5, whereas the troposhere data are much less correlated.

Key Words. Wavelets, two dimensional turbulence, multifractal analysis,
atmospheric data

1. Review on wavelets

The one dimensional wavelet theory is reviewed in this part. The generalization
to higher dimension is relatively easy and is based on tensor products of one di-
mensional basis functions. The two dimensional wavelet theory is recalled here in
the wavelet packets framework only. We present here a summary of the theory, and
a more complete description can be found in [12, 26].
Any time series, which can be seen as a one dimensional mathematical function, can
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be represented by a sum of fundamental or simple functions called basis functions.
The most famous example, the Fourier series,

s(t) =
+∞∑

k=−∞
ckeikt(1)

is valid for any 2π-periodic function sufficiently smooth. Each basis function, eikt

is indexed by a parameter k which is related to a frequency. In (1), s(t) is written
as a superposition of harmonic modes with frequencies k. The coefficients cn are
given by the integral

ck =
1
2π

∫ 2π

0

s(t)e−iktdt(2)

Each coefficient ck can be viewed as the average harmonic content of s(t) at fre-
quency k. Thus the Fourier decomposition gives a frequency representation of any
signal. The computation of ck is called the decomposition of s and the series on
the right hand side of (1) is called the reconstruction of s.
Although this decomposition leads to good results in many cases, some disadvan-
tages are inherent to the method. One of them is the fact that all the information
concerning the time variation of the signal is completely lost in the Fourier descrip-
tion. For instance, a discontinuity or a localised high variation of the frequency
will not be well described by the Fourier representation. The underlying reason lies
in the nature of complex exponential functions used as basis functions. They all
cover the entire real line, and differ only with respect to frequency. They are not
suitable for representing the behaviour of a discontinuous function or a signal with
high localised oscillations.
Like the complex exponential functions of the Fourier decomposition, wavelets can
be used as basis functions for the representation of a signal. But, unlike the com-
plex exponential functions, they are able to restore the positional information as
well as the frequency information.

1.1. Continuous wavelets and the multifractal formalism. The wavelet-
based multifractal formalism has been introduced in the nineties by Mallat [25, 26],
Arneodo [2, 3, 4], Bacry [5] and Muzy [28]. A wavelet transform can focus on lo-
calized signal structures with a zooming procedure that progressively reduces the
scale parameter. Singularities and irregular structures often correspond to essential
information in a signal. The local signal regularity can be described by the decay
of the wavelet transform amplitude across scales. Singularities can be detected by
following the wavelet transform local maxima at fine scales.

The wavelet transform is a convolution product of a data sequence with the
compressed (or dilated) and translated version of a basis function ψ called the
wavelet mother. The scaling and translation are performed by two parameters: the
scale parameter a dilates or compresses the mother wavelet to various resolutions
and the translation parameter b moves the wavelet all along the sequence:

(3) WTs(b, a) =
1√
a

∫ +∞

−∞
s(t)ψ∗

(
t− b

a

)
dt, a ∈ R+∗, b ∈ R.

This definition of the wavelet transform leads to an invariant L2 measure, and thus
conserves the energy (‖s‖2 = ‖WTs‖2). A different normalization could be used
leading to a different invariant.
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The strength of a singularity of a function is usually defined by an exponent
called Hölder exponent. The Hölder exponent h(t0) of a function s at the point t0
is defined as the largest exponent such that there exists a polynomial Pn(t) of order
n satisfying:

(4) |s(t)− Pn(t− t0)| ≤ C|t− t0|h(t0),

for t in a neighborhood of t0. The order n of the polynomial Pn has to be as large
as possible in (4). The polynomial Pn can be the Taylor expansion of s around
t0. If n < h(t0) < n + 1 then s is Cn but not Cn+1. The exponent h evaluates
the regularity of s at the point t0. The higher the exponent h, the more regular
the function s. It can be interpreted as a local measure of ’burstiness’ in the time-
series at time t0. A wavelet transform can estimate this exponent by ignoring the
polynomial Pn. A transcient structure or ’burst’ is generally wavelet-transformed
to a superposition of wavelets with the same centre of mass and wide range of
frequencies.
In order to evaluate the Hölder exponent, we have to choose a wavelet mother with
m > h vanishing moments:

(5)
∫ ∞

−∞
tkψ(t) dt,

for 0 ≤ k < m. A wavelet with m vanishing moments is orthogonal to polynomials
of degree m− 1. Since h < m, the polynomial Pn has a degree n at most equal to
m− 1 and we can then show that:

(6)
∫ +∞

−∞
Pn(t− t0)ψ∗

(
t− b

a

)
dt = 0.

Let us assume that the function s can be written as a Taylor expansion around t0:

(7) s(t) = Pn(t− t0) + C|t− t0|h(t0)

We then obtain for its wavelet transform at t0:

WTs(t0, a) =
1√
a

∫ +∞

−∞
C|t− t0|h(t0)ψ∗

(
t− t0

a

)
dt(8)

= C|a|h(t0)+
1
2

∫ +∞

−∞
|t′|h(t0)ψ(t′)dt′.(9)

We have the following power law proportionality for the wavelet transform of the
singularity of s(t0):

(10) |WTs(t0, a)| ∼ ah(t0)+
1
2

Then, we can evaluate the exponent h(t0) from a log-log plot of the wavelet trans-
form amplitude versus the scale a.

However, we cannot compute the regularity of a multifractal signal because its
singularities are not isolated. But we can still obtain the singularity spectrum of
multifractals from the wavelet transform local maxima.
These maxima are located along curves in the plane (b, a). This method, introduced
by Arneodo et al. [3], requires the computation of a global partition function
Z(q, a). Let {bi(a)}i∈Z be the position of all maxima of |WTs(b, a)| at a fixed scale
a. The partition function Z(q, a) is then defined by:

(11) Z(q, a) =
∑

i

|WTs(bi, a)|q.
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We can then assess the asymptotic decay τ(q) of Z(q, a) at fine scales a for each
q ∈ R:

(12) τ(q) = lim
a→0

inf
log Z(q, a)

log a
.

This last expression can be rewritten as a power law for the partition function
Z(q, a):

(13) Z(q, a) ∼ aτ(q).

If the exponents τ(q) define a straight line then the signal is a monofractal, oth-
erwise the signal is called multifractal: the regularity properties of the signal are
inhomogeneous, and change with location.

Finding the distribution of singularities in a multifractal signal is necessary for
analyzing its properties. The so-called spectrum of singularity D(h) measures the
repartition of singularities having different Hölder regularity. The singularity spec-
trum D(h) gives the proportion of Hölder h type singularities that appear in the
signal. A fractal signal has only one type of singularity, and its singularity spec-
trum is reduced to one point. The singularity spectrum D(h) for any multifractal
signal can be obtained from the Legendre transform of the scaling exponent τ(q)
previously defined :

(14) D(h) = min
q∈R

(
q(h +

1
2
)− τ(q)

)
.

Let us notice that this formula is only valid for functions with a convex singularity
spectrum [26]. In general, the Legendre transform gives only an upper bound of
D(h) [18, 19]. For a convex singularity spectrum D(h), its maximum

(15) D(h0) = max
h

D(h) = −τ(0)

is the fractal dimension of the Hölder exponent h0.

Remark: When the maximum value of the wavelet transform modulus is very
small, the formulation of the partition function given in (11) can diverge for q < 0.
A way to avoid this problem consists in replacing the value of the wavelet transform
modulus at each maximum by the supremum value along the corresponding maxima
line at scales smaller than a:

(16) Z(q, a) =
∑

l∈L(a)

(
sup

(t,a′)∈l, a′<a

|WTs(t, a)|
)q

,

where L(a) is the set of all maxima lines l satisfying: l ∈ L(a), if ∀a′ ≤ a, ∃(x, a′) ∈
l. The properties of this modified partition function are well described in [3].

1.2. One-dimensional orthogonal wavelet bases. The theoretical construc-
tion of orthogonal wavelet families is intimately related to the notion of Multireso-
lution Analysis [25]. A Multiresolution Analysis is a decomposition of the Hilbert
space L2(R) of physically admissible functions (i.e square integrable functions) into
a chain of closed subspaces,

. . . ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . .

such that
•

⋂

j∈Z
Vj = {0} and

⋃

j∈Z
Vj is dense in L2(R)
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• f(x) ∈ Vj ⇔ f(2x) ∈ Vj−1

• f(x) ∈ V0 ⇔ f(x− k) ∈ V0

• There is a function ϕ ∈ V0, called the father wavelet, such that {ϕ(x −
k)}k∈Z is an orthonormal basis of V0

Let Wj be the orthogonal complementary subspace of Vj in Vj−1:

(17) Vj ⊕Wj = Vj−1

This space contains the difference in information between Vj and Vj−1, and allows
the decomposition of L2(R) as a direct form:

(18) L2(R) = ⊕j∈ZWj

Then, there exists a function ψ ∈ W0, called the mother wavelet, such that {ψ(x−
k)}k∈Z is an orthonormal basis of W0. The corresponding wavelet bases are then
characterized by:

ϕj,k(x) = 2−j/2ϕ(2−jx− k), k, j ∈ Z,(19)

ψj,k(x) = 2−j/2ψ(2−jx− k), k, j ∈ Z.(20)

Given an integer M , it is possible to select a mother wavelet such that:

(21)
∫

R
dxψ(x) xm = 0, m = 0, . . . , M − 1 ,

which means that it has M vanishing moments and the approximation order of the
wavelet transform is then also M .

Since the scaling function ϕ(x), and the mother wavelet ψ(x) belong to V−1,
they admit the following expansions:

ϕ(x) =
√

2
L−1∑

k=0

hk ϕ(2x− k), hk = 〈ϕ,ϕ−1,k〉 ,(22)

ψ(x) =
√

2
L−1∑

k=0

gk ϕ(2x− k), gk = (−1)khL−k−1 ,(23)

where the number L of coefficients is connected to the number M of vanishing
moments and is also connected to other properties that can be imposed to ϕ(x).
The families {hk} and {gk} form in fact a conjugate pair of quadrature filters H
and G. Functions verifying (22) or (23) have their support included in [0, . . . , L−1].
Furthermore, if there exists a coarsest scale, j = n, and a finest one, j = 0, the
bases can be rewritten as:

(24) ϕj,k(x) =
L−1∑

l=0

hl ϕj−1,2k+l(x), j = 1, . . . , n ,

and

(25) ψj,k(x) =
L−1∑

l=0

gl ϕj−1,2k+l(x), j = 1, . . . , n .

The wavelet transform of a function f(x) is then given by two sets of coefficients
defined as

(26) dj
k =

∫

R
dx f(x) ψj,k(x) ,
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and

(27) rj
k =

∫

R
dx f(x)ϕj,k(x) .

Starting with an initial set of coefficients r0
k, and using (24) and (25), coefficients

dj
k and rj

k can be computed by means of the following recursive relations:

(28) dj
k =

L−1∑

l=0

gl r
j−1
2k+l ,

and

(29) rj
k =

L−1∑

l=0

hl r
j−1
2k+l .

Coefficients dj
k, and rj

k are considered in (28) and (29) as periodic sequences with
the period 2n−j . The set dj

k, is composed by coefficients corresponding to the
decomposition of f(x) on the basis ψj,k and rj

k may be interpreted as the set of
averages at various scales.

1.3. One-dimensional wavelet packets. Let H and G be a conjugate pair of
quadrature filters whose the coefficients are respectively denoted by hj and gj . One
denotes by ψ0 and ψ1 the corresponding father and mother wavelets. The following
sequence of functions can be defined using the filters H and G:

(30)
ψ2n(x) =

√
2

∑
j∈Z hjψn(2x− j),

ψ2n+1(x) =
√

2
∑

j∈Z gjψn(2x− j).

The set of these functions {ψn}n defines the wavelet packets associated to H and
G. An orthonormal wavelet packet basis of L2(R) is any orthonormal basis selected
from among the functions 2s/2ψn(2sx−j). The selection process, the so-called Best
Basis algorithm, will be described in the sequel. Each basis element is characterized
by three parameters: scale s, wavenumber n and position j. A useful representation
of the set of wavelet packet coefficients is that of a rectangle of dyadic blocks. For
instance, if one considers a signal defined at 8 points {x1, ..., x8}, then the wavelet
packet coefficients of this function can be summarized by Table 1.

x1 x2 x3 x4 x5 x6 x7 x8

r1 r2 r3 r4 d1 d2 d3 d4

rr1 rr2 dr1 dr2 rd1 rd2 dd1 dd2

rrr1 drr1 rdr1 ddr1 rrd1 drd1 rdd1 ddd1

Table 1. Dyadic blocks of wavelet packet coefficients

Each row is obtained by the application of either filter H or G to the previous
row. The application of H is denoted by r as “resuming” and the application of G by
d as “differencing”. For instance, the set {rd1 rd2} is obtained by the application
of the filter H to {d1 d2 d3 d4}, and {dd1 dd2} by the application of the
filter G. The so called Daubechies wavelets defined in [12] with several numbers of
vanishing moments have been used in the sequel.
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Figure 1. Two levels of two dimensional wavelet packets decomposition

1.4. Two-dimensional packets and the best basis algorithm. Two-dimensional
wavelet packets can be obtained by tensor products ψsnk(x).ψs′n′k′(y) of one-
dimensional basis elements. The support of these functions is exactly the cartesian
product of the supports of ψsnk(x) and ψs′n′k′(y). The same scale s = s′ will be
used in the sequel. Subsets of such functions can be indexed by dyadic squares,
with the squares corresponding to the application of one of the following filters
H ⊗H = HxHy, H ⊗ G = HxGy, G ⊗H = GxHy, or G ⊗ G = GxGy. A graph-
ical representation of a two-dimensional wavelet packets decomposition is given in
Figure 1.
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Arrays of wavelet packets constitute huge collections of basis from which one
has to choose and pick. The main criterion consists in seeking a basis in which
the coefficients, when rearranged into decreasing order, decrease as fast as possible.
Several numerical criteria do exist and one refers to [31] for more details. The
entropy has been chosen since it is the more often used for this type of application.
For a given one-dimensional vector u = {uk}, it is defined as:

(31) E(u) =
∑

k

p(k) log(
1

p(k)
),

where p(k) =
|uk|2
‖u‖2 is the normalized energy of the kth element of the vector under

study. If p(k) = 0 then we set p(k) log( 1
p(k) ) = 0. All the terms in the sum are

positive. In fact, the entropy measures the logarithm of the number of meaningful
coefficients in the original signal. The vector p = {p(k)}k can be seen as a discrete
probability distribution function since 0 ≤ p(k) ≤ 1, ∀k and

∑
k p(k) = 1. It can

be easily shown that if only N of the values p(k) are nonzero, then E(u) ≤ log N .
Such a probability distribution function is said to be concentrated into at most N
values. If E(u) is small then we may conclude that u is concentrated into a few
values of p(k), with all other values being rare. The overabundant set of coefficients
is naturally organized into a quadtree of subspaces by frequency. Every connected
subtree containing the root corresponds to a different orthonormal basis. The most
efficient of all the bases in the set may be found by recursive comparison: the
choice algorithm will find the global minimum in O(N) operations, where N is the
initial degree of freedom number. In fact, the basis is chosen automatically to best
represent the original data. Hence the name best basis. Routines in Matlab written
by D. Donoho [13] and based on the algorithms designed by M.V. Wickerhauser
are used for performing the packets decompositions and for searching for the best
bases.

2. Application to two dimensional turbulence

While three dimensional turbulence is governed by a direct cascade of energy
from the scale of injection to the small scales where the energy is dissipated, two
dimensional turbulence admits two different ranges [7, 22, 23]. The first one, at
large scales, is governed by an inverse energy cascade from the scale of injection
to the large scales. The second one, at small scales, is governed by a cascade of
enstrophy from the scale of injection to the small scales. This scenario, proposed
by Kraichnan and Batchelor over 40 years ago, finds confirmation in different nu-
merical simulations and experimental realizations. However, if the scaling laws for
the different ranges have found some confirmation, the structures responsible for
such transfers have not been completely identified.
Two dimensional turbulence has interested and continues to interest different scien-
tific communities. Its relevance to atmospheric and oceanic flows at large scales has
largely motivated its detailed study [24, 27, 30]. Numerical simulations have, for
much longer, identified several features of 2D turbulent flows. Now, it appears that
two cascades exist in a two dimensional turbulent flow. An inverse energy cascade
due to the merging of same sign vortices transfers energy from the injection scale to
the large scales. At scales smaller than this injection scale, an enstrophy cascade,
whose origin is apparently the straining of vorticity gradients, transfers enstrophy
from the large to the small scales. While the role of vortices has been identified
as crucial for the dynamics of 2D flows, there has been only few if any studies of
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Figure 2. Snapshot of the vorticity field with the selected domain
of analysis at the end of the channel delimited by a dotted line.

the role of flow structures on the transfers of either energy or enstrophy. This is
precisely what we show here using two dimensional wavelet packets decompositions.

2.1. Numerical setup. Direct numerical simulations are used to obtain a two
dimensional turbulent flow at relatively high Reynolds numbers. This flow is ob-
tained in a channel with a length of either four or five times its width and where the
turbulence is generated by arrays of cylinders. This configuration has been studied
recently and the complete results have been reported in [9, 14, 15]. These simu-
latilons have been originally motivated by experiments carried out with soap films
where grid turbulence was studied in detail [21, 20]. In order to keep a cartesian
mesh, on which accurate finite differences schemes are written [11], the solid obsta-
cles are considered as a porous medium of very weak permeability. So, instead of the
classical Navier-Stokes equations, the following penalized Navier-Stokes equations
[1, 10] are solved :

∂tU + (U · ∇) U − 1
Re

∆U +
U

K
+∇p = 0(32)

divU = 0(33)

where U = (u, v) is the velocity, p the pressure, Re the nondimensional Reynolds
number based on the unit inlet flowrate and length and K the nondimensional
coefficient of permeability of the medium. The fluid and the solid media correspond
to an infinite and a zero permeability coefficient respectively, K = 1016 and K =
10−8 are the approximate values used in the numerical simulation. The above
equations are associated to no-slip boundary conditions on the walls of the channel,
Poiseuille flow on the entrance section and a non reflecting boundary condition
on the exit section [8]. A typical snapshot of such a simulation is presented in
Figure 2 where the cylinders are apparent both near the side walls and at one
distance down from the entrance. This is the flow field we analyze here using using
techniques based on wavelet analysis. Contrary to standard Fourier analysis, the
wavelet decomposition we use here reveals the different structures of the flow at all
spatial scales. This is also different from other filtering techniques where averaging
over a certain range of scales is carried out. The overall filtering process can be
summarized as follows:

(1) Computation of the wavelet packets decomposition of the two components
of the velocity U = (u1, u2).
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(2) Separation of the velocity fields into two subfields: the first subfield Us =
(u1s, u2s) corresponds to the wavelet packet coefficients with a modulus
larger than a given threshold ε, and the second one Uf = (u1f , u2f ) cor-
responds to the wavelet packet coefficients with a modulus smaller than
ε.

(3) Construction of the corresponding vorticity fields, ωs and ωf . The filtered
field ωs is then essentially composed by the solid rotation part of the vor-
tices, and the filtered field ωf by the vorticity filaments in between that
roll up in spirals inside the vortices.

(4) Computations of the physical data: energy and enstrophy spectra and
fluxes.

2.2. Computation of the energy and enstrophy spectra. In this section is
presented the main result concerning the analysis of the role of each filtered subfield
to the two-dimensional turbulence mechanism.
The velocity decomposition U = Us + Uf obtained with the wavelet packets based
filtering is orthogonal and leads to the energy spectrum decomposition

(34) E(k) = Es(k) + Ef (k),

where Es is the energy of the solid rotation vortices and Ef is the energy of the
vorticity filaments, as can be verified on Figure 3. We observe that both subfields
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Figure 3. Energy spectra of the original and filtered fields ob-
tained by a 5 scales wavelet packets decomposition (kinj ≈ 20).

are multiscale even if the Es spectrum dominates before the injection scale and the
Ef spectrum dominates after the injection scale. And the filtered energy spectra
are superimposed to the global energy spectrum when they dominate. A first slope
in k−2 and a second one in k−5.5 on both sides of the injection scale are obtained.
The first slope is not really clear as it is short but the second one is obvious.
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The same decomposition of the enstrophy spectrum yields a behavior in k0 and
k−3.5 respectively as can be observed on Figure 4. The decomposition into the

10
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Total enstrophy Z
Filtered enstrophy Z
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Filtered enstrophy Z

f

Slope k0

Slope k−3.5

Figure 4. Original and filtered (WP 5 scales) enstrophy spectra
(kinj ≈ 20).

two subfields obtained by the wavelet packets filtering process is given in Figure
5. The solid rotation subfield ωs reveals all the vortices with a smooth transition
and the vorticity filaments subfield ωf shows the vorticity filaments between the
vortices that end up in spirals inside the vortices. Both subfields are continuous and
multiscale. The first subfield is obtained with less than 1% of the coefficients of the
decomposition. It contains more than 95% of the total energy and around 70% of the
enstrophy while the second one contains less than 5% of the total energy but around
30% of the enstrophy. This distribution of the enstrophy shows that unfortunately
the whole flow can not be represented properly only by the first subfield. Indeed,
when the vorticity filaments subfield is neglected, the global motion cannot be
correct. In contrast with a Fourier based filtering, the present orthogonal filtering
does not separate the scales of the flow but the type of sctructures. Here the two
subfields are not seen like vortical coherent structures and background as done
in previous studies but like two coherent and multiscale subfields with their own
dynamics. The purpose of this paper is not the detailed study of two dimensional
turbulent flows, but to show two applications of wavelet based methods. The reader
particularly interested in two dimensional turbulence will find more results in [14,
15, 16].

2.3. Discussion. A careful analysis of the flows using wavelet packets filtering on
sufficient levels yields relevant results one can trust. Using an adapted threshold
on the wavelet coefficients allows to separate the flow into two continuous and
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Figure 5. Wavelet packets filtering of a snapshot at the end of
the channel (kinj ≈ 20).

multiscale subfields, on one hand the solid rotation of the vortices and on the other
hand the vorticity filaments that connect the vortices and roll up in spirals inside
the vortices. The second subfield cannot be neglected as it contains around 30%
of the enstrophy and contributes for a significant part of the motion of the whole
flow.

3. Multifractal analysis of atmospheric time series

Depending on the application, there are various ways of computing the wavelet
transform. For the purpose of compression for instance, an orthogonal wavelet
transform on dyadic scales are generally used. For the study of fractals like in this
present study, continuous wavelet transforms have been found to be efficient [5].
The wavelet mother has also to be chosen according to the application. When the
time series do not have any characteristic scales, or when the goal is to identify
discontinuities or singularities, a real wavelet mother has to be chosen. In this
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work, we use the N successive derivatives of a Gaussian function:

(35) ψ(x) =
dN

dxN
e−x2/2

These functions are well localized in both space and frequency, and have N vanish-
ing moments, as required for a multifractal analysis.The computations have been
performed with N = 1, 2, 4, 6, 8, 10 but only the results for N = 2 are discussed in
detail in this paper. The results for other values of N are very similar denoting
the absence of any polynomial component. Furthermore, the case N = 2 is gener-
ally used for fractal analysis and corresponds to the so-called Mexican Hat function.

3.1. Data setup. We have applied the wavelet-based multifractal approach to
the analysis of two sets of atmospheric data. The first set consists in the monthly
averages of the NCEP Daily Global Analyzes data [29]. They correspond to times
series of geopotential height from January 1948 to June 2005. A spatial average
from 60◦N to 90◦N is performed at 17 levels, from 10 hPa down to 1000 hPa. Then
the annual cycle is removed by subtracting for each month the corresponding mean
in order to focus our study onto the anomalies. In such way, we will be able to
detect and to describe the singularities present in the signal. Typical stratospheric
and tropospheric representations are shown at 100 hPa and 700 hPa in Figures 6
and 7.
The second set of data consists in the Northern Annular Modes (NAM) at 17

1950 1960 1970 1980 1990 2000
−400

−300

−200

−100

0

100

200

300

400

Figure 6. 100 hPa monthly anomalies (NCEP) from 60◦N to 90◦N

levels from the stratosphere down to the surface level from January 1958 to July
2006 provided by Baldwin [6]. At each pressure altitude, the annular mode is the
first Empirical Orthogonal Function (EOF) of 90-day low-pass filtered geopotential
anomalies north of 20◦N. Daily values of the annular mode are calculated for each
pressure altitude by projecting daily geopotential anomalies onto the leading EOF
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Figure 7. 700 hPa monthly anomalies (NCEP) from 60◦N to 90◦N

patterns. In the stratosphere annular mode values are a measure of the strength
of the polar vortex, while the near-surface annular mode is called the Arctic Oscil-
lation (AO), which is recognized as the North Atlantic Oscillation (NAO) over the
Atlantic sector.
The results obtained with the second set of data are not given in this paper, and
the reader interested in atmospheric sciences can find them in [17].

3.2. Numerical results. The wavelet decompositions obtained with the Mexican
Hat function (second derivative of the Gaussian function) are given in Figures 8
and 9. The wavelet transform consists in the calculation of a resemblance index
between the signal and the wavelet mother (here the Mexican Hat function). If the
signal is similar to itself at different scales, then the wavelet coefficients represen-
tation will be also similar at different scales. It can be easily noticed in Figures
8 and 9 that the self-similarity generates a characteristic pattern. This represen-
tation is a good demonstration of how well the wavelet transform can reveal the
fractal pattern of the atmospheric data. Based only on these representations, we
cannot detect any significant difference between the stratospheric and the tropo-
spheric signals. But we will see in the following by studying the maxima lines of the
wavelet transform that these two signals have a different singularity spectrum D(h).

Based on the technical reasons presented in the previous section, the partition
function is computed with the formulation given in (16) for q between -20 and 20
with a step size of 0.5.
The first step in the computation of the partition function consists in the detection
of the maxima lines of the wavelet transform modulus. The representation of these
maxima lines, often called the “skeleton” of the wavelet transform, is given in Fig-
ure 10 for the stratospheric signal. For the computation of the partition functions,
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Figure 8. Wavelet transform modulus of the 100 hPa signal
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Figure 9. Wavelet transform modulus of the 700 hPa signal

only the maxima lines of length longer than 1 octave are kept in the summation
in order to keep only the significant singularities. The two partition functions are
given in Figures 11 and 12. The steps that can be observed for negative values of q
are due to the use of the supremum (otherwise, the computation of Z(q, a) would
diverge for negative q). We can remark that the slopes for negative q are different
for the stratosphere and for the troposphere. Based on this simple remark, we can
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Figure 10. Maxima lines of the modulus of the wavelet transform
of the 100 hPa signal
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Figure 11. Partition function at 100 hPa

already predict that the shapes of the corresponding singularity spectra will be also
different. We can expect a steeper down slope in the case of the troposphere.
The corresponding singularity spectra are given in Figure 13. The large supports
of the spectra prove that the signals are multifractal. A quasi-monofractal signal
spectrum would lie on very few values, and a real monofractal signal spectrum
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Figure 12. Partition function at 700 hPa
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Figure 13. Singularity Spectra of the 100 hPa and 700 hPa signals

would reduce to only one point.
As expected, the down slope corresponding to the negative values of q is steeper for
the troposphere than for the stratosphere. The maximum of the spectra is obtained
around h = −0.29 for the stratosphere and between h = −0.22 and h = −0.23 for
the troposphere. We remind here that the smaller is this value the more singular
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are the singularities in the signal.

So according to this first study, we can conclude that the singularities in the
tropospheric signal are more singular than the singularities in the stratospheric
signal. We can verify this first conclusion by computing the value of h where the
maximum of D(h) is obtained for the 17 levels from 10 hPa down to 1000 hPa.
The results are given in Figure 14. We can clearly detect two areas: the first one
with h around −0.23 corresponds to the stratosphere and the second one with h
around −0.29 corresponds to the troposphere. These results can be compared to
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Figure 14. Evolution of h in function of the level

the values h obtained for artificial uncorrelated data. We perform the same com-
putations on signals of random numbers whose elements are uniformly disctributed
in the interval (0, 1). The value of h found for random signals are around −0.4.
So with h ∼ −0.3 or h ∼ −0.2, the signals corresponding to atmospheric data are
close to artificial uncorrelated data at these ranges of time periods.

The whole singularity spectra can also give some information to discriminate
stratospheric data from tropospheric data. We can show that their supports are
also different as can be noticed from Figure 15. The stratospheric signals present
broader spectra than the tropospheric signals indicating the presence of singularities
over a larger spectrum.

The analysis performed on the monthly averages NCEP Data cannot give any
information for periods smaller than a month. In order to get details on finer time
periods, we performed the same kind of analysis on the daily NAM index. the
corresponding results are given in [17].

3.3. Discussion. In this part, we have discussed some issues relating to the es-
timation of the multifractal nature of atmospheric data using a wavelet-based
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Figure 15. Singularity spectra for few levels in the stratosphere
and in the troposphere

method. Our study reveals the clear fractal pattern of the analyzed series and
their different scaling characteristics. The results obtained with daily data (not
shown here) show, in the case of the stratosphere, a short-range correlation behav-
ior that occurs for short range of time scales. In the troposphere and in the same
ranges of time, we found a much weaker correlation.

4. Conclusion

Wavelets were developed independently in the fields of mathematics, quantum
physics, geology and electrical engineering. They are perfect numerical tools in an-
alyzing physical situations where the signal contains discontinuities or sharp spikes,
and they are especially adapted for studying multiscale phenomena in many physi-
cal applications. We have shown in this paper a few results obtained in two different
problems: two dimensional turbulence, and atmospheric data analysis. In the first
application, the wavelet analysis of a two dimensional turbulent flow shows that the
vorticity field can be decomposed into two orthogonal subfields. Each subfield is
characterized by a distinct structure: vortices or filaments. A more detailed study
[14, 15] shows that while the vortical structures are responsible for the transfer of
energy upscale, the filamentary structures are responsible for the transfer of enstro-
phy downscale. In the second application, the continuous wavelet transform allows
to enhance the multifractal patterns of the atmospheric geopotential heights. The
singularity spectra of the data present different behaviors in the stratosphere and in
the troposphere. The connection of the multiscaling properties of atmposheric data
to the underlying physical dynamics falls beyond the scope of the present paper.
However, by using a two dimensional wavelet transform, we would like to extend
our research from time series to spatial patterns of atmosphere analysis.
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